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Abstract

Ice sheet models use observations to infer basal shear stress, but the variety of methods and data-
sets available has resulted in a wide range of estimates. Radar-based metrics such as reflectivity
and specularity content have been used to characterize subglacial hydrologic conditions that are
linked to spatial variations in basal shear stress. We explore whether radar metrics can be used to
inform models about basal shear stress. At Thwaites Glacier, West Antarctica, we sample basal
shear stress inversions across a wide range of ice sheet models to see how the basal shear stress
distribution changes in regions of varying relative reflectivity and specularity content. Our results
reveal three key findings: (1) Regions of high specularity content exhibit lower mean basal shear
stresses (2) Wet and bumpy regions, as characterized by high relative reflectivity and low spec-
ularity content, exhibit higher mean basal shear stresses (3) Models disagree about what basal
shear stress should be at the onset of rapid ice flow and high basal melt where relative reflectivity
and specularity content are low.

1. Introduction

Glaciers and ice streams discharge ice from the interior of the Antarctic Ice Sheet to the ocean
at a rate which is largely controlled by conditions at the ice-bed interface (Schoof, 2007). The
influence of subglacial conditions on basal friction - and by extension on ice flow - is key to
modeling the future potential evolution of the Antarctic ice sheet. Direct borehole observations
over small areas of the ice sheet have been used to characterize the ice-bed interface by study-
ing subglacial hydrologic systems (Hubbard and others, 1995) and basal friction (Pfeffer and
others, 2000), but repeating these direct observations over the entire Antarctic Ice Sheet is
logistically challenging. As such, alternative geophysical observational methods and forward
models are typically used to analyze basal conditions over spatially extensive regions.
Geophysical methods, such as seismic reflection (King, 2004) and radar sounding
(Dowdeswell and Evans, 2004), are useful tools to indirectly characterize the ice-bed interface
by inferring the locations of subglacial water (Chu and others, 2016), distribution of basal
channels (Schroeder and others, 2013), and bed morphology (Smith, 1997). However, most
individual geophysical surveys are limited to the local glacier scale and there are only a handful
of repeated surveys (e.g., NASA Operation IceBridge) that cover larger areas of the Antarctic
Ice Sheet.

Due to the lack of extensive physical observations on a catchment scale, basal shear stress is
typically inferred from remote sensing observations (typically surface velocity and ice thick-
ness) using control or data-assimilation methods (MacAyeal, 1993). However, the inferred
basal shear stress is sensitively dependent on the details of the input dataset, the choice of
the sliding law, the control method, and regularizations therein (Morlighem and others,
2010; Sergienko and Hindmarsh, 2013; Seroussi and others, 2013; Zhao and others, 2018).
As a result, for the same area of an ice sheet, inversions can give a wide range of estimates
for basal shear stress (Seroussi and others, 2020).

Inversions can be unstable, as a small amount of error or change in observations can lead to
large differences in modeled parameters. Input observational datasets inherently have a small
amount of error that can result in inversions trying to overfit the observations below the level
of error in measurements. Furthermore, the transfer function relating variability in basal con-
ditions to surface velocity or slope is a low-pass filter, resulting in surface properties respond-
ing to basal properties averaged over several ice thicknesses (Gudmundsson, 2003; Wolovick
and others, 2023). As such, widely differing basal drag fields can reproduce similar surface vel-
ocities (Habermann and others, 2012) which makes inversions ill-posed when inferring basal
shear stress from observations of surface velocities (Wolovick and others, 2023).
Regularizations help to stabilize the inversion solution by imposing additional constraints
that bias the solution and reduce overfitting. A common regularization method is the
Tikhonov regularization, which determines how much weight to give to the cost function
and can give preference to a solution with desirable properties (Habermann and others,
2012). To make an informed decision in choosing and adjusting regularization terms, it is
therefore important to constrain bed characteristics, roughness, and subglacial hydrology.

