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THE EMPTY SPHERE 
Part II 

S. S. RYSHKOV AND R. M. ERDAHL 

Blow up a sphere in one of the interstices of a lattice until it is held 
rigidly. There will be no lattice points in the interior and sufficiently many 
on the boundary so that their convex hull is a solid figure. Such a sphere 
was called an empty sphere by B. N. Delone in 1924 when he introduced 
his method for lattice coverings [3, 4]. The circumscribed polytope is 
called an L-polytope. Our interest in such matters stems from the following 
result [6, Theorems 2.1 and 2.3]: With a list of the L-polytopes for lattices 
of dimension ^n one can give a geometrical description of the possible 
sets of integer solutions of 

n n 

f(x) = a0 + 2 alxl + 2 al]xlxi = 0 

(aij = a^ aip ah % G R ) 

where / satisfies the following condition (in which Z denotes the 
integers): 

f(z) iï 0, z e Z". 

In [6] we also described the 19 possible 4-dimensional L-polytopes as well 
as all those appearing in lattices of dimension 1, 2, 3. Our purpose here 
is to provide the remaining details necessary to verify that our list of 
4-dimensional L-polytopes is complete [6, Theorem 6.2]. 

1. Introduction. The collection of all L-polytopes of a given n-
dimensional lattice T forms a decomposition of space, an L-decomposition 
(described in [6, Section 3] ). To enumerate the possible L-polytopes we 
first classify the L-decompositions up to affine equivalence and then 
search these for the various species of L-polytope. 

In his second memoir [12], published posthumously in 1909, Voronoi 
introduced L-decompositions and showed how their affine structure could 
be studied. There he made extensive use of the correspondence between 
positive quadratic forms and lattices; the method of continuous parame-
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ters of Hermite: form / corresponds to lattice T if T has a fundamental 
basis E = {e{, e2, .. ., en} such that 

f{x) = \elxl + e2x2 + . . . + enxn\
2. 

This correspondence is many to one. The action of an element Q of 
GL(n, Z) on E produces an equally valid basis E' for T but the coefficient 
matrices for the corresponding quadratic forms are related by the formula 
A' =• QtTAQ and are generally distinct. If PN is the cone of positive forms 
then integrally equivalent elements of PN correspond to the same lattice. 
Here, N = (n~l ) is the dimension of this cone of positive forms. 

Voronoi showed that the action of GL(n, Z) induces a partition of PN 

into disjoint relatively open convex subcones of dimension 1, 2, . . . , N 
such that [12, Part IV]: 

(i) On each of these subcones the affine structure of the L-
decompositions of corresponding lattices is constant. Subcones are 
integrally equivalent if and only if the affine structure of corresponding 
L-decompositions is identical. 

(ii) Subcones of dimension N correspond to general lattices having 
simplicial L-decompositions. These L-type domains are polyhedral — they 
are described by a finite system of strict linear inequalities. 

(iii) A subcone of dimension less than TV is a relatively open proper face 
of two or more L-type domains. If such a cone makes contact with the 
boundary of an L-type domain it necessarily is a face of that domain. The 
special lattice corresponding to a form on such a face has among its 
L-polytopes some which are not simplexes. 

For dimensions n = 1, 2, 3 the L-type domains of PN are all integrally 
equivalent and were called by Voronoi type I. There is a common analysis 
for these, described in [6, Section 4], which extends to any dimension. In 
four dimensions his investigations revealed exactly three inequivalent 
domains; types I, II and III [12, Part V, pp. 164-178]. Each corresponds to 
lattices with simplicial L-decompositions which for the three types are 
affinely inequivalent. 

It will be convenient to refer to an L-polytope as type I if it belongs to a 
lattice corresponding to a form in or on the boundary of a type I domain. 
Similarly we will refer to type II and type III L-polytopes. This assignment 
of a type is of course not unique. As it turns out (see the proof of Theorem 
4.3) there is only one species of 4-dimensional simplicial L-polytope and it 
is type I, II and III. 

