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ABSTRACT. Snow-avalanche speeds, run-out distances, 
and the concepts from dense granular flows are combined 
in a model for prediction of speeds along the incline. Field 
measurements indicate that speeds and run-out distances are 
nearly independent of path steepness once a length is 
chosen to scale them. Application of granular-flow concepts 
explains these results. The most important feature of the 
model (and the speed data) is the steep gradient of speeds 
in the run-out zone. These results emphasize the need for 
high precision in run-out prediction when construction or 
defences are contemplated. 

INTRODUCTION 

The two important elements for land-use planning in 
snow-avalanche terrain are prediction of avalanche run-out 
and expected avalanche speeds along the path. Avalanche 
run-out predictions are used to define safe areas and to aid 
in decisions on placement of structures. When structures 
must be built, estimates of avalanche speeds are essential 
for calculating design impact pressures. In some appli­
cations, defences are used to slow, stop, or deflect 
avalanche debris and the height and design of these barriers 
is very sensitive to the approach speed of the avalanche 
mass. These applications combine to make avalanche run-out 
and speed prediction among the most important topics in 
avalanche research. 

The early attempts to define the engineering aspects of 
land-use planning and structure placement in avalanche 
terrain consisted of solving for avalanche speeds and run­
out positions simultaneously by selecting friction coefficients 
for an avalanche-dynamics model. However, McClung and 
Lied (1987) gave an alternative method for definition of 
speeds and run-out positIOns. We proposed that the problem 
be divided into two parts: run-out prediction and speed 
definition. 

There are good reasons to solve the problem in two 
stages. Of primary importance is the fact that calculation of 
avalanche speeds is physically and mathematically very 
difficult. The complex problem of flowing snow interacting 
with complicated terrain features is not likely to be solved 
soon . For the most part, the mechanical properties (including 
density) are unknown as well as the boundary conditions. 
Given these uncertainties, it is highly unlikely that presently 
available dynamics models can be used to predict where 
avalanches will stop with any certainty. However, there are 
methods available to define run-out distances independent of 
the dynamics problem. Once the run-out distance is 
predicted or found from field evidence, the dynamics 
problem can be simplified enough to make it possible. 

When a stop position is defined (methods are given 
below), the path geometry is completely specified for the 
dynamics problem. This enables calibration of the dynamics 
model using avalanche-speed data scaled according to a 
(then known) path-length parameter and it enables definition 
of the mean value of the basal friction parameter over the 
entire length of travel of the avalanche. These considerations 
make it possible to attack the dynamics problem. There is 
also an additional advantage in defining the stop positIOn 
first: avalanche-speed measurements show that the gradient 
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of speeds in the deceleration phase is very steep. Therefore, 
friction is very high at the end of the run-out and speeds 
there are very sensitive to stop position. Examples are given 
in this paper which show that it is difficult to match (and 
therefore predict) speed data unless a stop position is 
chosen. 

In this paper, the second part of the problem, that of 
speed definition, is developed . Since choice of a run-out 
position is necessary before speed calculations are attempted 
in the model, this topic is briefly reviewed first . 

PART I. AVALANCHE RUN-OUT DISTANCES 

In practice, the most common methods of determining 
avalanche run-out distances are by field inspection at the 
sites for evidence of destructive effects from previous 
avalanches or by collection of long-term data on avalanche 
run-out at sites. When these methods are not available, I 
believe that statistical prediction (based upon terrain 
features) represents the most promising Quantitative method 
thus far presented . Unlike physical models, statistical 
prediction allows run-out distance uncertainties to be 
defined in standard statistical terms. 

The pioneering efforts in statistical run-out prediction 
(Bovis and Mears, 1976; Lied and Bakkehoi, 1980; Bakkehoi 
and others, 1983) were based on regression analyses of 
topographic parameters collected for a set of avalanche 
paths in a mountain range. However, McClung and others 
(1989) and McClung and Mears (in press) analyzed data 
from five mountain ranges and concluded that avalanche 
run - out distances obey a Gumbel (extreme value) 
distribution. I believe this approach is superior and I have 
employed it in this paper. However, some avalanche workers 
still use the regression approach and it could be employed 
as well in the first part of the model proposed in this 
paper. 

The procedures for fitting a set of data points to an 
extreme-value distribution are well known but previous 
work of mine documents one of the simplest: fitting a 
linear regression line through a set of plotting positions 
defined from a data set of run-out distances. The parameter 
fitted to the distribution is defined as a dimensionless 
run-out ratio: 

t::.x tan /3 - tan '" 

X /3 tan", - tan 6 
(I) 

where "', /3, 6 are three angles defined for each avalanche 
path in the data set and I1x, X /3 are two horizontal distance 
measurements defined in Figure I. The angle '" is defined 
by sighting from the extreme point reached by avalanches 
in the past to the start position; /3 is obtained by sighting 
from the position where the slope angle first declines to 
100 to the starting point; 6 is defined by sighting between 
the positions marked for '" and /3. 

The position defined by /3 (the /3 point) is taken as a 
reference point from which to calculate run-out. The run­
out distance (t::.x) (time-scale - 100 years) is the horizontal 
reach from the /3 point to the extreme run-out position. 
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Fig. 1. Definition of geometry to describe extreme avalanche 

run-out. 

The length (X /3) is the horizontal distance between the 
starting point and the 13 point. 

Given a data set for which these parameters are 
measured for a given mountain range, it becomes possible 
to predict the run-out ratio as a function of the non­
excedance probability, p, of the Gumbel distribution. Let 
x - !::.x / X 13 ' then if f(x) is the probability density function, 
p = Pr(x ~ x p) where 

xp 

J f(z)dz exp _ [exp _ [xp ~ U]] . 
-<0 

(2) 

Given a value, x p ' lOOp (%) values of x in the distribution 
have values less than xp' In Equation (2), u and b are the 
location and scale parameters for the distribution. For the 
extreme-value distribution, the equation of the regression 
line through the plotting positions is defined by: 

x = [~] = u - b In(-In p) . 
p XI3 

p 

(3) 

Previous papers (McClung and 
Mears , in press) give values 
(0.07-D.21) for five individual 
more than 500 avalanche paths. 

others, 1989; McCl ung and 
for U (0.08-D.37) and b 
mountain ranges including 

From Equation (3), it is possible to define a mapping 
of run-out distances for a given avalanche path as a 
function of p. For example, with u and b determined for a 
gi ven range, the position defined by (flx / X (3)0.99 = U + 4.6b, 
gives a run-out position which 99% of avalanche run-out 
ratios in the data set will not exceed (usually a fairly safe 
location). 

Once a run-out position (or a mapping of distances) is 
determined by one of the methods above, the path geometry 
is completely determined and the dynamics problem can be 
tackled by applying Part II of the model discussed below, 
which constitutes the main thrust of this paper. 