Previous studies have characterized subglacial hydrology using other observable geophysical
methods and investigated their relationship with basal friction. Kyrke-Smith and others (2017)
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utilized seismic profiles to infer acoustic impedance in order to
estimate mechanical basal conditions. Comparisons between the
seismic observations and high resolution basal shear stress inver-
sions show that there is a stronger correlation between acoustic
impedance and basal slipperiness or basal drag at scales longer
than the ice thickness (>7 km) compared to smaller scales.
Other studies have used airborne radar sounding to infer charac-
teristics and spatial variations of subglacial hydrology using bed
reflectivity (i.e., brightness of bed echo returns) and specularity
content (i.e., relative contribution of specular (mirror-like reflec-
tions) signals to the total returned bed energy) (Schroeder and
others, 2013; Chu and others, 2021). Das and others (2023) con-
ducted correlation experiments and found no strong correlation
between relative reflectivity and the sliding-law parameter used
to control basal friction in numerical ice sheet models. These
studies have suggested a potential link between the spatial distri-
bution of subglacial hydrology and basal shear stress based on
geophysical observations. In this study, we examine the statistical
relationship between radar metrics and basal shear stress in more
detail by combining numerical ice sheet models and a high reso-
lution radar sounding dataset from the Amundsen Sea Sector in
West Antarctica. Our study site is Thwaites Glacier, located in
the Amundsen Sea Embayment, which is a dominant contributor
to Antarctic Ice Sheet mass loss (Pritchard and others, 2009).

2. Data and methods

2.1 Radar sounding observations

We use published radar bed reflectivity and specularity content
observations from two airborne radar sounding studies to charac-
terize subglacial hydrologic conditions at Thwaites Glacier
(Schroeder and others, 2013; Chu and others, 2021). The radar
metrics were calculated from radar sounding data measured by
the High Capability Airborne Radar Sounder (HiCARS) system
with a 60MHz center frequency and 15MHz bandwidth (Peters
and others, 2007). The data was collected as part of a campaign
that conducted airborne radar sounding surveys of the
Amundsen Sea Embayment during the 2004/2005 austral field
season (Holt and others, 2006; Vaughan and others, 2006).

Bed reflectivity describes the brightness of returned bed echoes
and is mostly influenced by the difference in dielectric permittiv-
ity between two materials (Peters, 2005). A vertical transition
between ice and liquid freshwater results in a 10–15 dB increase
in reflectivity relative to the surrounding ice-bed interface
(Peters, 2005; Chu and others, 2016; Young and others, 2016).
Other material properties such as electrical conductivity can
also impact reflectivity (Tulaczyk and Foley, 2020). We use rela-
tive reflectivity (relative to our study site as seen in Fig. 3b)
from Chu and others (2021) which captures spatial variations
within a study site as opposed to absolute reflectivity which is
influenced by many unknown parameters specific to the site
(Peters and others, 2007; Chu and others, 2021). We refer readers
to Chu and others (2021) for more details of the reflectivity data-
set used in our study.

Specularity content is a measure of the angular distribution of
the bed echo power, with values ranging from 0 to 1 and is com-
puted by finding the fraction of the total returned radar energy
that is returned in a narrow angular distribution around the
specular direction compared to energy diffusely scattered. We
refer readers to Schroeder and others (2013) for more details of
the specularity content dataset used in our study. Differences in ice-
bedrock interface geometry produce unique scattering signatures
that can be used to characterize interface roughness and subglacial
hydrology. Thus, specularity content is typically interpreted to indi-
cate a change in interface roughness (Schroeder and others, 2013).

Smooth interfaces will return sharp mirror-like reflections. This
results in higher specularity content values (>0.3) that are thought
to be indicative of a smooth interface such as a region of low bed
roughness or subglacial lakes with flat surfaces. Conversely, diffuse
interfaces will scatter energy in all directions and have a low spec-
ularity content (<0.3) (Schroeder and others, 2013; Young and
others, 2016; Chu and others, 2021).

The goal of our study is not to definitively distinguish between
the influence of bed roughness versus material contrast on bed
reflectivity or specularity content; but to explore whether these
radar metrics correspond to any changes in basal shear stress sug-
gested by ice sheet models. This is also the reason why we choose
to combine both relative reflectivity and specularity content (each
sensitive to a different degree to the presence of subglacial water
or changes in bed roughness) to provide a more comprehensive
interpretation of basal conditions at Thwaites Glacier.

