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A note on the column–row property
Samya Kumar Ray and Srijan Sarkar

Abstract. In this article, we study the following question asked by Michael Hartz in a recent paper
(Every complete Pick space satisfies the column-row property, to appear in Acta Mathematica): which
operator spaces satisfy the column–row property? We provide a complete classification of the column–
row property (CRP) for noncommutative Lp-spaces over semifinite von Neumann algebras. We study
other relevant properties of operator spaces that are related to the CRP and discuss their existence and
nonexistence for various natural examples of operator spaces.

1 Introduction

In [24], while studying the Corona problem for Dirichlet spaces on the unit disk D,
the author discovered an important property involving the corresponding multiplier
algebra, which in recent times, is known as the column–row property (CRP). The
CRP has emerged as an important tool in extending classical results on Hardy spaces
to complete Nevanlinna–Pick (cnp) spaces. In a remarkable recent work [8], Hartz
showed that every normalized cnp space has the CRP with constant 1. The notion
of CRP has led to a plethora of important results for cnp spaces, to name a few:
(a) factorization for weak-product spaces; (b) interpolating sequences; (c) Corona
problem, etc. (see [1, 2, 5, 8, 24]). Motivated by the inherent operator space structure
of multiplier algebras and the immense application of this property, Hartz asked the
following question in [8].

Question Which operator spaces satisfy the column–row property?

Our aim in this article is to initiate a study for this question in the general setting
of operator spaces, by looking at several examples. For the theory of operator spaces
and related important results, we refer to the excellent monographs [6, 13, 16]. Let us
begin with the description of CRP by considering a concrete operator space E ⊆ B(H).
For a sequence e ∶= (e1 , . . . , en) in E , we define the column operator Ce ∶H →Hn

by Ce(ζ) ∶= [e1(ζ), . . . , en(ζ)], ζ ∈H. Similarly, let us define the corresponding row
operator Re ∶Hn →H by Re([ζ1 , . . . , ζn]) ∶= ∑n

j=1 e j(ζ j).
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Definition 1.1 A concrete operator space E ⊆ B(H) is said to have the CRP if there
exists a constant C > 0 such that for any finite sequence e in E with ∥Ce∥H→Hn ≤ 1 we
have ∥Re∥Hn→H ≤ C .

We refer Ruan’s characterization (Theorem 3.1, [19]) for an equivalent condition
using matrix norms. In this article, we obtain the following characterization for CRP
for noncommutative Lp-spaces.

Theorem 1.1 Let M be a semifinite von Neumann algebra. Let 1 ≤ p ≠ 2 ≤ ∞. Then
Lp(M) has CRP if and only if M is subhomogeneous.

Moreover, we show that if Lp(M)has CRP with constant 1 for some p ∈ [1,∞)/{2},
thenMmust be an abelian von Neumann algebra. In the case of p = 2, it is well known
that L2(M) is an operator Hilbert space [16, p. 139] and any operator Hilbert space is
completely isometric to its opposite [16, Exercise 7.1, p. 146] (see also [7, Footnote 8, p.
246]). Moreover, using the description of the matricial norms, it is a straightforward
observation that any operator Hilbert space satisfies a stronger condition that is, the
column-matrix property (CMP) with constant 1 (see Lemma 2.3). We provide a short
explanation of this fact along with some related results just after Remark 3.5.

Note that Hartz proved a stronger result by showing that cnp spaces satisfy the
CMP [8, Corollary 3.6]. Motivated by these results, we study the CMP for operators
spaces via some naturally occurring examples. We also introduce the completely
bounded version of CRP and CMP. It was shown in [8, Section 5.1] that normalized
cnp spaces do not have completely bounded CRP with constant 1. However, it turns
out that no nontrivial operator space can have completely bounded CRP. We also
discuss CRP for many naturally occurring operator spaces including C∗-algebras.