PART H. ESTIMATION OF AVALANCHE SPEEDS 
ALONG THE INCLINE 

PROBLEM DEFINITION AND PHYSICAL DESCRIPTION 

Large dry-snow avalanche flows have a dense core of 
flowing material in contact with the bed over which they 
flow . Experience and field data (e.g. McClung and Schaerer, 
1985) show that this type of avalanche produces the 
combination of highest impact pressures and longest run-out. 
Such a flow is called a dry-flowing avalanche: the design 
avalanche for a placement and design of structures. 

Often for dry-flowing avalanches, the dense core of 
material at the base is obscured from view by material 
suspended in the air by turbulent eddies around the 
periphery of the avalanche. This material (called powder) 
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tends to make the flowing material appear as a body of 
low-density material moving like a turbulent fluid. However, 
in almost all cases there is a dense core of material at the 
base and it is the internal deformation of this core and its 
interaction with the sliding surface which I believe 
dominates the motion resistance of large avalanches to 
determine their speeds. 

Field observations and measurements show that 
avalanche speeds and run-out are quite senSItive to the 
physical condition of the surface over which the avalanche 
flows. Soft or wet surfaces introduce high friction which 
reduces avalanche speeds and run-out. [n this paper, only 
one type of avalanche is modelled: one characterized by 
minimum friction, maximum run-out (time-scale 
- 100 years) and maximum speed. For this reason, effects 
such as plowing into new snow or flow over a wetted 
surface are not accounted for explicitly. Also, entrainment 
and deposition of snow as the avalanche travels along the 
path are not explicitly included; the present knowledge 
about these effects is too meager to introduce them without 
speculative assumptions. 

In practical usage, simple models which do not attempt 
to describe the internal deformation of the flowing material 
or which do not call for precise boundary conditions have 
been dominant for 35 years. Since the mechanical properties 
of flowing snow have not been measured and the boundary 
conditions for avalanche flow can only be speculated about , 
it is clear that any of the more complicated models (e.g. 
Norem and others, 1987) must rely upon assumptions rather 
than data for model calibration. 

The approach here is to develop a method for scaling 
speeds similar in scope to the popular models of the past 
(Voellmy, 1955; Perla and others, 1980). The scaling pro­
cedure is based upon trends expected from results on dense, 
granular flows including both the general form of the 
boundary conditions at the upper and lower flow boundaries 
and the deformation properties of dense granular materials. 
Using these results, the parameters in the model are 
determined from speed measurements and run-out distances. 
Since no attempt is made to describe the internal 
deformation or detailed physics of avalanche motion (see 
e.g. Norem and others (1987) for a more detailed model), 
the flow depth of the avalanche is not predicted and only 
the transport speed of the avalanche is given. My model is 
so simple there is no difference between the frontal speed 
and the center-of -mass speed. 

TRENDS FROM GRANULAR-FLOW RESULTS 

Field observations of avalanche deposits show that 
significant heat is generated by particle collisions in the 
flow. Often, large dry avalanches have moist snow in their 
deposits. The small amounts of moisture present subsequently 
freeze to produce very hard snow in the deposit. The 
simple observations that mean particle size becomes smaller 
(due to fracturing and abrasion) the further the avalanche 
travels and, that the snow from dry avalanches can be 
moist in the deposit, strongly indicate that the volume 
fraction filled by particles is high in flowing avalanche 
snow. Simple arguments from avalanche speed and impact­
pressure measurements were given by McClung and Schaerer 
(1985) to estimate roughly the volume fraction filled by 
solid material in the flowing snow. These estimates indicate 
that the volume fractions filled by snow particles and air 
are the same order of magnitude and therefore particle 
collisions are expected to be the dominant mechanism of 
momentum transport within and at the lower boundary of 
the flowing mass. 

In flowing snow avalanches, the density of the mixture 
of air and solid particles in the core is high and the effects 
of the air can be entirely neglected in a mechanical 
description. There are two reasons for this: (I) large density 
ra tio between the particles and the air (102-103 ); (2) 
presence of particles even in small amounts (Ackermann and 
Shen, 1978) will suppress any turbulence in the interstitial 
air. For dry-avalanche flows, the particles are a mixture of 
ice and air with densities that must range from about 
200 kg/ m3 for the larger particles (McClung and Schaerer, 
1985) to 917 kg/ m3 (ice) for the smallest fragments. Except 
for the initial stage of motion, [ believe that the core of a 
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dry flowing avalanche can be described as a dense granular 
flow. A dense granular flow is one in which the fraction 
of the flow volume filled by the grains (called the volume 
fraction, v, here) is high enough that particle collisions 
dominate the motion resistance within the flow and at a 
solid boundary over which the material flows. A list of 
relevant properties from dense granular-flow models 
(including computer studies) and laboratory measurements is 
given in Appendix A as they are used as a basis for the 
model developed. 

The granular-flow results (Appendix A) may be 
interpreted along with field observations of avalanches to 
produce a rough qualitative picture of how friction might 
vary as an avalanche moves down-slope. In chronological 
order, the sequence is expected to be: (I) initial bed surface 
drops below static values to a low value by propagation of 
shear fractures underneath the slab to produce low friction 
initially (McClung, 1987); (2) break-up of slab material into 
particles and blocks of irregular shape and a distribution of 
sizes by destructive collisions with the roughness elements 
along the path and by particle-particle collisions; (3) as the 
material moves down-slope over steep terrain, granular flow 
becomes possible, the rate of deformation (basal shearing) 
increases, causing basal friction to increase; (4) at some 
point when low slope angles are traversed, locking begins to 
occur in the upper part of the flow; this effect forces the 
deformation to be contained in a narrower band at the base 
of the flow to maintain high shear rate and high friction 
there (e.g. Savage and Jeffrey, 1981) as locking moves 
towards the base; (5) at a low slope angle, the transport 
speed slows, the rate of basal shearing decreases, and 
rubbing friction emerges as the volume fraction increases in 
the basal region . This causes the friction to increase towards 
a high static value. No theories or data are available to 
describe precisely when one phase of motion stops and 
another begins. 

The discussion above suggests that basal friction is 
generally expected to increase as the avalanche moves 
down-slope if the flowing material behaves as a dense 
granular flow . If 'shear and normal forces are strongly 
coupled throughout the core (including the basal region) , 
avalanche-speed data are also consistent with this picture 
(shown in a later section). 