By examining the facial structure of a type I domain, we found in [6] all 
of the type I L-polytopes for n ^ 4. Here we complete our study by 
enumerating the 4-dimensional L-polytopes which are not type I. This 
involves a similar examination of the type II and III domains. 

https://doi.org/10.4153/CJM-1988-043-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-043-5


1060 S. S. RYSHKOV AND R. M. ERDAHL 

The material of Section 2 is not new; it has been used for different 
purposes than ours on the references cited. In Section 3 the L-
decomposition of the red triangular lattice is a new result; the central 
lattice has been discussed elsewhere but our treatment is new. In Section 4 
we give the concluding arguments of our treatment of the 4-dimensional 
L-polytopes and this material is completely new. 

2. The geometry of Voronoi's second perfect domain. In Voronoi's 
theory of integral reduction via perfect forms, an arbitrary quadratic form 
in n = 4 variables is integrally equivalent to one lying in either the first or 
second perfect reduction domain [11, p. 172]. The first coincides with a 
type I domain. Here we examine the geometry of the second perfect 
domain, more completely discussed in [8, Section 11-15], [9, Section 9]. 

The second perfect domain consists of all forms 

y ( X | , x2, A;3, xA) = P\2
X\ + P\ixi ~^~ P\3X3 ~^~ P\4X4 

+ ^23(^1 - x3? + ^24(^1 - xd2 + P23(*2 ~ x3? 

+ P24O2 - xd2 + P34O3 ~ xd2 + 0 i 3 ( * i + x2 - x3)2 

1 P\4\x\ ' x2 x4/ "• P34v-^1 "•" x2 ^3 x4) ' 

where p-, )S- = 0. Using Vononoi's transformation 

(Xi, XT, XT, XA) \X] ' xli x] x1* x] x3"> x\ xd) 

this expression can be rewritten as 

4 

/ ( * ! , X2, X3, XA) = 2 [Pij(Xi + Xjf + PIJ(X1 ~ Xjf], 
i<j 

The collection of all such forms is a polyhedral cone, say K. 
Since the Voronoi transformation has determinant 2, the correspon

dence with lattices has been altered. The coefficient matrix of a form in K 
is the Gram matrix for a lattice basis which is not fundamental. As is easy 
to compute, the coordinate vector of a lattice point referred to such a basis 
is either integer or the sum of an integer vector with U, ,̂ | , ^1. 

The relatively open faces of the second perfect domain correspond to 
collections of forms with some of the parameters /}••, p, set equal to zero; 
the others strictly positive. A convenient representation of any such face is 
a graph on four vertices with edges of two colors. If /}•• = 0 add a black 
edge to the graph connecting vertices / and j \ if pz = 0 add a red edge 
(dotted line). It is easy to verify that any graph with three edges which is 
either forked or triangular corresponds to a 9-dimensional face (a facet) of 
the second perfect domain (note that dim K = 10): 
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A 

Pn = P,3 = flu = 0 

3 black edges — 
a black forked facet 

P23 = P24 = P34 = 0 

3 red edges -
a red triangular facet 

Taking into account the two colors there are 32 forked and 32 triangular 
graphs and corresponding facets. 

All of these facets are simplicial; the number of extreme rays in their 
closure equals their dimension, which is nine. Thus each of these facets has 
nine relatively open 8-dimensional faces, their graphs generated by adding 
a single edge in all possible ways to the graph of the facet. By experi
mentation with graphs one quickly learns that any of these are faces of 
precisely two facets from our list of 64. 

9-dimensional 
facet 

-dimensional 
facet 

neighboring 
facet 

It is a simple consequence of this fact that: 

2.1. PROPOSITION. The second perfect reduction domain K has exactly 64 
facets {all simplicial), 32 of which are triangular and 32 forked. 

The cone K is invariant under the linear maps induced by: 

Sjj'.Xj <H> Xj, Xk —> Xk, i IE j ^ k. 
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In fact, the second perfect domain appears in Voronoi's theory whenever 
n ^ 4 (replace 4 by n in the above expression for / e K) and these 
transformations generate the full symmetry group when n ^ 5. This is the 
group of the «-cube, Bn. It is a peculiarity of 4-space that the additional 
transformation 

1 
O'.X: 

4 

-xt + - 2 xk 
2 j t=i 

leaves ^invariant. The group generated by all these actions, say G, can be 
identified as F4 with order 1152. This follows since sl4s23o *s a n orthogonal 
reflection and the only finite reflection group on R4 that properly contains 
B4 is FA [2, p. 578]. 