2.2 Model-inferred basal friction

Basal shear stress on a continental scale is typically inferred from
inverse methods in ice sheet models (MacAyeal, 1992; Sergienko
and others, 2008; Pattyn and others, 2017) using large-scale
remote sensing measurements such as ice velocity, surface eleva-
tion and ice thickness. We use previously published basal shear
stress inversions from a subset of Antarctic ice sheet model simu-
lations included in the most recent Ice Sheet Model
Intercomparison project (Seroussi and others, 2020). We exclude
models that have unphysical values of basal shear stress or low
resolution over our study site. The subset of models include:
AWI PISM1 (Bueler and Brown, 2009; Winkelmann and others,
2011; Aschwanden and others, 2012; Seroussi and others, 2020),
JPL1 ISSM (Seroussi and others, 2020), PIK PISM1 (Bueler and
Brown, 2009; Winkelmann and others, 2011; Seroussi and others,
2020), UCIJPL ISSM (Seroussi and others, 2020), UTAS ElmerIce
(Seroussi and others, 2020), VUB AISMPALEO (Huybrechts,
1990, 2002; Seroussi and others, 2020), DOE MALI (Hoffman
and others, 2018; Seroussi and others, 2020), NCAR CISM
(Lipscomb and others, 2019; Seroussi and others, 2020). Each
modeling group participating in ISMIP6 uses their own inversion
method to initialize the basal sliding coefficient field, which is
then held constant for the transient simulations of future ice
sheet behavior which are the focus of the inter-comparison exer-
cise. Thus, this ensemble of inversions is a representative sam-
pling of the best estimates of basal shear stress which are used
to predict future ice sheet behavior. We have also added the inver-
sion from Sergienko and Hindmarsh (2013) which includes some
finer resolution (kilometer-scale) features not present in ISMIP6
inversions.

Most inversions examined in this study use some variation of
the control method described in MacAyeal (1993) to minimize
the misfit between the observed and modeled ice sheet surface vel-
ocities (Morlighem and others, 2010). The control method uses a
cost function and subsequent optimizations to reduce the error
between a forward model’s output and observations such as sur-
face velocity or topography (Ranganathan and others, 2021).
Different modeling groups use different variations of the cost
function in MacAyeal (1993) and apply their own regularizations
and optimizations as well. For example, some cost functions may
prioritize reducing the velocity misfit in slow moving regions
(Morlighem and others, 2010), while other cost functions may
not consider velocity direction and only reduce misfit in the mag-
nitude of velocities (Zhao and others, 2018). Other models use
transient spin-up methods (Schoof, 2006; Pollard and DeConto,
2012) that assimilate observations to nudge the output to minim-
ize the mismatch between modeled and observed data. Ultimately,
such differences in inversion methodology and input data lead to
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a wide range of predicted basal shear stress among the models
considered here. Since direct observations of basal shear stress
are sparse (or absent entirely in some regions, including the
region we consider in this study), inversions are not validated
against observations. Thus, we instead consider a representative
sample of nine inversions and analyze where these inversions
agree and disagree with each other in terms of their statistical rela-
tionship to radar sounding metrics.

2.3 Statistical methods for comparison of radar observations
and modeled data

Due to varying spatial resolutions of the basal shear stress inver-
sions used in this study and the higher resolution of radar data, all
inversions of basal shear stress are interpolated onto the radar
flight track coordinates using linear interpolation. We only con-
sider points where all inversions have estimates of basal shear
stress to ensure a fair comparison across inversions.

Prior studies (e.g., Kyrke-Smith and others, 2017; Das and
others, 2023) have attempted to quantify the relationship between
measures of subglacial hydrology and basal shear stress using
regression methods and generally failed to do so except at spatial
scales larger than 7 km. The same is true for the radar and basal

shear stress data used here. We first examined the linear regres-
sion between the modeled basal shear stress and the two radar
indices, relative reflectivity and specularity content respectively.
On a basin scale, the largest Pearson correlation coefficient
observed across all models was -0.3269 between JPL1 ISSM
basal shear stress and specularity content. While we observe a cor-
relation between basal shear stress and radar metrics using the
Pearson Correlation Coefficient, conducting statistical tests on
large datasets can yield statistically significant results when there
may be no practical relationship in reality (Johnson, 1999). The
significance of the correlation between basal shear stress and
radar metrics can be seen to be spurious as the regressions are
heavily biased by the density of certain basal shear stress values
in the dataset (Supplementary Figs. S2 & S3). In reality, basal
shear stress has a very weak linear dependence on radar metrics.
Instead, we use sampling statistics to determine if radar metrics
can be used to classify regions with statistically significant varia-
tions in basal shear stress. After sub-sampling the model-based
values of basal shear stress using various permutations of reflect-
ivity and specularity content thresholds across the extent of the
radar dataset, we analyze how the mean basal shear stress changes
across different inversions and different radar metric thresholds.
Basal shear stress samples with less than 100 values are not