Here, we would like to point out that the operator spaces we have mainly con-
sidered are self-adjoint. Thus, this situation is different from the study of the CRP of
multiplier algebras of rkHs, which are very much asymmetrical in nature. We thank
the anonymous reviewer for this remark. The main advantage that self-adjointness
brings into the problem is the concept of subhomogeneity. It allows us to form
a line of thought where if subhomogeneity fails then the operator space contains
certain matrix algebras, where we can study the CRP by means of computation of
norms. However, these computations are not straightforward and are obtained via
nontrivial estimate of the norm of certain matrix-valued rows and columns. The main
difficulty for establishing Theorem 1.1 lies in the fact that the operator space structure
of noncommutative Lp-spaces are difficult to work with. To overcome this difficulty,
we first compute the norm of a column with certain entries coming from S2 . Here, we
use the operator Hilbert space structure of S2 and the description of the norm given
by Pisier in [14]. Following this, we get an upper bound for the norm of the column
by using the method of complex interpolation. Then by exhibiting lower bounds of
the rows, we obtain the desired estimates for p > 2. The approach for the case of p < 2
differs in the following manner: here, we estimate norms of columns with entries from
S1. This is done using certain duality relationship between noncommutative vector
valued Lp-spaces which was developed by Pisier in [15].

Let us now briefly discuss the manner in which the rest of the article has been
organized. Section 2 contains the characterization of CRP for noncommutative
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Lp-spaces. In Section 3, we have studied CRP and CMP and their completely bounded
versions for some natural examples of operator spaces.

2 Column–row property for noncommutative Lp-spaces

We begin with some preliminaries of operator space theory. For various well-known
concepts related to the operator space theory, we refer to [6, 16].

Let E be an operator space equipped with a matricial norm structure (Mn(E),
∥.∥Mn(E))n≥1. Given x = [x i j]n

i , j=1 ∈ Mn(E), we denote the transpose map by t(x) ∶=
[x ji]n

i , j=1 . The transpose maps taking columns to rows or rows to columns are also
denoted by t. Sometimes, we also denote it by tn to specify the dimension of the spaces
under consideration. The opposite operator space, Eo p is defined to be the same space
as E, but with the following matricial norm: ∥[x i j]n

i , j=1∥Mn(Eo p) ∶= ∥[x ji]n
i , j=1∥Mn(E),

for all [x i j]n
i , j=1 ∈ Mn(Eo p). For an operator space E, we denote the conjugate operator

space by E. Any element x ∈ E corresponds to an element x ∈ E . We refer [16, Section
2.9] for the notion of conjugate operator space. Recall that a linear map u ∶ E → F
between operator spaces is called completely bounded if sup

n≥1
∥idMn ⊗ u∥Mn(E)→Mn(F) <

∞, where idE ∶ E → E is the identity map for any vector space E. In this case,
one denotes ∥u∥cb ∶= sup

n≥1
∥idMn ⊗ u∥Mn(E)→Mn(F). The map u is called a complete

isometry if idMn ⊗ u is an isometry for all n ≥ 1. The Hilbert space tensor product
of two Hilbert spaces H and K is denoted by H⊗2 K. Let A and B be C∗-algebras
with faithful representations πH and πK into B(H) and B(K), respectively. Note
that by natural identification πH(A) ⊗ πK(B) and hence A⊗ B can be identified as
a subalgebra of B(H ⊗2 K). The minimal tensor product of A and B is defined to
be the completion of the algebraic tensor product A⊗ B with norm borrowed from
B(H ⊗2 K) and is denoted by A⊗min B. It is well known that the C∗-algebra A⊗min B
thus obtained is independent of the representations πH and πK . We denote by In to
be the identity matrix in Mn . We need the following lemma.

Lemma 2.1 Let E be an operator space. Then E has CRP if and only if there exists a
constant C > 0 such that for all n ≥ 1, ∥tn ⊗ idE∥Mn ,1⊗̌E→M1,n⊗̌E ≤ C , where ⊗̌ denotes
the operator space injective tensor product.