2.2. PROPOSITION. |G| = 1152. 

The action of G on the facets of K can easily be described using the 
graphs. The element stj permutes vertices / and j . The element kt converts 
all red edges incident at vertex / to black and all black to red; the edges 
incident at / are recolored. All of these actions map triangular facets into 
triangular and forked into forked. 

The effect of a is to fix red edges and replace black edges by their 
complements (the complement of the black edge between 2 and 3 is the 
black edge between 1 and 4). 

the action of a 

Black forked facets are exchanged with black triangular under this 
action. 

2.3. PROPOSITION, (i) The 64 facets of K fall into two G-equivalence 
classes. That containing the black forked facets has 48 elements; that 
containing the red triangular facets 16. Accordingly, we will refer to facets as 
either BF or RT depending upon their equivalence class. 
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(ii) An arbitrary BF facet shares six of its nine ^-dimensional faces with 
BF facets', the remaining three neighbors are RT facets. 

(iii) All nine neighbors of an RT facet are BF facets. 

Proof. Part (i) of the proposition follows by considering the action of G 
on the graphs of the facets. Parts (ii) and (iii) by taking a typical facet of 
each type, enumerating the nine neighbors and classifying these by 
inspection. 

For the following result see [11, p. 172]; a discussion and proof can be 
found in [8, Section 15]. 

2.4. THEOREM. The second perfect reduction domain K shares BF facets 
with domains which are integrally equivalent to the first perfect reduction 
domain. The RT facets are shared by K with domains which are integrally 
equivalent to it. 

There is a one-dimensional ray, the central axis of K, which is invariant 
under G. The elements of this ray are given by the formula 

4 

/ ( * , , x2, x3, x4) = p 2 (X + X:f + (xt - X:f 
i<j 

2 2 2 2 
= 6p(xj + x2 + x3 -f x4). 

The interior of the convex hull of the central axis with any of the 64 
relatively open 9-dimensional facets of K forms an open 10-dimensional 
simplicial cone. By supplementing these with all of their relatively open 
faces of varying dimension we have a complete partition of K. The con
nection with L-type domains is supplied by the following result (see [12, 
Part V, pp. 164-178]; a modern proof can be found in [9, Section 9] ). 

2.5. THEOREM. The 48 open simplicial cones built with BF facets are 
equivalent L-type domains, VoronoVs type II. The remaining 16 cones built 
with RT facets are type III domains. 

We are particularly interested in the relatively open faces of varying 
dimension of type II and III domains which are not type I. By searching 
the special lattices corresponding to these, new species of L-polytopes may 
be found which are neither simplicial nor type I. 

2.6. PROPOSITION, (i) All type III faces, with the exception of the RT 
facets, are type II. The RT facets bound only type III domains. 

(ii) Of the type II faces, the BF facets and faces lying on the boundaries of 
these are type I. The remaining type II faces are interior to K and are not 
type I. 

Proof Both parts follow directly from 2.3, 2.4, and 2.5. 

We now know where to look for new species of L-polytope which are 
not type I: 
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2.7. PROPOSITION. Any non-simplicial L-polytope which is not type I must 
belong to a lattice with form lying on either a RT facet or a type II face 
interior to K. To determine whether there are species of simplicial L-
polytopes which are not type I an additional search of a type II and III 
domain must be made. 

3. The L-decomposition of two symmetrical lattices. The red triangular 
and the central lattice correspond to forms on a red triangular facet and 
the central axis of the second perfect domain, K. See [9, Section 9] for 
some material relating to our discussion of the red triangular lattice and 
[10] for a treatment of the central lattice in a more general context. 

As metrical form for the red triangular lattice we take 

f(x) = - { (JC, 4- x2f + (x{ + x3)
2 + (*, + x4)

2 + (x2 + x4)
2 

V 

+ (x3 + x4)
2 + (xx — x2)

2 + (x{ - x3)
2 + (xj - x4)

2} 

= 3xf + 2(^2 + JC3 + X4) + X^X-i v XnX4 i X3X4. 