Figure 1. Site Map indicating radar flight tracks (black line) (Chu and others, 2021), shear margin (dotted gray line) (Schroeder and others, 2013), with (a) MEaSUREs
ice velocity (Mouginot and others, 2017; Rignot and University Of California Irvine, 2017) using a logarithmic colorscale, (b) BedMachine v3 bed topography
(Morlighem and others, 2020; Morlighem, 2022) & REMA hillshade (Howat and others, 2022), (c) NCAR CISM basal shear stress inversion (Lipscomb and others,
2019; Seroussi and others, 2020) and (d) JPL1 ISSM basal shear stress inversion (Seroussi and others, 2020).
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considered to ensure that any changes in the basal shear stress
distribution are not due to individual outliers within small sample
sizes. We also identify where regions of significant deviation in
mean basal shear stress occur and how they relate to other vari-
ables such as surface ice velocity (Figure 1a) and bed
topography (Figure 1b).

Finally, we used two-sample Kolmogorov–Smirnov testing to
verify whether sub-sampling basal shear stress on the basis of
radar data produces a statistically significant difference in the sub-
sampled basal shear stress distribution compared to randomly
sampling the same number of points from the entire basal
shear stress dataset. The two-sample Kolmogorov-Smirnov test
(henceforth referred to as KS test) is a hypothesis test that evalu-
ates the difference in cumulative distribution functions (CDFs) of
two datasets and can be used to evaluate whether both samples
share the same continuous distribution (Dimitrova and others,
2020). In KS testing, our null hypothesis is that the sub-sampled
data and the overall basal shear stress data share the same distri-
bution, which would indicate that reflectivity and specularity con-
tent are not useful tools for discriminating regions with different
basal shear stress. Rejecting the null hypothesis for a particular
reflectivity and specularity content threshold is a useful way to
identify regions with different basal shear stresses. Samples that
make up 70 percent or more of the inversion dataset are not con-
sidered as these are likely to be representative of the entire dataset
and have well known issues when inferring the difference between
distributions. The KS test is overly sensitive for large sample sizes
and detects a statistically significant difference between the sub-
sampled data and the complete basal shear stress dataset even if
the actual difference is negligible (Sullivan and Feinn, 2012;

Larson, 2018). Due to this sensitivity to sample size, we perform
the KS test on data sub-sampled on the basis of reflectivity and
specularity content and a random sample of the same size to
avoid a Type I error which occurs when the null hypothesis is
rejected incorrectly.

3. Results

We investigate whether using reflectivity and specularity content
thresholds as sampling criteria produce statistically significant dif-
ferences in basal shear stress across a range of model inversion
products. The results from sub-sampling are illustrated in
Figure 2 in a 50 × 50 grid, where each grid square reflects the devi-
ation in mean basal shear stress for a sub-sample based on either
maximum or minimum thresholds of specularity content and
reflectivity, with respect to the mean basal shear stress over all
radar flight lines.

Though we have calculated these basal shear stress deviations
for all nine inversions considered in this study, Figures 2a,d
plot results for the NCAR CISM inversion (Figure 1c) from
ISMIP6 (Seroussi and others, 2020) and Figures 2b,e plot results
of the JPL1 ISSM inversion (Figure 1d) from ISMIP6 (Seroussi
and others, 2020). In Figures 2a,b, we apply a combination of
reflectivity and specularity content thresholds to sub-sample
each inversion such that for a given grid cell in the figure, we sub-
sample basal shear stress values that occur in regions of specular-
ity content greater than X and relative reflectivity greater than Y
where X and Y correspond to the x-axis and y-axis values for that
grid cell respectively. We refer to these plots as ‘high-high’ plots to
indicate how the thresholds applied are ‘Higher than specularity