CENTER OF MASS MODEL WITH GRANULAR DRAG 
AND CENTRIPETAL EFFECTS 

I believe the present knowledge about avalanche speeds 
and flow properties from field observations and 
measurements is only sufficient to describe the motion of 
the transport speed (either center of mass or frontal speed) 
of the mass along the incline. In my model, the flowing 
mass is treated as a continuum initially (in Appendix B) 
and then the formulation is collapsed to a simpler model in 
which only the transport speed is specified. Earlier models 
(Voellmy, 1955; Salm, 1979; Perla and others, 1980) of the 
same class as the present model were developed by 
specifying friction parameters on a largely ad hoc basis 
without sufficient attention to boundary conditions. The 
resulting model in this paper appears mathematically similar 
to the earlier models but the physical assumptions, the final 
mathematical formulation, and the assumed boundary 
conditions are entirely different. I believe it is important to 
develop the equations from a continuum approach to 
emphasize the differences between this and the earlier 
models. The equation to describe (see derivation in 
Appendix B) the center of mass speed U is: 

(4) 

In Equation (4), dS is an element of path length, 1/1 is local 
slope angle, and g is acceleration due to gravity. The 
friction terms are: (I) IL(S) , speed-dependent drag from 
granular flow at the base of the flow, and (2) Do(S) is the 
sum of two terms: turbulent air/ dust drag at the lOP of the 
flow and drag due to centripetal forces for motion on a 
curved path . Specifically, 

D(S) = (IL / r) + t(Pt/ P}(Cf/ h) (5) 
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where reS) is radius of curvature of the path , p is mean 
value of density in the core of the avalanche, Pt is density 
(air / snow) at the top of the core, h is flow depth, and Cf 
is a drag coefficient for turbulent air/ dust drag at the top 
of the core (see further details in Appendix B). 

Equation (4) is mathematically similar to one derived 
by Salm (1979) and Perla and others (l980), henceforth 
called the PCM model. There are, however, important 
differences: only one drag term (granular) is assumed at the 
bottom of the flow and this is strongly coupled to the 
normal force there. Also, since IL is taken to vary with S , 
it describes speed-dependent drag; since IL = IL(S) and 
u = u(S), it is implied that IL = lL(u) . McClung and Schaerer 
(I983) showed that taking IL and Do constant (the usual 
assumptions for applying the PCM model, Salm's model, or 
Voellmy's model) makes it impossible to explain 
avalanche-speed data. 

A second difference in the present model is that 
turbulent (air/ dust) drag is assumed only at the top of the 
flow. In the formulations of PCM, Salm or Voellmy, a drag 
term independent of normal force and proportional to u2 

was included (on an ad hoc basis) to account for turbulent 
drag at the base of the flow or around the upper 
periphery. This drag term is negligible for a description of 
dense granular flow at the base of a flowing avalanche: the 
presence of particles in significant numbers will prevent 
turbulence from forming and the high volume fraction filled 
by solids will guarantee that shear and normal forces are 
transferred through collisions. 

The PCM model also included a drag term proportional 
to u2 to account for plowing into new snow. The present 
model could account for plowing if the resistive forces are 
coupled in a Coulomb type of relationship (Equation (BII». 
Because the value of IL is the mean value over the length 
of the flow , plowing could be interpreted as implying 
higher mean basal resistance due to conditions at the front 
of the avalanche. Since my model is calibrated from field 
measurements of maximum speed and run-out, plowing 
effects of the type described above are implicitly included . 
The same remark applies to entrainment and deposition of 
snow and air into the moving avalanche: these effects a re 
not included explicitly; however, since the model is 
calibrated from field data, they are implicitly included . 

Even though Equation (4) appears mathematically 
s imilar to the PCM model, the physical and mathematical 
differences (outlined above) are crucial for calculating 
avalanche speeds (see McClung and Schaerer (1983) for a 
further discussion). The continuum development in Appendix 
B clarifies and emphasizes these differences. 

QUANTITIES USED IN MODEL CALIBRATION 

Once a run-out distance is selected by one of the 
methods given in Part I, it is possible to estimate two 
quantities necessary to calibrate the model: maximum speed 
and mean value of basal friction. 

Consider an avalanche which reaches maximum speed, 
um ' after traversing a length of path SI (acceleration 
phase). Integration of Equation (4) (IL = IL(S), r = reS), 
Do = Do(S)) from 0 to SI gives 

(6) 

~ where r + is the mean value of g(sin 1/1 - ILCOS 1/1) and Dou+ 
is the mean value of Dou

2 over SI ' 
Similarly, integration over the deceleration phase (SI to 

So) where So is total path length to the stop position gives 

(7) 

where r_ and Dou~ are mean values over the deceleration 
phase. 

Elimination of SI from Equations (6) and (7) gives 

(8) 

where the constant C is a function of the constants r _, r + , 
~ --2 
Dou _, and Dou+. 

Equation (8) shows that maximum speed may be scaled 

https://doi.org/10.3189/S0022143000009436 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000009436


with (So)! (a known quantity). Equation (8) is useful in two 
ways: (1) it gives a rough upper limit on design maximum 
speed for an avalanche path with known run-out once an 
upper-limit value for C is determined, and (2) the upper­
limit value for C is used to calibrate the speed model in 
the present paper (in a later section). 

From Figure 1, with sin,p = dy/dS and cos,p = dx/dS, 
H vertical drop, integration of Equation (4) from 0 to So 
gives 

[ 
Dou2 [So]] tan ex 1 - -g- H (9) 

where Dou2 is the mean value over the range 0 to So' 
Equation (9) restates a well-known result: if drag terms due 
to centripetal force and turbulent air/ dust are negligible, the 
mean value of J1. is defined by tan ex (a known quantity in 
the present model). The results of Equations (8) and (9) will 
be used to calibrate the model in a later section. 

TURBULENT A[R / DUST DRAG 

Dry avalanche flows are usually surrounded by a dust 
cloud of material over the dense core which contacts the 
sliding surface. [ measured impact pressures using small load 
cells through the vertical cross-section of avalanches 
(McClung and Schaerer, 1985). The results show that the 
frequency of particle impacts decreases with height above 
the sliding surface. At the top of the core, the pressure 
cells recorded only sporadic impacts which suggests that the 
top of the core consists of saltating particles. [t is likely 
that the effective surface roughness may be appreciable for 
turbulent snow dust interacting with saltating particles at the 
top of the flow. 

For turbulent flow over a rough surface, Schlicting 
(1979, p.653-59) gave an expression for the drag coefficient 

Cf = [1.89 + 1.6910g
lO

(L o/ 4k)r2.S (10) 

where Lo is length and k is roughness height. Melior (1968) 
suggested a value Cf = 2 x 10-3 from estimates of drifting 
snow over a smooth surface. With Lo = 100 m (length of 
avalanche flow) and k in the range 0.1-1 m, Equation (10) 
suggests that Cf can be an order of magnitude larger than 
that expected for a smooth surface. 