This form lies on the central ray of the red triangular facet with graph 

1 2 

/ / / / / / / / / / 
JL 

red triangular facet 

and is invariant under the stability group of the graph. 
As is easy to compute, there are (up to sign) nine non-zero lattice 

vectors having the minimal length \ / 2 ; the short edges of the red triangu
lar lattice. Together with six additional with length ^/1> (the long edges) 
the fifteen shortest lattice vectors have the coordinates tabled below. 

short edges ( \/2) long edges ( \/3) 

[0,1,0,0] [I, 1,1, - I ] [1,0,0,0] [1,1,1,1] 

[ 0 , 1 , - 1 , 0 ] [-1,1,1,1] 

[0, 1,0, - 1 ] 

[0, o, 1,0] & 
_J_ 

2 il 
[0, o, 0, 1] (i 1 

r 
1 
21 -il 

[Î- -î K -\ 
v r 2J [i- V r 2 

I*. 1 

r 
r 2J 

[0, 0, 1, - 1 ] 
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Consider polytope A : 
[0, 0, 0, 0] 

[0, 0, 1, 0] 

[_! I I I] 
L T T 2' 2\ 

y / \ ^ 

^ / ! \ • ''A 
i \ ^y » \ / ' 

i X-; W \ i 
^ \ / ^ 

[0,0, 1,0] 

fl 1 1 I I 
L2' 2' 2' 2J 

[0, 0, 0, 1] 

Figure 1. Cyclic Polytope A 

Some important properties of A can be established by easy computa
tions: 

(i) The edges of the two triangles drawn with solid lines are long with 
length \ / 3 , the others are short (dotted lines) with length ^/2. 

(ii) The solid equilateral triangles lie in mutually perpendicular planes. 
Their common centroid, [O, ,̂ | , i], is the center of a unit sphere circum
scribing A. 

(iii) There are nine facets, formed by choosing pairs of vertices from 
each of the solid triangles in all possible ways, then taking convex hulls. 
All are equivalent 3-simplexes under the group of isometries of A. Each 
has a pair of perpendicular opposite edges which are long; the other four 
edges are short. 

(iv) Since each pair of vertices of A is joined by an edge, A is a cyclic 
polytope. 

3.1. PROPOSITION. A is an L-polytope. 

Proof. By re-expressing / as a sum of squares, the distance from 
[xl9 x2, x3, x4] to the centroid can be written as 

3xi 

1 
+ -

2 

l)2 

x2 + x 
$ 

+ \x. 

Xy \ XA IF + {Xi + XA m 
In order that this length not exceed 1, an integer coordinate vector must 
have xx = 0; at most one of x2, x3, x4 may be non-zero with value 1. We 
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already know (property (ii) above) that the four possible integer vectors 
satisfying these conditions lie on the unit sphere centered at [O, -, ,̂ - ] . 

Similarly all half-integer coordinate vectors except [|, ~, ^, | ] , [—|, | , | , | ] 
lie outside this sphere. This sphere is therefore empty and has the six 
vertices of A lying on it. Thus A is an L-polytope. 

3.2. PROPOSITION. The simplex 
[0, 1, 1,0] 

[0, 1, 0, 0] 

[ _ 1 1 1 I I 
L 2' 2' 2' 2J 

fl 1 I 11 
L2' 2' 2' 2l 

[0, 0, 1, 0] 

Figure 2. Simplex S 

with two long edges (solid lines) of length A/3 and eight short edges (dotted 
lines) of length A/2 is an L-polytope. The facet containing the long edges is 
shared with A. 

Proof. After checking edge lengths note that the shared facet is the 
convex hull of the vertices with coordinates [0, 1, 0, 0], [0, 0, 1, 0], 
f—-, -, -, -1, [-, -, -, - ] . Since the center cf the circumscribed 3-sphere is 
also the barycenter of this 3-simplex, [0, | , | , ^1, the radius is easily com
puted to be A / 7 / 8 . 