Proof From [6, Corollary 8.1.3], we note that Mm ,n(E) = Mm ,n⊗̌E, where ⊗̌
denotes the operator space injective tensor product of operator spaces. ∎

If A is a C∗-algebra, then let us fix a faithful ∗-representation of A on B(H).
The canonical operator space structure on A is obtained by borrowing the matricial
structure from B(H), and we will be using this canonical structure in the sequel.
A C∗-algebra A is called n-subhomogeneous if all the irreducible representations
of A have dimensions at most n. A C∗-algebra is called subhomogeneous if it is n-
subhomogeneous for some n ∈ N. Given a von Neumann algebra (M, τ) with nor-
mal faithful semifinite trace τ, let Lp(M, τ) be the corresponding noncommutative
Lp-space for 0 < p < ∞. One denotes L∞(M) =M. When (M, τ) = (B(H), Tr)with
Tr being the natural trace on B(H), the corresponding noncommutative Lp-spaces
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are called the Schatten-p classes and are denoted by Sp(H) for 1 ≤ p < ∞. The space
S∞(H) is the space of all compact operators on H. These spaces are denoted by
Sp and Sn

p when H is �2 or �n
2 , respectively, for 1 ≤ p ≤ ∞. We often identify B(�n

2 )
with Mn . Note that if M is a von Neumann algebra with a normal faithful semifinite
trace τ, Mn(M) is again a von Neumann algebra equipped with the canonical
tensor trace Tr ⊗ τ. Indeed, we have a canonical identification of Mn(M) with the
von Neumann algebra Mn⊗M, where Mn⊗M is the von Neumann algebra tensor
product of Mn and M. Then Tr ⊗ τ(∑N

i=1 a i ⊗ x i) ∶= ∑N
i=1 Tr(a i)τ(x i) extends to a

normal faithful semifinite trace on Mn⊗M, where a i ∈ Mn and x i ∈M are positive
elements for all 1 ≤ i ≤ N and N ≥ 1. Equivalently, for any positive x ∈ Mn(M), we
have Tr ⊗ τ(x) = ∑n

i=1 τ(x i i). Equipped with the canonical operator space structures
(M∗ ,M) becomes an interpolation couple (see [7] and [16, Section 2.7 and Chapter
7]), where M∗ is the predual of M. We identify the predual M∗ with L1(M) via the
map ϕ ∶ L1(M) →M∗ as ϕ(y)(x) ∶= τ(x y) for all y ∈ L1(M) and x ∈M. Moreover,
L1(M) has a natural operator space structure induced by M∗ (see [16, p. 139]). We
have the following description of the operator space structure of Lp(M, τ) from the
convention established in [16]. For x ∈ Mn(Lp(M, τ)), we have, for all 1 ≤ p ≤ ∞,

∥x∥Mn(L p(M,τ)) = sup{∥axb∥L p(Mn(M)) ∶ ∥a∥S n
2p
≤ 1 ∥b∥S n

2p
≤ 1},(2.1)

where axb is the usual product of matrices. It follows from [15, Lemma 1.7]
that, for a map u ∶ Lp(M) → Lp(N), we have ∥u∥cb ,L p(M)→L p(N) = ∥idS n

p ⊗
u∥L p(Mn⊗M)→L p(Mn⊗N)

. Moreover, u is a complete isometry iff idS n
p ⊗ u is an isometry

for all n ≥ 1. We refer [21] for the general theory of von Neumann algebras along with
the notions of trace and tensor products of von Neumann algebras. We refer [17, 22]
for noncommutative Lp-spaces.

Remark 2.2. Note that the norm on Mn(Lp(M)) is very different from Lp(Mn⊗M)
as can be seen from our computations in the proof of Theorem 2.6.

We will now introduce a class of operator spaces which is important for this article.
Following [14, Theorem 1.1] (see also [16, Theorem 7.1]), we can give the following
definition of an operator Hilbert space denoted by OH(I).

Definition 2.1 For any index set I, there always exists an unique operator space
OH(I) (up to complete isometry) such that the following properties are satisfied:
(i) OH(I) is isometric to �2(I) as a Banach space.
(ii) The canonical identification between �2(I) and �2(I)∗ induces a complete

isometry from OH(I) to OH(I)∗.
This unique operator space OH(I) is known as the operator Hilbert space. Moreover,
if K is a Hilbert space and (Ti)i∈I is any orthonormal basis of OH(I), then for any
finitely supported family (x i)i∈I in B(K), we have that