From impact experiments, McClung and Schaerer (1985) 
estimated the average density for dry flowing avalanches to 
be -100 kg/ m3, and for a powder avalanche we estimated p 
to be near 10 kg/ m3. From these results, an upper limit on 
the ratio (Pti"p) can be taken to be about 0.1 in Equation 
(5). Given that large avalanches have flow depths, 
h = 2-5 m, an approximate maximum value for Do can be 
estimated from the quantities above (Pt / p = 0.1, Lol k = 
10-3, Cf = 1.2 x 10-2 , h = 2 m) to give D

O
- 1 = 3333 m. 

Using this rough estimate, it is evident from Equation (4) 
that turbulent drag at the upper surface of flow is not 
usually expected to have much effect until speeds are near 
30 m/ s. The product DoSo must be greater than t for this 
drag term to have a significant effect on speeds. Since 
virtually all applications of speed models are in the run-out 
zone where speeds are less than 30 m/ s, turbulent air/ dust 
drag is expected to have minor importance in most 
engineering applications. In applications, it is recommended 
to input a value of Do as constant all along the path; the 
determination of J1. as a function of position is the most 
important part of the model offered here. Due to 
uncertainty in the air-drag coefficient (Equation (l0)) , it is 
most suitable to calculate speed profiles with no air drag 
and with maximum expected air drag in applications. These 
two solutions then give upper- and lower-bound estimates 
for the speed profiles on a given avalanche path. 

CENTRIPETAL DRAG TERM 

A valanches often move on curved paths (usually 
concave on overall shape). The term in Equation (18) from 
centripetal acceleration is derived by depth-averaging using 
the normal force Equation (B7). The term Pi? was 
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simplified by assuming a fairly blunt velocity profile and a 
depth-averaged density throughout the depth of flow to give 
Do in Equation (5). [n view of the uncertainties, and rough 
approximations, I feel it is sufficient to input a constant 
value /il r for this drag term over the entire length of path. 
A simple method to calculate r is to fit a curve to the 
avalanche profile (see Fig. 1), for example: y = 
ax2 + bx + c and then determine the radius of curvature 
by (negative if convex): 

[I + (dY /dx)2f/
2 

(d 2y/ dx2) 

(11) 

When the length rlji becomes comparable to about one-half 
the total path length traversed, it will influence the 
avalanche speeds in the model. For steep profiles (13 > 40

0
), 

this term can reduce speeds in the middle section of the 
path by 10% or more. For avalanche terrain, r generally 
increases with distance down-slope and, since the centripetal 
term is multiplied by u2 , the centripetal term usually has 
little or no effect on speeds in the run-out zone. 

NUMERICAL SOLUTIONS 

Perla and others (1980) gave a simple method for 
solving Equation (4). By dividing the slope into small 
segments so that ,p can be taken constant over each 
segment, numerical solutions are easy to obtain . Each 
segment is assigned an angle ,pi' a length L i , and friction 

Fig. 2. De/inition 0/ segments 0/ length Li and slope ang le 
,pi for numerical solutions. 

values jJ.i = tan q,i' Doi' If the speed at the beginning of a 
segment is ut, then the speed u~ at the end of the ith 
segment is given by (see Fig. 2): 

where 'fi = g(sin,pi - tan ~i cos ,pi) and ki = 2L/ Doi' If the 
avalanche stops before the end of a segment, the distance 
from the beginning of the segment is: 

(13) 

Equations (12) and (13) are easily programmed for 
numerical solutions. It is of interest that software developed 
by Cheng and Perla (1979) may be used in the general case 
by replacing their mass to drag parameter (M / D)i with 
(l / Doi ) and J1.i with tan ~i on each segment. 

GRANULAR-FRICTION SCALING MODEL 

In order to complete the dynamics model, values for jJ. 
and Do must be specified all along the incline. My 
approach to the solution of Equation (4) consists of 
specifying a constant value of Do (curvature and air drag) 
for a high-speed dry avalanche and the definition of jJ. = 

tan q,(S) at each position on the path. From the analysis of 
the air-drag term and Equation (l0), variations in jJ. along 
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the incline dominate the motion resistance almost entirely 
when speeds are less than about 30 m/ s (large avalanches). 

Specifying the variation of granular-flow friction along 
the path is the crux of the model presented here. The 
formulation must be consistent with the descriptive aspects 
of avalanche flows , avalanche-speed and run-out distance 
data, and the mechanics of rapid granular flows. It is 
tempting to try formulating constitutive equations relating /l 
to transport speed, and granular-flow parameters (v, 
coefficients of restitution , overburden, depth of shearing) . 
However, I believe such a relationship is still somewhat in 
the future even for engineering applications. Also, the 
complexity of such a relationship would not be appropriate 
for the model here which is intended to be as simple as 
possible. 

From avalanche-speed measurements, field observations, 
and the granular-flow results, I expect that /l will generally 
increase as the avalanche moves down-slope. The initial 
value of friction, Ilo, is expected to be very low. Visual 
observations of avalanches confirm the trends in speed 
measurements (e.g. Salm and Gubler, 1985) that the initial 
acceleration is very rapid. The final value of Il must 
approach high values close to the static limit in the 
deceleration phase. Avalanche-speed measurements show that 
deceleration is very rapid near the end of the run-out; this 
implies very high friction in the final stage of motion. 

In the middle parts of the path, intermediate values of 
friction seem likely. In the acceleration phase (with slip at 
the basal boundary), as the rate of basal shearing builds up, 
v should decrease at the boundary to increase the dynamic 
friction. As the descent continues, the speed will reach a 
maximum (when driving force and drag forces are in 
balance). From granular-flow results (e.g. Campbell and 
Brennen, 1985a), it is possible that basal drag might 
decrease as v increases with decreasing slope angle to 
produce an inflection point in Il(S). However, once v 
increases to produce a significant rubbing component on the 
grains, static friction will begin to emerge and Il will 
increase. Therefore, it is possible that the magnitude of Il(S) 
may oscillate, but I believe that Il must generally increase 
down-slope and I will ignore any inflection point of the 
relationship Il(S). Calculation of such an inflection point 
will involve precise knowledge of locking mechanics. The 
analysis by Savage and Jeffrey (1981) shows one possible 
scenario implying that an inflection point may not exist. 
By ignoring an inflection point, a simple two-parameter 
equation relating Il and S provides an adequate starting 
point: 

(14) 

From Equation (10), a value for IL is available once run-out 
is specified: 

tan a[1 - Ko] (15) 

Elimination of K from Equations (14) and (15) gives 

(16) 

Given an approximate initial va lue (/lo) (or a small 
range of values), 11 is the only parameter left to complete 
definition of the model. Run-out distances and avalanche­
speed data provide the necessary information to estimate n. 
I expect that dll/ dS ;I 0 due to the assumption that Il 
increases in the down-slope direction. The condition 
d 21l/ dS2 ~ 0 implies that friction increases asymptotically as 
motion proceeds to approach a limiting value (static value) 
at the stop position. Application of these conditions together 
implies 0 ~ 11 ~ I . The value 11 = 0 defines a high friction 
limit: 

/l = Il · (17) 

In practice, a small initial value may be needed to 
initiate notion for 11 = O. Physically, this limit implies that 
friction jumps to a high value almost immediately. The low 
friction limit is given by n = I: 

(18) 
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Further justification for the limits 0 ~ 11 ~ I is provided in 
the next section where data for maximum speed and 
run-out distances are used to find values of n as a function 
of (3 and p. 

