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QUADRATIC APPROXIMATION OF SOLUTIONS FOR
ORDINARY DIFFERENTIAL EQUATIONS

JUAN J. NIETO

We present a generalisation of the quasilinearisation method to obtain a monotone
sequence of approximate solutions that converges quadratically to a solution of a
nonlinear ordinary differential equation of order n ;> 1.

1.INTRODUCTION

The method of quasilinearisation is a classical tool to obtain approximate solutions
of nonlinear problems [1,2]. Under some suitable conditions, it is possible to construct a
monotone increasing sequence of approximate solutions that converges quadratically to
a solution. For instance, consider the following initial problem for a first order ordinary
differential equation

( i ) «'(*) = / («(<)) , tei = [o,T], «(o) = »o.

If / is convex, then we can write f(u) — maxvg(u,v) where g(u,v) is linear in u.
Then, starting with a reasonable initial approximation, one can generate a sequence of
approximate solutions converging quadraticaly to the solution of (1).

Recently the method of quasilinearisation was generalised [4] to the case when
f(u) + Mu2 is convex for some M > 0.

On the other hand, it is well known that the method of lower and upper solutions
coupled with the monotone iterative technique provides a practical tool to generate
monotone sequences that converge to the maximal and minimal solutions [3]. However,
as is shown in [5], the convergence of the monotone method is, in general, not quadratic.

The purpose of this paper is to extend the method of quasilinearisation to a non-
linear ordinary differential equation of order n ^ 1 . Concretely, we study the following
nonlinear boundary value problem

(2) [Du}(t) = f(t, u(t)), t E / = [0, r j , B(u) = b,
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where D is a linear ordinary differential operator of order n ^ 1 defined by

n - l

t=i

/ : I x E -> R is continuous, £(u) = (^-(u))"^1, b = (fti)^,1 6 Rn, and for any

i = 0 , 1 , . . . , n - l , Bi rC"1-^/) -» R is linear.

The paper is organised as follows. In Section 2 we present some results on the

linear differential operator D : E -> C(I), E = {M £ Cn(/) : 5(u) = 0 } , and recall

the upper and lower solution method, as well as the monotone iterative technique, for

the nonlinear problem (2).

Then, in Section 3, we develop the method of quasilinearisation for (2) provided

that there exists M > 0 such that f(t,u) + Mu2 is convex in u. Thus, we obtain a

sequence of monotone increasing approximate solutions that converge quadratically to

a solution of (2).

Finally, we apply the result to some particular situations for first, second, and

higher order problems. Some examples include previous results and some other examples

are new.

2. PRELIMINARIES

Let F be a normed space with norm || ||, and {uk} a sequence in F . Suppose
that {wfc} converges to u £ F. We say that {«*} converges quadratically to u G F if
there exist fco £ N, and A > 0 such that for k ^ fco we have that

u| | < A- ||ujb - u\\2 .

We now consider the homogeneous linear problem

(3) [Du](t) = 0,teI= [0 ,T] , B{u) = 0.

If it has only the trivial solution, then the linear problem

(4) [Du](t) = h, t e I = [0,T], B(u) = b

has a unique solution u for any h £ C(I) . Therefore (see, for instance, [9]), there
exists a Green's function G : / x / —» R such that the solution of (4) is given by

/ G{t,s)h(s)ds,
Jo
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where v is the unique solution of the problem

(5) [Du](t) = 0, t £ / = [0, T], B(u) = b.

To study the nonlinear problem (2), we now define the superposition operator
N : C{I) -» C{I) by [Nu](t) = f(t,u(t)). For u,v £ C(/), we write u < u on / if
u(t) ^ v(t) for every t £ I. If u ^ v on 7, we define the sector

[u, v] = {w G C(7) : u ^ to ^ v on / } .

We say that a function a G Cn{I) is a lower solution of (2) if

(6) Da < Na on / , B{a) ^ b.

Analogously, we say that (3 G Cn(I) is an upper solution of (2) if

(7) D0 > N(3 on I, B{0) < b.

To develop the upper and lower solution method, it is necessary to have at our
disposal a maximum principle. For instance, in some cases we know that

(8) Du > 0, B(u) > 0 = > u ^ 0.

Note that if this maximum principle is valid, then (4) is uniquely solvable for any

h e C{I). Moreover, G ^ 0 on I x I.

Now, let a be a lower solution and /3 be an upper solution of (2) respectively.

Roughly speaking, it is possible to prove that if a ^ /?, then there exists a solution u

of (2) between the lower and upper solutions. Indeed, in many cases we have that

(9) a ^ /3 ==> there exists u G [a, /?], a solution of (2).