Figure 2. 2a and 2b show the high-high plots for NCAR CISM (Lipscomb and others, 2019; Seroussi and others, 2020) and JPL1 ISSM inversion (Seroussi and others,
2020) respectively. We apply thresholds when subsampling on the basis of radar data such that for a given grid cell in the figure, we subsample basal shear stress
values that occur in regions of specularity content greater than X and relative reflectivity greater than Y where X and Y correspond to the x-axis and y-axis values for
that grid cell respectively. 2d and 2e show the low-low plots for the NCAR CISM inversion and JPL1 ISSM inversion respectively. We apply thresholds when sub-
sampling on the basis of radar data such that for a given grid cell in the figure, we subsample basal shear stress values that occur in regions of specularity content
lower than X and relative reflectivity lower than Y where X and Y correspond to the x-axis and y-axis values for that grid cell respectively. The colormap for 2a, 2b, 2d
& 2e represent the deviation in mean basal shear stress of the sample from the overall basal shear stress distribution. Grey areas represent NaN values where there
are less than 100 values or more than 70% of the dataset. Regimes of significant deviation in mean basal shear stress are identified in 2a, 2b, 2d & 2e by numbers
and corresponding rectangles. Figures 2c,f show where seven or more inversions agreed on the sign of deviation from mean basal shear stress on the high-high plot
and low-low plot respectively. The colormap indicates the inter-model mean of the deviation in mean basal shear stress for that relative reflectivity and specularity
threshold. Grey areas represent NaN values where there are less than 100 values or more than 70% of the dataset, or where seven or more inversions disagreed on
the sign of deviation from mean basal shear stress.
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content-higher than relative reflectivity’. Conversely in Figures 2d,
e (referred to as ‘low-low’ plots), the combination of reflectivity
and specularity content thresholds applied for a given grid cell
are specularity content less than X and relative reflectivity less
than Y where X and Y correspond to the x-axis and y-axis values
for that grid cell respectively. We refer to these plots as ‘low-low’
plots to indicate how the thresholds applied are ‘lower than spec-
ularity content-lower than relative reflectivity’

We identify three regimes in Figures 2 and 3 where sub-
sampling with reflectivity and specularity content thresholds
lead to a substantial and coherent deviation in mean basal shear
stress across most (or all nine) inversion products as verified by
KS testing. While the range of spatial variation in basal shear
stress differs between the models, the sign of deviation in mean
basal shear stress is consistent across models for Regime 1 and
Regime 2. Regime 1 occurs in areas where specularity content is
>0.9, and there is a significant decrease in mean basal shear stress
from 1 kPa up to 67 kPa depending on the inversion product.
Regime 2 occurs in areas where relative reflectivity is between
20 dB and 35 dB and specularity content is typically <0.2 (though
the exact reflectivity and specularity content boundaries vary
depending on the inversion). In this bright but diffuse bed envir-
onment, there is a significant increase in mean basal shear stress

from 4 kPa up to 126 kPa depending on the inversion product.
Finally, regime 3 occurs in dim bed areas where relative reflectiv-
ity is <−20 dB and specularity content <0.5 where there is a sig-
nificant deviation in mean basal shear stress across all inversions.
However, inversions disagree on the sign of this deviation in mean
basal shear stress. Three inversions indicate a significant increase
in mean basal shear stress from 3 kPa up to 155 kPa depending to
the inversion product. Conversely, the remaining six inversions
indicate a significant decrease in mean basal shear stress from
2 kPa up to 21 kPa depending on the inversion product.

4. Discussion

In regions of high specularity content (Regime 1 identified in
Fig. 2a,b and 3c,d), a lower mean basal shear stress was observed
across all inversions. Reflected radar energy from smooth ice-
bedrock interfaces is specular due to minimal scattering
(Schroeder and others, 2015; Young and others, 2016). Regions
of high specularity content have also been proposed as the loca-
tion of broad canals incised into the subglacial till below
Thwaites Glacier (Schroeder and others, 2013) or spatially con-
tinuous subglacial water sheets, which are both thought to reduce

Figure 3. 3a and 3b plot the specularity content dataset (Schroeder and others, 2013) and relative reflectivity dataset (Chu and others, 2021) respectively with
REMA hillshade (Howat and others, 2022) for our study site in Thwaites Glacier, West Antarctica. 3c and 3d plot histograms of specularity content and relative
reflectivity respectively. In 3c and 3d, the histogram of the overall dataset is plotted with a thick black line while the histograms of the 3 regimes are plotted
with colored bars and identified in the legend.
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basal friction over large regions (Walder and Fowler, 1994; Creyts
and Schoof, 2009).