B(S) 

Figure 3. Ht(S) 
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Let B(S) be the closed ball obtained by filling in the sphere 
circumscribing S. Let Ht(S)9 i = 1, 2, 3, 4 be the closed half-ball 
{x G B(S) \x • xt = 0}, where x, xt are referred to a coordinate system cen
tered at barycenter fo, | , ^, ^1, and xz is the position vector of vertex / of 
the shared facet. Notice that the apex, a = [0, 1, 1, 0] of S is contained in 
each of these half-balls. Since the minimal edge length is y/2, xt is the 
only lattice point interior to Bi9 the closed ball of radius ^/l centered at 
xt. By figure 3 the only portion of Ht(S) not interior to Bt is the apex a. 
Hence the only lattice points in 

B(S) = ,U Ht(S) 

are the vertices of S and S is an L-polytope. 

Other than the facet shared with A, S has four which are 3-simplexes 
with a single long and five short edges; these are equivalent under the 
group of isometries of S. 

3.3. PROPOSITION. Each facet of S having a single long edge is shared by 
an L-polytope which is an isometric copy of S. 

Proof We need only consider the facet of S whose vertices have co
ordinates [0, 1, 0, 0], [0, 0, 1, 0], \\, \, I \], [0, 1, 1, 0]. The convex hull of 

[ i l l i i Yl 1 1 11 

-, -, -, —-I is a simplex whose ten edge lengths are readily 
computed (see figure 4 where solid lines are long edges etc.). [0, 1, 1, 0] 

[0, 1, 0, 0] 

fl 1 1 _I1 
L2' 2' T 2} 

I I 
r 2 •a 

Figure 4. Copy of S 

This simplex is clearly an isometric copy of S and an L-polytope. 

3.4. THEOREM. In the red triangular lattice the star of L-polytopes at the 
origin consists of 12 isometric copies of A and 90 isometric copies of S. 

Proof Translating the six vertices of A to the origin results in six copies 
of A. Inverting these through the origin leads to six additional since A is 
not invariant with respect to central inversion. Thus twelve distinct copies 
of A having two orientations have been accounted for. 
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Lattice translations account for five copies of S at the origin. Since the 
nine 3-simplexes appearing as facets of A and the nine obtained from these 
by inversion are translationally inequivalent a factor of eighteen must be 
included. Thus there are ninety distinct isometric copies of S at the origin 
having eighteen different orientations. 

Since it is impossible to construct additional isometric copies of the facets 
of A which are translationally inequivalent to the eighteen considered there 
are no further copies of A or S at the origin. That there are no other species of 
L-polytope follows from Proposition 3.3. Hence there are exactly 12 copies 
of A and 90 copies of S in the star of L-polytopes at the origin. 

To analyze the central lattice we take the metrical form 

/ = -A (*i + * 2 ) 2 + (*i + *3)2 + (*i + * 4 ) 2 + (*2 + X3)2 

4- (x2 + x4) 4- (x3 + x4) 4- (Xj — x2) + (xj — x3) 

4- (x{ 

= x] + xl + 
x4) + (x2 — x3) 4- (x2 - x4) 4- (x3 

+ 
K4)2} 

which lies on the central axis of K. The elements of G are isometries of the 
central lattice. Since the metric matrix is the identity we no longer need 
distinguish between lattice vectors and coordinate vectors. 

Starting with f-, - 0, Ol as center and successively adding and sub
tracting the four mutually orthogonal vectors f̂ , \, 0, Ol, f̂ , —\, 0, 0], 

[ 1 l-i r 1 1 1 VI 1 J 12. 1 J 

0, 0, -, -I, 10, 0, -, —-I we generate the vertices of a regular 4-dimensional 
cross poly tope C: 

[ 1 , 0 , 0 , 0 ] 

f 1 ~ 
L2' 2' 

[0, 1,0, 0] 

Figure 5. Cross Poly tope C 
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3.5. PROPOSITION. The cross poly tope C is an L-polytope in the central 
lattice. 

Proof. Since the eight vertices are at a distance 1/^/2 from the center 
of C, the coordinates of any additional lattice point lying in or on the 
circumscribed sphere must satisfy the inequality 

*i - \) + (*2 + \) +4 + 4^ !/2-
Since there are none such C is an L-polytope. 

The axis of C attached to the origin coincides with the lattice vector 
p = [1, 1, 0, 0]. We will refer to this axis as the polar axis, the remaining 
three as equitorial. As can easily be verified, the G-orbit of p consists of 
the 24 lattice vectors having a pair of non-zero entries with values ± 1 ; 
these are the lattice vectors of length 2. Accordingly the action of G on C 
produces 24 distinct isometric copies of C at the origin. 