For several particular cases, see [3].

We note that if (8) holds and / satisfies a growth condition, then it possible to

generate monotone sequences converging to solutions of the problem.

THEOREM 2 . 1 . (Monotone Iterative Technique.) Assume that (8) is satisfied

and let a be a lower solution and j3 be an upper solution of (2) respectively. If there

exists K > 0 such that for every t G / and u, v G K with a(t) ^ v ^ u ^ f3(t) we have

(10) f{t,u)-f{t,v)>-K{u-v),

then, there exist monotone sequences {an} f p, {/?n} \ T uniformly on I. Here, p

and T are the minima? and maximal solutions of (2) respectively between a and /?.

For a proof of this result, see [3].
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3. MAIN RESULT

In order to develop the quasilinearisation method, we shall suppose that a and /?

are lower and upper solutions of (2) respectively with a ^ /? on / . Let

Cl = { ( t , u ) G / x R : a { t ) ^ u ^ 0 { t ) } .

We introduce the following conditions:

(11) f-u.(t,u), fuu(t,u) exist and are continuous for (t,u) £ Q,

(12) Uu(t,u) ^ -2M, M > 0, for {t,u) £ ft.

(13) fu(t,u) < 0ioi(t,u)£Q,

If condition (11) holds, then for u, v with a(t) ̂  v ^ u ̂  f3(t), define the function

g(t,u,v) = f(t,v) + [fu(t,v) + 2Mv](u - v) - M(u2 - v2).

Observe that g(t,u,u) = f(t,u), and that if we define

F{t,u)=f(t,u) + Mu2,

then condition (12) means that Fuu(t,u) ^ 0 for (t,u) 6 17.

Note that if / satisfies (11) and (12), then, for any u, v such that a(t) ̂  v ̂  u ^

(3{t), we have that

(15) f(t,u)>g(t,u,v).

LEMMA 3 . 1 . Assume that (8) and (9) hold. Consider the nonlinear problem

(16) Du = Nou on I, B(u) = b

where [Nou](t) = g(t,u(i),a(t)). It admits at least one solution u £ [a,/?]-

PROOF: We have that

Da ^Na = Noa on / , B{a) ^ b,

and

on / , B{0) ^ b.

Hence, a and /3 are lower and upper solutions of (16) respectively. By (9) we have

that there exists a solution u 6 [a,/?] of (16). U
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THEOREM 3 . 1 . Assume that (8) and (9) hold and and that f satisfies (11), (12)

and (13). If wo ^ 7 are lower and upper solutions of (2) respectively, then there exist

Wk 6 Cn(I), k = 0 , 1 , 2 , . . . such that t i e sequence {wk} is monotone increasing and

it converges uniformly and quadratically to a solution w of (2).

PROOF: By Lemma 3.1 we know that there exists w\ £ [WQ, 7 ] , a solution of (16).
Thus, we assume that we have constructed Wk, k ^ 1 such that WQ ̂  wi ^ . . .ti>t ^ 7.
Using Wk we consider the following nonlinear boundary value problem:

(17) Dw = Nkw on I, B(w) = b,

where Nk is the operator generated by the function j i : / x K -» 1 , gk(t,w) =

g(t,w,wk(t)). Thus,

[Nkw](t) = gh{tM*)) = 9{tM*),v>k{t)), t G /•

We have that

Dwk = Nk-i iui-i ^ Nvik = Nkwk on I, B(wk) ^ b

and

Dj^ N-y^Nk-y on I, B{f) ^ b,

that is, vik and 7 are lower and upper solutions for (17), respectively. By property (9)
we have that there exists tojt+i £ [wk, 7], a solution of (17). Hence, we have constructed
a sequence {wk} with Wg ^ wi ^ . . . ^ Wk ^ u>jb+i ^ • • • ̂  7- Let w be the pointwise
limit of {wk} •

We now show that w is a solution of (2). Indeed, by (8), we have the following

integral representation for iofc+i

T

o

Therefore, {wk} is bounded in Cn(I), n ^ 1 and {wk} —> w uniformly on / . Passing
to the limit, when fc —» 00, in (18) we obtain that

(18) wk+i(t) = v(t)+ G(t,3)g(a,Wk+1(s),Wk{s))ds.
Jo

( 0 = » ( * ) + / G{t,8)g(s,w{s)Ms))d3= f G(t,s)f(3,w{s))ds,
Jo Jo

and to is a solution of (2).