If air and centripetal drag are ignored, data from 
western Norway (McClung and Lied, 1987) suggest that IL 
(or tan a) ranges from 0.325 to 1.15 for the data set. If 
Equation (17) applies to the steepest profile (ex = 49°) and 
Equation (18) for the gentlest (a = 18°), limits on Il are 
implied in the range 0.2 to 1.15. Given that initial values 
of Il are expected to be below granular-flow values, this is 
a reasonable range based on granular-flow models (e.g. 
Campbell and Gong, 1986) for a material with a fairly low 
coefficient of restitution. 

Estimates of static values for Il for alpine snow are 
also of interest. Slow laboratory shearing experiments 
(McClung, 1987) show that the friction angle (ratio of peak 
shear stress to normal stress at failure) is in the range 
1.19-5.67 for alpine snow. Avalanche-slope failure angles 
imply the ratio is in the range 0.47-1.43. Neither of these 
ranges will apply precisely to the physical problem here: a 
locked mass slowing by sliding over a rough surface. 
Granular-flow models (McTigue, 1978; Savage and Jeffrey, 
1981) for hard spheres predict Il = 0.85 under rapid 
shearing when the granular temperature is zero. Static values 
are expected to exceed this value because the rubbing 
friction would add to it. 

DEFINITION OF MODEL FRICTION COEFFICIENTS 
FROM RUN-OUT AND SPEED DATA 

Once the run-out distance and a value for Do are 
specified, the values of /l and So are determined in 
Equation (16). Analysis of initial avalanche-speed data shows 
that Ilo = 0.2 is an adequate approximation . Gubler (personal 
communication) suggests a value even less than 0.2. 
Therefore, in order to specify completely the friction along 
the path, the only parameter left to specify in Equation 
(16) is the power 11 . This parameter may be defined using 
Equation (8) and data from avalanche speeds. The procedure 
is to calibrate the model using the upper envelope of 
maximum avalanche-speed data scaled as a function of So' 
This will allow values of 11 to be determined as a function 
of path steepness and run-out pOSItion for the design 
avalanche: the one with minimum friction and maximum 
speed in the middle part of the path 

Figure 3 gives urn versus (So)t for avalanches from 
Canada (Roger's Pass, B.C.), Switzerland, and Norway. The 
data collection represents frontal speeds of avalanches with 
differing mass and mechanical properties moving over 
terrain with varying surface characteristics and topographic 
features (Schaerer, 1975; McClung and Schaerer, 1983). 
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um = J .5( So)t is shown. 
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Since the data from Canada are obtained from single 
estimates in the middle of the path, many will not represent 
precise estimates of maximum speeds. Also, the data set 
contains estimates from small avalanches, wet avalanches, 
and ones with less than optimum surface-friction conditions. 
Therefore, the upper limit envelope (shown in Figure 3) 
um = 1.5(So)t is chosen to calibrate the model (the design 
case). FrolTj the data, the ratio um/ (So)t has a range of 
0.17-1.38 mt S-1 (mean 0.70; standard deviation 0.28). 

Rank correlation coefficients, R s' were calculatfd for 
the Roger's Pass data. Correlation of urn with (So) gave 
0.437 for the dry avalanches in the data set and this value 
changes very little if all 72 avalanches are used 
(Rs = 0.469). 

The value of Rs for correlation of um/ (So)t with 
respect to a is --0 .34 for the sub-set of 50 dry avalanches 
and it is insignificant for the full data set (--0 .13). Since 
tan a is the average slope all along the ~ath, it is an index 
of path steepness . Correlation of um/ (So) with tan a gave a 
value 0.09 for the full data set and --0.08 for the sub-set 
of 50 dry avalanches. This important result suggests that 
maximum avalanche speeds are nearly independent of profile 
steepness once a suitable length scale (So)t is chosen for 
scaling. The result seems paradoxical but it may be 
consistent with granular-flow results: steeper paths have 
higher driving force during acceleration but the rate of 
shearing at the base of the avalanche may be faster to 
produce higher dynamic friction which compensates so that 
maximum speed does not increase. 

In order to determine the value of Il (Equation (16» in 
a fairly general manner, I have used a geometrical model of 
avalanche paths from western Norway derived by McClung 
and Lied (I987). The model consists of definition of the 
constants (a, b, c) in the equation y = ax2 + bx + c as a 
function of path steepness (geometry; Fig. 3). Run-out along 
the curve is defined by a mapping of values of the non­
excedence probability p (0.5 ~ p ~ 0.99). Using Weibull 
plotting positions, a regression analysis gave u = 0.14, b = 

0.08 using the data set from western Norway as an example 
(see Equation (3)). 

By constraining maximum speed to match closely the 
maximum value of um/ (So)t (from speed data) independent 
of path steepness (13), a set of values for 11 was derived as 
a function of path steepness (Table I). Figure 4 shows pre­
dictions of the parameter um/ (So)t as a function of path 
steepness and run-out position. This result shows that path 
steepness gives the major influence, so that in my model 13 
is the only parameter used to determine 11. Therefore, the 
values in Table I are recommended as guidelines for use in 
applications. 

From Figure 4, the values of um/ (So)t exceed the 
value 1.5 for the steepest profile (13 = 50°) and they are 
less than 1.5 for the gentlest profile (13 = 20 \ This is due 
to steepness in the initial parts given by the geometrical 
model. The initial slope angle increases with 13 in the 
geometrical model (29 for 13 = 20°; 66 ° for 13 = 50 \ 
These values of initial slope angle are near the extremes 
measured for avalanche starting-zone angles ~e.g . Perla, 
1976). In this sense, the limits of 1.12 ~ um / (So) ~ 2. 13 in 
Figure 4 can ~e regarded as extr~me limits: 11 = 0 im~lies 
1.98 ~ um / (So) ~ 2.13 (13 = 50) and n = I gIves 
1.12 ~ um/ (So)t ~ 1.28 (13 = 20°) for p in the range 
0.50--0.99. 