The elements of the stability group of p, G(p) c G, fix the polar axis 
and permute the six equitorial vertices. The convex hull of these six forms 
a regular octahedron and the full group of isometries of C fixing the polar 
axis is the octohedral group. That G(p) coincides with the full group 
can be deduced from its order which by Proposition 2.2 is |G|/24 = 
1152/24 = 48 and is that of the octahedral group. As a consequence, the 
eight facets of C attached at the origin are G(/?)-equivalent. 

The element s23 ^ G maps C onto an isometric copy with polar axis 
[1, 0, 1, 0]. The facet of C with vertices [0, 0, 0, 0], [1, 0, 0, 0], \\9 \, ± \], 

[ 1 1 1 1 1 . \.L L L L\ 

- , - , - , — - is fixed by this action and thus shared with the copy. Since the 
eight facets of C attached to the origin are G(/?)-equivalent, C is entirely 
surrounded by copies of itself in the star of L-polytopes at the origin. It 
follows that the star contains only the 24 copies of C enumerated above. 
Since C has eight vertices these fall into three groups of eight, elements 
being translationally equivalent if and only if they belong to the same 
group. 

3.6. THEOREM. In the central lattice the star of L-polytopes at the origin 
contains 24 L-polytopes, isometric copies of C. These belong to three equiva
lence classes of eight elements each under the group of lattice translations. 

The L-decomposition of R4 into non-overlapping copies of C is the 
regular honeycomb {3, 3, 4, 3} described in [1, Section 7.8, 8.2]. By taking 
the convex hull of the centers of the 24 copies of C incident at the origin, a 
G-invariant polytope P is produced with the following interesting 
characterization: P is the collection of points of R which are at least as 
close to the origin as to any other lattice point. P is the regular polytope 
(3, 4, 3} having twenty-four equivalent octahedral facets; the 24-cell. The 
collection of lattice translates of P forms a second regular honeycomb 
{3, 4, 3, 3}, the dual of {3, 3, 4, 3}. 
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4. The 4-dimensional L-polytopes. Here we complete our treatment of 
the 4-dimensional L-polytopes by enumerating those which are not type I. 
By Proposition 2.7 this involves examining a RT facet and portions of the 
interior of K, as well as the corresponding L-decompositions and 
L-polytopes. To determine whether a new species is found comparison 
must be made with the results of [6] where the type I 4-dimensional 
L-polytopes are pictured. 

Since the RT facet and the central axis have already been examined 
(Theorems 3.4 and 3.6) we pursue our search by considering an arbitrary 
form k G int K which lies off the central axis. 

4.1. PROPOSITION. Suppose that k £ int K does not lie on the central axis. 
The corresponding L-decomposition can be obtained (up to an affine transfor
mation) from that of the central lattice by partitioning some or all of its cross 
poly topes, the vertices of the poly top es forming each partition being a subset 
of those of the original cross poly tope. Hence this decomposition is a refine
ment of the L-decomposition of the central lattice. 

Proof. Note that the type II and III domains of K and all the faces of 
these domains which are interior to K contain points either on, or 
arbitrarily close to, the central axis. Hence we can assume that k lies close 
to the central axis. In fact it will be convenient to assume that k is close to 

i i i i 
x3 + x4, the metrical form of the central lattice. 

Consider some cross polytope and its circumscribed empty sphere in the 
central lattice. In the perturbed lattice (corresponding to k) the vertices of 
this cross polytope are displaced and lie on one, two or even several 
distinct empty spheres nearly coincident with the original. If the 
perturbation is small enough lattice points not belonging to the original 
sphere will not lie on any disturbed copy. Hence L-polytopes in the 
disturbed lattice have vertices arising from subsets of those of cross 
polytopes in the central lattice. 

Even though there may be some cross polytopes in the disturbed lattice 
the L-decomposition cannot consist entirely of cross polytopes. For in this 
case the L-decomposition would be affinely equivalent to that of the 
central lattice. Property (i) of Voronoi's partition of PN (see Section 1) 
would imply that k lies on a one-dimensional face in this partition which is 
integrally equivalent to the central axis. But this is impossible since the 
central axis is the unique one-dimensional face in the partition of K which 
is interior to K. Hence the L-decomposition corresponding to k is as 
described in the proposition and the proof is complete. 