∥∑
i∈I

x i ⊗ Ti∥
min

= ∥∑
i∈I

x i ⊗ x i∥
1
2

min
,

where ∥.∥min denotes the norm of minimal tensor product between C∗-algebras.
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Thus, for any [x i j]n
i , j=1 ∈ Mn(OH(I)), we have

∥[x i j]n
i , j=1∥Mn(OH(I))

= ∥[[⟨x i j , xk l ⟩]n
k , l=1]

n

i , j=1
∥

1
2

Mn2
(2.2)

(see, for instance, [7, Proposition 1] and [16, Exercise 7.5] for a proof). Since L2(M) is
completely isometrically isomorphic to an operator Hilbert space [16, p. 139] (also see
[16, p. 125]), we can describe the matricial structure of L2(M) by the same formula as
(2.2) for any [x i j]n

i , j=1 ∈ Mn(L2(M)) with the inner product ⟨x , y⟩ ∶= τ(x y∗) for all
x , y ∈ L2(M). It is well known that ∥idOH(I)∥cb ,OH(I)→OH(I)o p = 1 (see [7]). We state
the following lemma without giving the straightforward proof.

Lemma 2.3 Let a i ∈ OH(I), 1 ≤ i ≤ n. Then ∥[a1 . . . an]t∥Mn ,1(OH(I)) =

(∑n
i , j=1 ∣⟨a i , a j⟩∣2)

1
4

.

In the sequel, we shall frequently use the following block matrices for proving our
results.

An ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E11 E12 . . . E1n
0 0 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦n×n

; Bn ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E11 E21 . . . En1
0 0 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦n×n

.

Now, let us record a straightforward observation that will be useful in the sequel.

Lemma 2.4 Let 1 ≤ p < ∞. Then ∥An∥S n2
p
=
√

n and ∥Bn∥S n2
p
= n

1
p .

Lemma 2.5 Let y = [yk l ]n
k , l=1 ∈ Mn(Sn

∞) such that ∥y∥Mn(S n
∞)

≤ 1. Then, for all a ∈
Sn

2 with ∥a∥2 ≤ 1, we have
n
∑
l=1

∣
n
∑

j,k=1
a jk yk l

j1 ∣
2
≤ 1,

where yk l = [yk l
i j ]n

i , j=1 .

Proof Note that z = [z l k]n
l ,k=1 has norm ≤ 1, where z l k = y∗k l . For all 1 ≤ k ≤ n,

consider vk ∶= (v1k , . . . , vnk) ∈ �n
2 such that ∥v∥

�n2
2
≤ 1, where v ∶= (v1 , . . . , vn). Note

that we must have ∥zv∥2
�n2

2
≤ 1 as well. Hence, we get

n
∑
l=1

∥
n
∑
k=1

z l kvk∥
2
≤ 1.(2.3)

Note that z l kvk = (∑n
j=1 z l k

i j v jk)n
i=1, where z l k = [z l k

i j ]n
i , j=1. Therefore, we get∑n

k=1 z l kvk =
(∑n

k=1 ∑n
j=1 z l k

i j v jk)n
i=1. Thus, from equation 2.3, we obtain that

n
∑
l=1

n
∑
i=1

∣
n
∑
k=1

n
∑
j=1

z l k
i j v jk ∣

2
≤ 1.
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Fixing i = 1 in the above inequality, we get ∑n
l=1 ∣∑n

k=1 ∑n
j=1 z l k

1 j v jk ∣
2
≤ 1. Rewriting

we get ∑n
l=1 ∣∑n

k=1 ∑n
j=1 yk l

j1 v jk ∣
2
≤ 1. Putting v jk = a jk for 1 ≤ j, k ≤ n, we obtain the

desired inequality. ∎

Lemma 2.6 Let 1 ≤ p ≠ 2 ≤ ∞. Then ∥tn ⊗ idS n
p ∥Mn ,1⊗̌S n

p→M1,n⊗̌S n
p
≥ n

∣p−2∣
2p .

Proof Let us fix 2 < p < ∞ and consider An ∈ Mn(Sn
p). Then by choosing

a = E11; b = n−
1

2p In ,(2.4)

in the formula (2.1), we have the estimate ∥An∥Mn(S n
p)
≥ ∥aAnb∥L p(Mn(B(�n

2 )))
. By this

and Lemma 2.4, we obtain that ∥An∥Mn(S n
p)
≥ n−

1
2p ∥An∥S n2

p
= n

1
2−

1
2p = n

1
2p′ , where 1

p +
1
p′ = 1.