Calculations with actual avalanche profiles near the 
extremes of steepness gave a closer match to the upper 
limit of the field data: Ruby Peak, Colorado (a = 16.7°, 
13 = 23°, So = 2300 m) and PS-67, Norway (a = 49°, 13 = 

51 0, S = 1600 m) gave respectively um / (So)t = 1.45 and 
1.88 in comparison with the extreme limits estimated from 

TABLE I. SUGGESTED VALUES OF /Lo AND 11 AS A 
FUNCTION OF PATH STEEPNESS (13) 

(3 /Lo 11 

20 ° 0.2 I 
30 ° 0.2 0.5 
40° /L 0 
50 ° /L 0 
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Fig . 4. Predictions of um / ( So)t versus probability (p) and 
path steeplless (13) for a geometrical terrain model 
( McClung and Lied. 1987) devel0'6ed from rUIl-ouJ data 
in IVestem Norway . o. ( 13 = 50); *. ( 13 = 40 ) ; D. 
( 13 = 30° ); !::. (13 = 20° ). 

the geometrical model (Fig. 4). The recommendations of 
Table I put the value um/ (So)! = 1.5 mt S-1 in the middle 
(most of common values of path steepness). 

The values in Table I are derived by neglecting the 
turbulent air / dust drag and centripetal force. r expect that 
this approximation will suffice in most engineering 
applications. To include these terms, I suggest estimating Do 
and then reducing 'ji in Equation (9) while retaining the 
value of Il appropriate to path steepness (13) from Table I. 
Using an iterative procedure, the stop position (known) can 
be matched to give the solution for speeds all along the 
incline. Including air drag and centripetal drag will reduce 
the estimates of maximum speed produced by application of 
the values in Table I, but these terms may not be 
important in most run-out zone applications. 

The high friction limit for the model produces over­
estimates of maximum speed for the steepest profiles. Such 
profiles are rare in practice (13 = 50°). The path-steepness 
range for the Rogers Pass speed data is fairly broad, but 
most data are concentrated around the mean. It is entirely 
possible that there are not enough speed data to illustrate 
adequately path-steepness extremes because the data 
represent avalanches at differing mass and mechanical 
properties moving over paths with varying topography and 
surface friction. As well, steep paths represent the class 
which is most likely to be subjected to centripetal drag 
effects. If centripetal forces are included in the model 
calibration , a better match to the maximum speed envelope 
will be obtained. 

COMPARISON WITH 
A VALANCHE SPEEDS 

FIELD MEASUREMENTS OF 

Recently, data have been published for speeds of large 
avalanches all along the incline (Norem and Kristensen, 
1985, 1986; Norem and others, 1985; Salm and Gubler, 
1985; Gubler and others, 1986). Comparison with these data 
requires care: the data represent frontal speeds but the 
assumptions in the model ignore the distinction between 
frontal and centre of mass speed. In addition, the run-out 
position for the model is taken as the extreme position (tip) 
of the debris. The model assumptions (ignoring differences 
between centre of mass and frontal speed) may not be 
accurate enough in some applications. In addition, the model 
predictions are intended for the rare design avalanche 
(=100 year); therefore, particular examples will not entirely 
match optimum friction conditions and model predictions 
will exceed measured speeds in most cases. 

A complete speed profile for a large dry avalanche was 
reported by Salm and Gubler (1985) (13 = 22 0, a = 18°). 
Sensitivity with respect to values of air drag is shown in 
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Figure 5. This figure shows that /Lo = 0.2, n = 1/ 2 provides 
a good match to the data in the acceleration and 
deceleration phases. Addition of the air-drag component 
reduces the speeds in the region of maximum speed to 
provide a closer match to the data for 110 = 0.2, n = 1/ 2. 

Data for an avalanche with a shorter, steeper path, the 
Magergrond from Switzerland (ex = 31 \ were measured by 
Gubler and others (1986). They provide profiles for three 
avalanches with maximum speeds 19.7, 28 . 1, and 42 .7 m/ so 
In Figure 6, model predictions are compared with the 
fastest of these for 11 = 11, 110 = 0.2, n = 1/ 4, and 
110 = 0.2, n = 1/ 2. Figure 6 clearly shows that 11 = 11 
produces speed values which underestimate the measured 
ones for a path of this steepness. The pair 110 = 0.2, 
n = 1/ 4 provides an excellent match to the data except in 
the early deceleration phase, when both the pairs 110 = 0,2, 
n = 1/ 4 and 110 = 0.2, n = 1/ 2, Do· l = 3333 m give speed 
predictions exceeding the measured ones. Again, addition of 
an air-drag term provides a closer match to measurements 
in the high-speed regions. 

Variations of stop position (Ii) with 110 = 0.2, n = 1/ 2, 
Do· 1 = 3333 m are shown in Figure 7 for the avalanche in 
Figure 5. This figure shows the importance of specifying 
the stop position in order to estimate closely speed profiles. 
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Since the speed data show very rapid deceleration, it would 
not be possible to match speed data closely using the model 
without specifying a stop position. Since avalanche speeds 
are very sensitive to stop position, the model must also 
display such behaviour. 

Data from Ryggfonn path, Norway (13 = 28°), provide 
an indication that avalanche speeds are very sensitive to 
mechanical properties of flowing snow and the conditions of 
the sliding surface. Data for two large avalanches (April 
1982, April 1983) are given in Figure 8 (from Norem and 
Kristensen, 1985; Norem and others, 1985). The 1982 
avalanche was dry but the lower part of the path had a 
wet surface. The 1983 avalanche had partly wet snow in the 
flowing material and the surface was wet in the run-out 
zone. These conditions deviate from the model assumptions . 

Also shown (Fig. 8) are the model predictions for 
110 0.2, n = 1/ 2, n = 3/ 4, Do· 1 = 3333 m, for Ryggfonn . 
Maximum speed is within about 15% of that measured . 
Again, the model speeds are too high in the deceleration 
phase but the wet sliding surface there could explain part 
of the difference. The 1982 avalanche fits the model 
assumptions more closely but, even for it , the comparison is 
not ideal. Except for the early high peak in speed (path 
length 800 m), the model does agree with data from both 
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speed profiles that generally the speeds accelerate for about 
1500 m along the incline. It is interesting that Perla and 
others (1984) attributed the early peak in the speed data to 
a possible spurious effect for the 1982 avalanche. It is not 
known whether this is true. 

Figures 5-8 illustrate a number of complicated effects 
in the speed profiles that were measured under conditions 
of the design high-speed avalanche described by the speed 
model. The model does, however, reproduce the major 
features of the data . In addition, the model has a much 
stronger physical basis (granular-flow concepts) than the 
earlier models of the Voellmy-PCM class which were 
constructed in an ad hoc fashion instead of being developed 
from a continuum approach. 