Finally, we show that the convergence is quadratic. Let ej. = w — wt ^ 0 be the
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error when we approximate w by wk • Hence, for k ^ 1, t £ I we can write

[Dek+1)(t) = [Dw](t) - [Dwk+1](t) = f(t,wk+1(t)) - g(t,wk+1{t),wk(t))

= f{t,w{t)) ~ f(t,™k(t)) - F4t,wk(t)) • [wk+1(t) - wk(t)}

+ M[wl+1(t)-w
2
k(t)]

= f(t,w(t)) - Mw\{t) - f(t,wk(t)) - Fu(t,wk(t)) • [wk+1(t) -wk(t)}

+ Mw2
k+1(t)

= F(t,w{t)) - F(t,wk(t)) - Fu{t,wk(t)) • [wk+1(t) - wk(t)]

-M[w2(t)-w2
k+1(i)}-

Now, using the mean value theorem, we have that there exist £ — £(<) and r\ = rj(t)

such that wk(t) ^ rj ̂  £ ̂  f{t) with

\Dek+1)(t) - Fu(t,£{t)) • [w{t)-wk{t)} - Fu(t,wk(t)) • [wk+1{t) - w(t))

- Fu(t,wk(t))\ • [w(t) -wk(t)}

+ [Fu(t,wk(t)) - M{w{t) + wk+1(t))} • [w(t) - wk+1(t)}

= Fuu(t,v(t)) • m -M*)] • Ht) -«*(<)]

+ [Fu{t,wk(t)) - M(w(t) + wk+1(t))) • [w(t) -

Therefore, ek+\ is solution of the following boundary value problem:

(19) Dek+1 =<j>k+i>k-ek+u B(ek+1) = 0,

where

and

M*) = Fu(t,wk(t)) - M(w(t)

Hence, we have that

f
= /

Jo
rp

Now, let c= Sup {FuU(t,w) : (t,w)€Q} and A = c m a x / 0 G(t,s)ds. Denote

by II lloo the uniform norm in C{I). Taking into account (13), we have that

0^ek+1(t)^ G{t,s)<f>k^)ds<c G(t,a)e2
h(B)da^ \-\\ek\\l,, .

Jo Jo

In consequence,

l l«*+i | loo^A.| |e*| |L,
and the convergence is quadratic. U
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4. EXAMPLES

We now present some examples to illustrate the main result given in Theorem 3.1.

EXAMPLE 1. Consider the initial value problem for a first order ordinary differential
equation, that is,

Du=u'

and

B(u) = tt(O) = u0 £ R.

Then, it is clear that the maximum principle (8) holds in this case since u' ^ 0 on
I and w(0) ^ 0 implies that u ^ 0 on I. Moreover, the existence of a lower solution
a and an upper solution (3 with a ^ j3 implies the existence of at least one solution
u £ [a, /?]. See, for instance, [3].

Therefore, under the conditions of Theorem 3.1 we obtain the existence of a mono-
tone sequence of approximate solutions that converge uniformly and quadratically to a
solution. This is precisely the result obtained in [4].

EXAMPLE 2. We now examine the periodic boundary value problem for a first order

ordinary differential equation. Indeed, let

Du = u + Xu, X > 0

and

B(u) = u(0) - u(T) = 0.

In this case the maximum principle (8) holds [3], and the upper and lower solution
property (9) is valid [3]. Thus, we obtain the quasilinearisation method for the periodic
boundary value problem for a first order ordinary differential equation as in [5, 6].

EXAMPLE 3. Now, let

Du = -u"

and

B[u) = (v0ti(0) - w0u'(0), vTu(T) +wTu'(T)) = (6O, h)

with VQ, VT ^ 0, vo +VT > 0, WQ > 0, and WT > 0. For this boundary value problem
for a second order ordinary differential equation we have again (see [3]) the validity of
(8) and (9). In consequence, under suitable conditions, we can construct a sequence of
approximate solutions converging quadratically to a solution of the problem. This was
recently proved in [8].
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EXAMPLE 4. Finally, we deal with the periodic boundary value problem for an ordinary
differential equation of higher order. Let

Du = u(n) + Aw, A > 0,

and

B(U) = fttW(o) - u^mY = o.
V / i=0

By Theorem 4 in [7] we have that for

nn • n!
A <

• v n - l '

Du ^ 0 and B(u) = 0 implies that u ^ 0 on / . Also, by the results of [7], we have
that (9) is valid and we conclude that the quasilinearisation technique is applicable to
this higher order problem.
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