Now, we shall estimate ∥t(An)∥Mn(S n
p)

. We know that ∥t(An)∥Mn(B(�n
2 ))

= 1. We
start with calculating ∥t(An)∥Mn(S n

2 )
. Note that the operator space structure of Sn

2
agrees with the operator Hilbert space structure [7]. Therefore, by [16, Theorem 7.1]
and Lemma 2.3, we get

∥t(An)∥Mn(S n
2 )

=
⎛
⎝

n
∑
i=1

n
∑
j=1

∣⟨E1i , E1 j⟩∣2
⎞
⎠

1
4

=
⎛
⎝

n
∑
i=1

∣⟨E1i , E1i⟩∣2
⎞
⎠

1
4

= n
1
4 .(2.5)

Now, we shall use the method of complex interpolation (for reference, see [3, Chapter
4, p. 87] and [16, Section 2.7, p. 52]). Consider θ ∈ (0, 1) be such that 1

p = θ
2 + 0. Thus,

we get

∥t(An)∥Mn(S n
p)
≤ (n

1
4 )

2
p = n

1
2p .

Hence, we obtain the estimate

∥An∥
∥t(An)∥

≥ n
1

2p′

n
1

2p
= n

p−2
2p .

Now, we will study the case for p ∈ [1, 2), for which let us consider Bn ∈ Mn(Sn
p).

Note that by choosing a and b as in (2.4) in the formula (2.1), we have the estimate
∥Bn∥Mn(S n

p)
≥ ∥aBnb∥L p(Mn(B(�n

2 )))
= n

1
2p . Now, let us estimate ∥t(Bn)∥Mn(S n

p)
. To

do this, we use the method of complex interpolation again. It is easy to see that
∥t(Bn)∥Mn(S n

1 )
= ∥An∥Mn(S n

1 )
. For the sake of computation, let us denote the latter

block matrix by z ∶= (z i j)n
i , j=1, that is, z1i = E1i fo 1 ≤ i ≤ n and z i j = 0 for i ≥ 2.

Now, we will estimate ∥z∥Mn(S n
1 )

. Following the method of [15, Lemma 1.7], we get
that ∥z∥Mn[S n

1 ]
= sup{∥a ⋅ [z i j] ⋅ b∥S n

1 [S n
1 ]
∶ a, b ∈ Sn

2 , ∥a∥S n
2
, ∥b∥S n

2
≤ 1}. Using the fact,

Mn[Sn
1 ]∗ = Sn

1 [Sn
∞] and [15, Theorem 1.5], we observe that

∥z∥Mn(S n
1 )

= sup{∣⟨[z i j], a ⋅ [y i j] ⋅ b⟩∣ ∶ a, b ∈ Sn
2 , ∥a∥S n

2
, ∥b∥S n

2
, ∥[y i j]∥Mn[S n

∞]
≤ 1} .
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Now, a ⋅ [y i j] ⋅ b = a ⋅ [∑n
l=1 y i l b l j]n

i , j=1 = [∑n
k=1 a i k(∑n

l=1 yk l b l j)]n
i , j=1 = [∑n

k , l=1 a i k
yk l b l j]n

i , j=1. By definition,

⟨[z i j], a ⋅ [y i j] ⋅ b⟩ =
n
∑

i , j=1
⟨z i j ,

n
∑

l ,k=1
a jk yk l b l i⟩ =

n
∑

i , j,k , l=1
a jk⟨z i j , yk l ⟩b l i .

Hence,

∥z∥Mn(S n
1 )

= sup
⎧⎪⎪⎨⎪⎪⎩

444444444444

n
∑

i , j,k , l=1
a jk⟨z i j , yk l ⟩b l i

444444444444
∶ a, b ∈ Sn

2 , ∥a∥S n
2
, ∥b∥S n

2
, ∥[y i j]∥Mn[S n

∞]
≤ 1

⎫⎪⎪⎬⎪⎪⎭
.