SUMMARY AND DISCUSSION 

The model proposed consists of two parts: (I) 
definition of extreme avalanche run-out distance using 
statistical methods, field observations or a combination of 
these, and (2) calculation of approximate expected speeds 
along the incline for one type of avalanche: the one 
characterized by minimum friction and maximum speed. 
Since the model requires avalanche run-out as input and 
since it is calibrated from field measurements of maximum 
avalanche speed, it is (by definition) consistent with these 
fi eld measurements. 

The speed model appears mathematically similar to 
simple models of the past (Voellmy, 1955; Perla and others, 
(980) but its application is entirely different: the run-out 
distance is used to define the mean value of granular 
(speed-dependent) friction and ava lanche-speed data are used 
to determine the value of n in Equation (16). Application 
of the model consists of a suitable choice of /La and n for 
the given path-steepness parameter (13) from Table I. For a 
given run-out distance, So and ji are then determined to 
complete Equation (16) which is applied in numerical 
solutions on the path broken into path-length segments and 
slope angles. 

Equation (17) may be regarded as the high friction 
limit for the present model (excluding air drag and 
centripetal effects). McClung and Schaerer (1983) showed 
that this is the low friction limit for models of the PCM­
Voellm y class . We also provided some speed data which 
exceed the model speed limit (low friction limit) for the 
PCM class of models. A further example is provided in this 
paper (Fig . 7). These examples emphasize an undesirable 
characteristic of the PCM-Voellmy models . If constant mean 
values are used for the two friction coefficients in the 
models, then measured speeds can exceed the model speed 
limit. If both parameters are allowed to vary along the path 
(instead of taking constant mean values), then it is 
impossible to determine the parameters from currently 
available speed data and the predictions are arbitrary. 

In the present model, no attempt is made to predict 
the flow depth. This is a quantity which engineers are 
anxious to know. In order to predict flow depth, the 
internal deformation of the avalanche flow must be defined. 
Until the mechanical properties and boundary conditions for 
flowing snow are determined, [ do not believe flOW-depth 
predictions are possible with any certainty . However, it 
should be poss ible to estimate roughly flow depths as a 
function of path-confinement geometry if an initial 
geometry (slab thickness and dimension) is specified for the 
flowing mass unless the avalanche entrains significant 
amounts of snow during descent (see e.g . Salm, (979). 

The simplicity and approximate nature of the model 
must be kept in mind. The true complexity of the 
avalanche-dynamics problem prevents solutions with the 
precision sought in many consulting applications for this and 
other models. Since the speed predictions are developed 
from scaling rather than a physical model, they must be 
integrated with as much information as possible collected in 
the field when applications are attempted. 
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APPENDIX A 

RESULTS FROM THEORETICAL AND EXPERIMENTAL 
WORK ON GRANULAR FLOW 

The following basic properties of dense granular flows 
are expected to have relevance to avalanche-dynamics 
models and they form part of the basis for the simple 
theory developed in this paper. In what follows, the symbol 
v is used to denote the volume fraction filled by solid 
material in the flow . 
(I) Shear and normal forces are strongly coupled throughout 
the flow (including the basal region); the local ratio of 
shear to normal forces , J.L, may be used to characterize 
either the basal or internal friction (Hanes and Inman , 
1985a, b). 
(2) Conditions at the base of the flow depend crucially on 
the boundary conditions. If slip occurs at the boundary, 
such as for a hard, smooth surface, a region of low v and 
high granular temperature can develop there. For a 
completely rough surface, this effect disappears (Camp bell 
and Brennen, 1985b). 
(3) For simple shear, dynamic friction (J.L) increases as v 
decreases (in contrast to static friction); v decreases as the 
rate of shearing increases (Campbell and Brennen, 1983; 
Hanes and Inman, 1985b). 
(4) When v approaches a high limiting value, rubbing 
friction enters and the friction increases rapidly toward a 
high static value. 
(5) For chute flows, locking commences when the slope 
angle decreases to some low value; locking occurs first in 
the upper part of the flow, leaving a rapidly deforming 
region at the base (Campbell and Brennen, 1985a). 
(6) As the coefficient of restitution of the particles 
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decreases, the velocity profile of the flow becomes blunt 
and the flow is plug-like. Values of solid fraction at the 
sliding boundary increase as the coefficient of restitution 
there decreases; there is less dilation of the flow at low 
coefficients of restitution (Campbell and Brennan, 1985a). 
(7) As the overburden increases, the rate of basal shearing 
decreases and v increases there; this implies dynamic 
friction decreases with increasing overburden (Dent, 1986). 
If the overburden is kept constant but flow height is 
varied, no change in conditions at the basal boundary is 
predicted for simple shear flows (Campbell and Brennen , 
1983). 
(8) For chute flows with slip at the boundary, higher slope 
angles imply v is lower near the boundary than in the 
interior of the flow . This should produce a high effective 
d ynamic friction coefficient at the boundary to counter­
balance the increased driving shear stress at high slope 
angles (Camp bell and Brennen, 1985a). 
(9) When a rapidly sheared granular mass contains particles 
of different sizes, the smaller particles tend to percolate to 
the bottom and the larger particles are forced upward. 
Computer simulations indicate that this effect occurs during 
the initial stages of the flow when the mass has traversed a 
short distance down-slope (Walton, 1983). Since the shearing 
deformation will be most vigorous at the base of the flow , 
if slip occurs the destructive collisions which are expec ted 
for fl ow ing snow can enhance the effect to make it even 
more likely to find small particles at the base of the flow . 
(10) Laboratory shearing experiments on granular materials 
show that slip at the boundary is almost inevitable. A 
completely rough (no-slip) condition is difficult to achieve. 

APPENDIX B 

CONTINUUM DERIVATION 

Consider the motion of an avalanche modelled as a 
continuous body along a curved incline with local radius of 
curvature r (positive for concave shape) (Fig. 9). Similar to 
the Cartesian continuum description of Savage and Hutter 
( 1989), a simple curvilinear coordinate system for in-plane 
motion is defined (coordinates ~ tangential and n 
perpendicular to the incline). With this system, if et and en 
are un it vectors in the ~ and n directions, the following 
definitions hold for motions in the en plane: 

o. (B I) 

Fig. 2. Definition of a simple curvilinear coordinate system. 
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The equations of motion and mass conservation are: 

dv ~ 
p- + V·a = pg 

dt 

ap 
+ " . (pv) = 0 

at 

(B2) 

(B3) 

whe re p is density, v IS velocity, g is acceleration due to 
grav ity, and t is time . In Equation (3), u is the pressure 
te nso r for the moving mater ial. 

