A NOTE ON A THEOREM OF F. WANG AND G. TANG

Ryo Takahashi

In this paper, we refine a theorem of F. Wang and G. Tang concerning freeness of reflexive modules over coherent GCD-domains.

1. INTRODUCTION

Throughout this paper, we assume that all rings are commutative with identity and all modules are unitary.

A ring R is called a *GE-ring* if the special linear group of degree n over R coincides with the elementary linear group of degree n over R for all $n \ge 2$. Recently, Wang and Tang [3, Theorem 2.13] proved the following theorem, which is the main result of the paper. (For the definitions and properties of a coherent ring and a GCD-domain, see [1] and [2], respectively.)

THEOREM 1.1. (Wang-Tang) Let R be a coherent GCD-domain, and $u \in R$ a prime element such that R/uR is both a PID and a GE-ring. Let T be a finitely generated reflexive R-module. If T_u is R_u -free, then T is R-free.

The purpose of this paper is to remove the assumption that R/uR is a GE-ring; we shall prove the following.

THEOREM 1.2. Let R be a coherent GCD-domain and T a finitely generated reflexive R-module. Suppose that T_u is R_u -free for some $u \in R$ such that R/uR is a PID. Then T is R-free.

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. For this, we prepare a couple of lemmas.

LEMMA 2.1. Let R be a ring, and M a finitely presented R-module. Suppose that M_p is a free R_p -module for all $p \in \text{Spec } R$. Then M is a projective R-module.

PROOF: Let $\phi : X \to Y$ be a surjective homomorphism of *R*-modules. This map induces an exact sequence

 $\operatorname{Hom}_{R}(M,X) \xrightarrow{\operatorname{Hom}_{R}(M,\phi)} \operatorname{Hom}_{R}(M,Y) \xrightarrow{} C \longrightarrow 0$

Received 5th December, 2005

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

R. Takahashi

of R-modules. Fix a prime ideal p of R. The finite presentation of M yields a natural isomorphism

$$(\operatorname{Hom}_{R}(M, N))_{\mathfrak{p}} \cong \operatorname{Hom}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$$

for any R-module N. Hence we have a commutative diagram

where the first row is exact. Since $M_{\mathfrak{p}}$ is $R_{\mathfrak{p}}$ -free by assumption, the map $\operatorname{Hom}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, \phi_{\mathfrak{p}})$ in the above diagram is surjective. Thus we have $C_{\mathfrak{p}} = 0$ for every $\mathfrak{p} \in \operatorname{Spec} R$, which says that C = 0. It follows that M is R-projective.

LEMMA 2.2. Let R be a ring, and let $\phi : \mathbb{R}^n \to \mathbb{R}^m$ be a surjective homomorphism of free R-modules of finite rank. Then one has Ker $\phi \cong \mathbb{R}^{n-m}$.

PROOF: There is a split exact sequence $0 \to K \to \mathbb{R}^n \xrightarrow{\phi} \mathbb{R}^m \to 0$ of \mathbb{R} -modules. Let A be a matrix which represents the homomorphism ϕ with respect to the canonical bases; A is an $m \times n$ matrix over \mathbb{R} . Since ϕ is a split epimorphism, we have $AB = I_m$ for some $n \times m$ matrix B over \mathbb{R} , where I_m denotes the $m \times m$ identity matrix over \mathbb{R} . By using column vectors in \mathbb{R}^n , we write $B = (b_1, b_2, \ldots, b_m)$. If $c_1b_1 + c_2b_2 + \cdots + c_mb_m = 0$ where $c_1, c_2, \ldots, c_m \in \mathbb{R}$, then

$$B\begin{pmatrix} c_1\\ \vdots\\ c_m \end{pmatrix} = 0$$
, hence $\begin{pmatrix} c_1\\ \vdots\\ c_m \end{pmatrix} = AB\begin{pmatrix} c_1\\ \vdots\\ c_m \end{pmatrix} = 0.$

This means that the vectors b_1, b_2, \ldots, b_m are linearly independent over R. Hence there exist $b_{m+1}, b_{m+2}, \ldots, b_n \in \mathbb{R}^n$ such that $b_1, b_2, \ldots, b_m, b_{m+1}, b_{m+2}, \ldots, b_n$ form a free basis of \mathbb{R}^n . Letting C be the $n \times (n-m)$ matrix $(b_{m+1}, b_{m+2}, \ldots, b_n)$, we see that the $n \times n$ square matrix $(B \ C)$ is invertible. Put

$$D = (B \ C) \begin{pmatrix} I_m & -AC \\ 0 & I_{n-m} \end{pmatrix}.$$

Note that D is also an invertible matrix. We have $A = (I_m \ 0)D^{-1}$, and get a commutative diagram

with exact rows. This diagram shows that K is isomorphic to \mathbb{R}^{n-m} .

Now, we can prove Theorem 1.2.

[3]

PROOF OF THEOREM 1.2: Let R be a coherent GCD-domain, and let $u \in R$ a element such that R/uR is a PID. (Hence u is automatically a prime element.) Let T be a finitely generated reflexive R-module such that T_u is a free R_u -module. We want to prove that T is a free R-module.