By Proposition 4.1 our search for L-polytopes reduces to considering 
what effect a change in metric has on the individual cross polytopes in the 
central lattice. In fact, by symmetry (and by Theorem 3.6) it is sufficient to 
investigate the effect on only cross polytope C. 
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By perturbing the metrical form, angles between the four axes of C and 
their lengths can be altered. If angles alone are altered the vertices remain 
equidistant from the center and he on a single circumscribed empty sphere. 
The resulting L-polytope is again a cross polytope but no longer regular. 

If lengths of axes are altered, C fragments into smaller L-polytopes. 
Stretching a single axis of C results in vertices lying on a pair of distinct 
empty spheres. Corresponding L-polytopes are pyramids with a common 
regular octahedron as base. Polytope B of figure 6 results when the axis 
through [0, 0, 0, 0] and [1, 1, 0, 0] is stretched. 

[r r 2' 2J [1,0,0,0] 

[I I _I I] 
L2' 2' 2' 2J 

[I I I 
12' T 2' 

[0, 1, 0, 0] 1 
~2' 

Figure 6. Pyramid B 

Stretching a second axis produces similar results. The deformed 
octahedral base fragments into a pair of 3-pyramids with common square 
base, each circumscribed by a 3-sphere. The 4-dimensional cross polytope 
is partitioned into four copies of a pyramid with 3-pyrarnid as base. The 
convex hull of vertices [1, 0, 0, 0], [0, 1, 0, 0], [I, \ l-9 I], [I, l-, - \ - i ] , 
[0, 0, 0, 0], [i, i, | , — i], say D, would be such an L-polytope (see figure 
6). Stretching a third axis produces again a doubling of L-polytopes, the 
result being a partition into eight simplexes. 

A perturbation of the metric which both alters angles between axes and 
their lengths produces partitions which are affinely equivalent to one 
where lengths of axes alone are altered. 

4.2. PROPOSITION. In lattices corresponding to forms k G int K, (up to 
affine equivalence) only four types of L-polytopes occur: B, C, D, and 
simplexes. 
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In [6, Section 2] we pointed out that affine equivalence of L-polytopes is 
not sufficiently discriminating in our considerations. There we introduced 
the notion of z-equivalence. The classification of L-polytopes we seek is up 
to z-equivalence. By the definition of z-equivalence [6, Definition 2.2], two 
affinely equivalent L-polytopes are z-equivalent if, in both cases, the edge 
vectors generate the ambient lattice. 

4.3. THEOREM. Up to z-equivalence there are three 4-dimensional 
L-polytopes which are not type I. These are the cyclic polytope A of the red 
triangular lattice, the cross polytope C of the central lattice and pyramid B. 
Polytope A is type III alone whereas B, C belong to both types II and III 

Proof. We will refer to Table V of [6] where the 16 4-dimensional type I 
L-polytopes are pictured. We remark that A, 2?, and C are pictured in 
Table VII of [6]. 

With our search of the relevant portions of K (Proposition 2.7) we have 
found (Theorem 3.4, Proposition 4.2) four non-simplicial L-polytopes; A, 
B, C, D. Since only D appears in Table V of [6] we conclude that A, B, C 
are not type I. It is easy to check that D is z-equivalent to No. 2 of this 
table, hence type I; in both cases the edge vectors include a basis for the 
ambient lattice. 

It is clear that A is type III alone. The only lattice containing copies are 
those corresponding to forms on RT facets and these bound only type III 
domains. Since the central axis is contained in the boundary of every type 
II and III domain of K, C is both types II and III. A more detailed 
argument (which we omit) shows that the same holds for B. 

All type II and type III simplicial L-polytopes are z-equivalent to No. 1 
of Table V, hence type I. The edge vectors of all of these include a basis for 
the ambient lattice. We omit the details of the argument. 

4.4. THEOREM. (Theorem 6.2 of [6]) Up to z-equivalence there are 19 
4-dimensional L-polytopes. Of these 16 are type I (Table V of [6] ) and three 
are not; poly topes A, B, C. 

This concludes our treatment of the 4-dimensional L-polytopes. 
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