Regions of low specularity content and high reflectivity
(Regime 2 identified in Figs. 2a,b and 3c,d) show a higher mean
basal shear stress across all inversions. The combination of low
specularity content and high reflectivity is thought to be indicative
of wet regions with a rough ice surface, which would be seen in
concentrated Röthlisberger channels of water incised upward
into the basal glacier ice (Schroeder and others, 2013). Such con-
centrated channels reduce the water flow through extensive dis-
tributed drainage systems, and so are thought to increase basal
friction on average (Schoof, 2010), which is consistent with our
findings of higher mean basal shear stress in these regions.

Regions of high specularity content and lower mean basal
shear stress are located in the upstream reaches of the Thwaites
catchment, while regions of low specularity content, high reflect-
ivity and higher mean basal shear stress are mostly located in the

downstream reaches of the Thwaites catchment. It has been the-
orized that the transition from a distributed to channelized water
system at Thwaites Glacier is accompanied by an increase in basal
shear stress (Schroeder and others, 2013). Our results are consist-
ent with this prior hypothesis where we see an increase in mean
basal shear stress from Regime 1 to Regime 2. We independently
identify this transition in Figures 4a,c which is consistent with the
transition identified in Schroeder and others (2013).

Regions of low reflectivity and low specularity content (Regime
3 identified in Figs. 2d,e and 3c,d) are indicative of a dry bed and
show strong deviations from mean basal shear stress over the
whole Thwaites study within particular inversions, but the sign
of the deviation is not consistent between inversions. Three inver-
sions considered in this study have high basal shear stress in low
reflectivity and low specularity content regions, while the other six
inversions have low basal shear stress. This region of disagreement
between inversions is occurring at the onset of rapid ice flow and

Figure 4. Spatial plot to observe variations in regions of significant deviation in mean basal shear stress. (a) Regime 1 where there is high specularity content (pink
scatter markers showing lower mean basal shear stress) and Regime 2 where there is high reflectivity and low specularity content (green scatter markers showing
higher mean basal shear stress) with MEaSUREs ice velocity plotted with a logarithmic colorscale (Mouginot and others, 2017; Rignot and University Of California
Irvine, 2017), (b) Regime 3 where there is low reflectivity and low specularity (blue scatter markers indicating disagreement between models on what basal shear
stress should be) with MEaSUREs ice velocity plotted with a logarithmic colorscale. (c) Regime 1 and Regime 2 with BedMachine v3 bed topography (Morlighem and
others, 2020; Morlighem, 2022) and REMA hillshade (Howat and others, 2022), (d) Regime 3 with BedMachine v3 bed topography and REMA hillshade. The box in (a)
and (c) represents our identified transition from a distributed to channelized system accompanied by an increase in mean basal shear stress. The purple contour
line in (b) and (d) represents where ice velocity is 250 m yr−1.
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high basal melt (i.e., where ice velocity is approximately 250 m
yr-1 in Figs. 4b,d denoted by the purple contour). The location
of onset of rapid flow is known to vary widely between models
due to generally inadequate treatments of the thermo-mechanical
conditions in ice stream onset regions (Mantelli and Schoof, 2019;
Mantelli and others, 2019). Models taking part in ISMIP6 may
also differ on the location of streaming ice flow due to differing
horizontal resolution or ice flow approximations (Payne and
others, 2000; Hindmarsh, 2009). We thus identify a distinct
radar signature of low reflectivity and low specularity content
(Regime 3 in Figs. 3c,d) for the location of onset rapid ice flow
where models disagree on the sign of deviation in mean basal
shear stress.

We also identify two additional regimes of deviation in mean
basal shear stress that is observed across all models; a regime of
low specularity (green arm of the ‘L’ found in Figs. 2d,e) and a
regime of low reflectivity (red arm of the ‘L’ found in Figs. 2d,e).
A large fraction of the overall dataset is located in these two regimes.
As a result, we do not focus our analysis on these regimes as they do
not provide a useful criteria for sub-sampling basal shear stress
inversions.