There are elements x_1, x_2, \ldots, x_n of T such that

$$T_u = R_u \cdot x_1 \oplus R_u \cdot x_2 \oplus \cdots \oplus R_u \cdot x_n.$$

Let F be the R-submodule of T which is generated by x_1, x_2, \ldots, x_n . Then F is a free R-module with basis x_1, x_2, \ldots, x_n . If F = T, then there is nothing to prove. Hence we assume that F is a proper submodule of T. Note that $F_u = T_u$. By [3, Theorem 2.6], we have

$$(F:T) = \{ a \in R \mid aT \subseteq F \} = u^m R$$

for some $m \ge 1$. It follows from [3, Theorem 2.11] that there exists a chain of primary submodules of T

$$(2.1) F = F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_t = T$$

such that F_i is a maximal *uR*-prime submodule of F_{i+1} for $0 \le i \le t-1$. According to [3, Theorem 2.10], F_i is a finitely generated reflexive *R*-module for $0 \le i \le t$. Note that *F* is a finitely generated free *R*-module which is a maximal *uR*-prime submodule of F_1 . The chain (2.1) says that, to prove the freeness of the *R*-module *T*, we can assume without loss of generality that *F* is a maximal *uR*-prime submodule of *T*.

Put $\overline{R} = R/uR$, and set $\overline{M} = M/uM$ for an *R*-module *M*. There is an exact sequence

$$(2.2) 0 \to F \to T \to C \to 0$$

of R-modules. Tensoring \overline{R} with this sequence gives an exact sequence

$$0 \to D \to \overline{F} \to \overline{T} \to \overline{C} \to 0.$$

Noting that F is a uR-prime submodule of T, we easily see that

$$D = (uT \cap F)/uF = uT/uF.$$

The *R*-module *T* is reflexive, hence is torsionfree. Therefore the homomorphism from C = T/F to D = uT/uF given by $\overline{z} \mapsto \overline{uz}$, where \overline{z} denotes the residue class of $z \in T$ in *C*, is an isomorphism. We obtain an exact sequence

$$(2.3) 0 \to C \to \overline{F} \to \overline{T} \to C \to 0.$$

R. Takahashi

[4]

Since F is a uR-prime submodule of T, it is seen by the definition of a prime submodule that C is a torsionfree \overline{R} -module. By [3, Corollary 2.7(2)], \overline{T} is also a torsionfree \overline{R} -module. The assumption that \overline{R} is a PID implies that both C and \overline{T} are free \overline{R} modules. Hence C is isomorphic to \overline{R}^m for some integer m. Recall that F is a free R-module of rank n. By (2.2) we have an exact sequence

$$(2.4) 0 \to R^n \to T \to \overline{R}^m \to 0.$$

On the other hand, we see from (2.3) that $\operatorname{rank}_{\overline{R}}\overline{T} = \operatorname{rank}_{\overline{R}}\overline{F} = \operatorname{rank}_{R}F = n$. Hence there is an isomorphism $\Phi:\overline{R}^n \to \overline{T}$. Note that we have a natural isomorphism

$$\operatorname{Hom}_{\overline{R}}(\overline{R}^n,\overline{T})\cong\overline{\operatorname{Hom}_R(R^n,T)}.$$

There exists $\phi \in \operatorname{Hom}_R(\mathbb{R}^n, T)$ such that the residue class $\overline{\phi}$ in $\overline{\operatorname{Hom}_R(\mathbb{R}^n, T)}$ corresponds to Φ through the isomorphism. Let K and L be the kernel and the cokernel of the map ϕ , respectively. We have an exact sequence

$$(2.5) 0 \to K \to R^n \xrightarrow{\phi} T \to L \to 0.$$

Tensoring \overline{R} with this sequence implies that $\overline{L} = 0$, that is, L = uL. Since T is finitely generated, it follows from (2.5) that so is L. Applying Nakayama's lemma, we obtain (1 + au)L = 0 for some $a \in R$. The element $1 + au \in R$ is nonzero, hence we get rank_RL = 0. On the other hand, since uC = 0 and $u \neq 0$, we have rank_RC = 0. Hence it is seen from (2.2) that rank_R $T = \operatorname{rank}_R F + \operatorname{rank}_R C = n$, and from (2.5) that rank_R $K = \operatorname{rank}_R R^n - \operatorname{rank}_R T + \operatorname{rank}_R L = 0$. Noting that K is isomorphic to a submodule of a free R-module by (2.5), we must have K = 0, and get an exact sequence

$$(2.6) 0 \to R^n \to T \to L \to 0.$$

Here, we claim that T_p is a free R_p -module for any $p \in \text{Spec } R$. In fact, if p contains the element u, then 1+au is a unit as an element of R_p , hence $L_p = 0$ because $(1+au)L_p = 0$. Localising (2.6) at p, we obtain an isomorphism $T_p \cong R_p^n$. If p does not contain u, then $\overline{R}_p = 0$ and from (2.4) we get an isomorphism $T_p \cong R_p^n$. Therefore, in any case, T_p is a free R_p -module.

297

There is an exact sequence $0 \to \mathbb{R}^m \xrightarrow{u} \mathbb{R}^m \to \overline{\mathbb{R}}^m \to 0$. From this sequence and (2.4), we make the following pullback diagram:

In this diagram, the middle row splits, and P is isomorphic to \mathbb{R}^{n+m} . Hence we obtain an exact sequence

$$(2.7) 0 \to R^n \to R^{n+m} \to T \to 0.$$

In particular, T is a finitely presented R-module. Lemma 2.1 implies that T is a projective R-module. Therefore the exact sequence (2.7) splits, and we get an exact sequence $0 \rightarrow T \rightarrow R^{n+m} \rightarrow R^n \rightarrow 0$. Lemma 2.2 shows that T is a free R-module. Thus, the proof of the theorem is completed.

References

- [1] S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics 1371 (Springer-Verlag, Berlin, 1989).
- [2] I. Kaplansky, Commutative rings (Allyn and Bacon, Inc., Boston, MA, 1970).
- F. Wang and G. Tang, 'Reflexive modules over coherent GCD-domains', Comm. Algebra 33 (2005), 3283-3292.

Department of Mathematics School of Science and Technology Meiji University Kawasaki 214-8571 Japan e-mail: takahasi@math.meiji.ac.jp