In applying Equations (82) and (B3), the avalanche 
mass is ass umed constant (entrainment and deposition effects 
are exc luded) . The flowi ng mass is assumed to obey the 
equations of granular flow, but time and spatial variations 
of d e ns ity and deformation are ultimate ly ignored . Since 
there are no density measurements in flowing avalanches, I 
will no t a tte mpt to model spatia l variations of density in 
my mode l. 

Let the velocity components be taken as (u,v) tangential 
and normal to the slope, and 1/1 be the slope angle. Similar 
to Savage and Hutter (1989), scaling for the variables can 
be introd uced to make Equations (B2) and (B3) 
dimensionless. If La is horizontal length of the mass and Ho 
is mean flow depth , transformations can be defined for 
non-dimensional variables (*). 

(Cn,r) ~ (Lo~*' Hon* , Lor*), 

(u,v,t) ~ «gLo)tu*, (HoILo)(gLo)tv*, (Lo/ g)tt*) . (B4) 

By expanding Equations (82) and (B3) into equations to 
describe in-plane motion , they may be re-written in 
no n-d im e nsional variables and the ratio = Ho/ Lo' 
Observations and data from large dry-s now avalanche 
motio n studies show that over the entire range of motion E 

is a sma ll numbe r. Typically, for large avalanches La is in 
th e orde r o f 100 m, whereas Ho is in the order of I m a nd 
E is less than 0.0 I. Accordingly, after ex panding Equations 
(5) a nd (6) , it is assumed that E « I (terms multiplied by 

are ig nored) . When transformed back to ordinary 
variab les, the expanded equations become: 

[
au av auJ 

p a; + uaz + v an = pgs in 1/1 

- pgcos 1/1 

ap apu 
+ 

at a~ 

apv 
+ an - O. 

aO'~n 

an 

(BS) 

(B6) 

A t present, there is not enough information to calculate 
how the geometry of a flowing mass of avalanche snow 
changes in space or time or how density varies within the 
flo wing mass without introducing uncertain assumptions. 
The refore, the simples t assumptions are now applied to 
Equations (8S) and (86): p = p(n ,t) and h = h(t) where h is 
flow height (longitudinal variations in density are not 
conside red and the mass of snow is taken to have 
rectangular shape). 

Following Savage and Hutter (1989), Equations (8) and 
(9) are d epth-averaged . Ass uming zero normal force at the 
upper surface (defined by n = h), the second of Equation 
(B5) becomes: 

h 

J aUnn h 
--dn O'nn(~ ,O,t) pghcos tP + -id 

an r 
(B7) 

0 

where depth-averaged quantities are defined by: 

p (B8) 

McClwlg : Model f or scaling avalanche speeds 

Similarly, mass conservation becomes: 

aph B(PU) 
+ h--

at a~ 
O. (B9) 

The upper surface of the flow is defined by F = 
h(t) - n. From Batchelor (1967) and Savage and Hutter 
(1989), the total derivative, DF / Dt == 0; this implies 
dh / dl = v(h,I). With Equation (B9), depth-averaging gives a 
relation f o r the fir st expressio n in Equation (BS): 

a(puh) + h~ p;; 
at a~ 

pghsin 1/1 + u~n(CO , t) - O'~n(Ch,t). 

(BIO) 

For either a dense granular flow, a sliding block , or a 
locked mass, the shear and normal forces at the lower 
boundary are strongly coupled and therefore a Coulomb-like 
sliding relation is assumed to be appropriate at the bed . All 
theoretical and experimental work on dense granular flows 
supports this approximation. With longitudinal stress 
va riatio ns ave raged , the appropriate expression is: 

U~ n(O,I) = -O'nn(O,t)tan ct>(O,t) (BII) 

where tan cP is a (mean) local dynamic friction angle. Values 
of cp will change with volume fraction, rate of deformation 
(avalanche speed), mate rial properties, and the overburden. 
From numerical studies (Campbell and Brennen, 1985a) , the 
vo lume fraction and rate deformation at the base of the 
fl ow a re ex pected to vary s ignificantly with slope angle and 
boundary conditions. 

For s implicity and due to lack of knowledge about 
longitudinal va riations of material properties and boundary 
conditions, down-slope gradients within the flowing snow 
are ignored. Usi ng Equation (8 11) with longitudinal 
variat io ns of material prope rties and boundary conditions 
ignored , the d ynamic equations reduce to: 

ph = cons!. (812) 

and 

apuh 
at - pghs in 1/1 - tan CP(pghcos 1/1) 

pu2 

h(tan CP)- - O'~n(h ,t). 
r 

(BI3) 

Equation (B 12) gives a rough condition on flow height: 
as the flow height increases the depth-averaged density 
decreases. However, Equation (BI2) is not useful in 
enginee ring estimates because of the approximations intro­
duced. Lo ngitudinal spreading has to be dealt with to model 
the flow height of avalanches and this will require a 
desc riptio n of the internal deformation of the material in 
interaction with complex te rrain which is beyond the scope 
of this pa pe r. 

Equation (BI3) has two important drag terms arisi ng 
from boundar y friction: 

( I) The shear drag at the base of the flow is strongly 
coupled to the normal force through the dynamic friction 
angle (tan CP(O,t) which is now the mean value all along the 
length of the flow). 
(2) The drag at the upper surface of the flow O'~ n(h,1) is 
the mean value of the turbulent air/ dust drag at the top of 
the dense flowing core; this effective shear resistance is not 
taken to be coupled to a normal stress at the upper 
boundary in accordance with turbulence theory. 

From turbulence theory , the drag at the top of the 
flow may be approximated by: 

(BI4) 

where Pt is density of the air / dust drag at the top of the 
flow, and Ut is speed at the top of the flowing snow. The 
parameter Cf is a drag coefficient for turbulent flow over a 
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rough boundary appropriate for particles saltating on the 
upper surface of the flow in interaction with an air/ snow 
dust mixture moving at high speed. 

In order to simplify Equation (BI3) further, it is 
assumed that the velocity profile within the flow has a 
fairly blunt shape (u ~ Ut; see property (6) in Appendix 
A). The quantity u then becomes the transport speed of the 
avalanche (the bar is now dropped) along the incline. Since 
internal deformation is not accounted for, u may be 
interpreted as either center of mass speed or frontal speed 
since no attempt is made to differentiate between them in 
the model. Using the chain rule, with dS as an element of 
path length, Equation (BI3) may be written: 

where /L 

I du2 

2 dS 

tan ~S) , r 

(BlS) 

r(S), and 

/L +~[P~]Cf. 
r 2 P h 

The derivation here is similar to one given by Salm (1979) 
but there are important differences. 

MS . received 22 November 1988 and ill revised form 5 February 1990 

198 
https://doi.org/10.3189/S0022143000009436 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000009436

	Vol 36 Issue 123 page 188-198 - A model for scaling avalanche speeds - D.M. McClung