Other studies have also investigated the correspondence
between indirect geophysical measures of subglacial hydrology
to basal shear stress. Das and others (2023) calculated correlations
between radar reflectivity and sliding law parameter (representa-
tive of basal friction) for three models and were unable to find
a strong correlation. Kyrke-Smith and others (2017) found that
there may not be a discernible relationship between subglacial
hydrology and basal shear stress at short length scales (below 7
km), as they observed no correlation between acoustic impedance
and basal shear stress within seismic profiles. However, a stronger
correlation was observed when values were averaged over an ice
thickness scale and distinct profiles were compared. Our study
is consistent with the conclusions of Das and others (2023) and
Kyrke-Smith and others (2017). We were unable to find a statis-
tically significant relationship between basal shear stress and
reflectivity or specularity content using regression techniques
across radar profiles.

However, we do identify at least two useful radar metric
thresholds for identifying regions of substantial deviations in
basal shear stress which are statistically distinct from random
sampling of basal shear stress data. This novel approach has
also revealed that regions of low relative reflectivity and low spec-
ularity content indicative of a dry bed consistently occur at the
zone of Thwaites Glacier where ice starts to flow fast. However,
basal shear stress inversions tend to disagree about the basal
shear stress in this region, thus requiring better constraints to
be able to model ice flow in this region more accurately. The rela-
tionship between subglacial hydrology and basal shear stress may
not be apparent at short length scales which are filtered out by ice
sheet dynamics (Raymond and Gudmundsson, 2005) and may
not be apparent in surface velocity which is the main constraint
for basal shear stress inversions. Many sliding laws quantify the
relationships between ice velocity, basal shear stress and basal
water pressure. However, other factors may also play a role in con-
trolling basal sliding, and radar sounding provides independent
constraints on those factors that may not be captured by current
inversion methods.

5. Conclusion

Different ice sheet models use different methods and datasets to
estimate basal shear stress. In this study, we have shown that
there are broad relationships between basal shear stress as deter-
mined by velocity inversions and radar metrics across models and
locations within our study site at Thwaites Glacier, West

Antarctica. We also use radar sounding to identify regions of
low relative reflectivity and low specularity content characterized
by a unique radar signature where models produce widely differ-
ing constraints on basal shear stress.

Presently, ice velocity and thickness are the main constraints
for inversions. The results of this study indicate that radar sound-
ing can potentially provide an independent constraint on subgla-
cial properties that have been previously theorized to influence
basal shear stress. However, ground-truth constraints from bore-
hole measurements of basal shear stress or other methods are
necessary since the relationships identified in this study are them-
selves based on existing inversions. We also find that reflectivity
and specularity content contain spatial variations that cannot be
explained by current basal shear stress estimates derived from
ice velocity alone, thus indicating that they may contain add-
itional information that could be valuable to models, e.g., using
subglacial hydrology models. Constraints based on thresholds in
radar metric data could be incorporated into control methods
using inequality constraints, for which there are existing opti-
mization methods (Bryson and others, 1963). While results
from this study have shown that radar can be useful in providing
constrains on factors not yet captured by inversions, further work
on data assimilation into ice sheet models is required before radar
sounding metrics can be used directly to inform ice-flow models
on subglacial conditions.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2024.3

Data. The code used in this study can be found on Github (https://github.
com/rohaizharis/inversion_radar2022). The bed reflectivity data is from Chu
and others (2021) and specularity content data is from Schroeder and others
(2013). The processed radargrams and derived parameters from Chu and
others (2021) can be found on the USAP-DC (https://doi.org/10.15784/
601436). The inversions used in this study are from Sergienko and
Hindmarsh (2013) and Seroussi and others (2020). The interpolated data for
use with the code can be found on Zenodo (https://doi.org/10.5281/zenodo.
10391022). The surface ice velocity from MEaSUREs (Rignot and University
Of California Irvine, 2017; Mouginot and others, 2017), bed topography
from BedMachine v3 (Morlighem and others, 2020; Morlighem, 2022), surface
elevation hillshade from REMA (Howat and others, 2022), can be found
online.
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