Therefore, from the definition of z, we get

∥z∥Mn(S n
1 )

= sup
⎧⎪⎪⎨⎪⎪⎩

444444444444

n
∑

j,k , l=1
a jk⟨E1 j , yk l ⟩b l 1

444444444444
∶ a, b ∈ Sn

2 , ∥a∥S n
2
, ∥b∥S n

2
, ∥[y i j]∥Mn[S n

∞]
≤ 1

⎫⎪⎪⎬⎪⎪⎭
.

Now, ⟨E1 j , yk l ⟩ = yk l
j1 , where yk l = [yk l

i j ]n
i , j=1 and, therefore,

∥z∥Mn(S n
1 )

= sup
⎧⎪⎪⎨⎪⎪⎩

444444444444

n
∑

j,k , l=1
a jk yk l

j1 b l 1

444444444444
∶ a, b ∈ Sn

2 , ∥a∥S n
2
, ∥b∥S n

2
, ∥[y i j]∥Mn[S n

∞]
≤ 1

⎫⎪⎪⎬⎪⎪⎭

= sup

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜
⎝

n
∑
l=1

444444444444

n
∑

j,k=1
a jk yk l

j1

444444444444

2⎞
⎟
⎠

1
2

∶ a ∈ Sn
2 , ∥a∥S n

2
, ∥[y i j]∥Mn[S n

∞]
≤ 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

where the last equality is obtained by taking supremum over ∥b∥S n
2
≤ 1. Now using

Lemma 2.5, we obtain ∥z∥Mn[S n
1 ]
≤ 1 and thus, ∥t(Bn)∥Mn[S n

1 ]
≤ 1. If we do computa-

tions in a manner similar to condition (2.5), we get ∥t(Bn)∥Mn[S n
2 ]
= n 1

4 . Therefore,
by the method of complex interpolation, we get ∥t(Bn)∥Mn[S n

p]
≤ n

1
2p′ (1 ≤ p < 2).

Thus, by combining all the facts obtained above for any p ∈ [1, 2), we get

∥Bn∥
∥t(Bn)∥

≥ n
1

2p

n
1

2p′
= n

2−p
2p .(2.6)

This completes the proof. ∎

Remark 2.7. Let 1 ≤ p ≠ 2 ≤ ∞. In view of [11, Lemma 5.3] and Lemma 2.6, we have
the estimate n

∣p−2∣
2p ≤ ∥tn ⊗ idS n

p ∥Mn ,1⊗̌S n
p→M1,n⊗̌S n

p
≤ n

∣p−2∣
p . We believe that the lower

bound is actually sharp.

Remark 2.8. Let E be an operator space. Then we have the following general
estimate:

∥tn ⊗ idE∥Mn ,1⊗̌E→M1,n⊗̌E ≤ ∥tn ⊗ idE∥cb ,Mn ,1⊗̌E→M1,n⊗̌E

≤ ∥tn∥cb ,Mn ,1→M1,n∥idE∥cb ,E→E ≤
√

n.

In the above, we have used the estimate ∥tn∥cb ,Mn ,1→M1,n =
√

n (see [16, p. 22]).
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We are now ready to prove Theorem 1.1 in the following manner.

Proof See Theorem 3.3 for p = ∞. Let p ≠ ∞. Let M be subhomogeneous. Then it
follows from [10, Lemma 4.4] that Lp(M) has CRP. For the converse, let us assume
that M is not subhomogeneous. Then by [10, Lemma 2.1] it follows that, for all n ≥ 1,
there is a complete isometry from Sn

p into Lp(M). Hence, by Lemma 2.6 and Lemma
2.1, Lp(M) cannot have CRP for p ≠ 2. This completes the proof of the theorem. ∎

Proposition 2.9 Let M be a semifinite von Neumann algebra. Let 1 ≤ p ≠ 2 ≤ ∞. If
Lp(M) has CRP with constant 1 then M must be an abelian von Neumann algebra.

Proof See Theorem 3.3 for p = ∞. Note that by Theorem 1.1, it follows that M must
be subhomogeneous. By [10, Lemma 2.1] if M is not subhomogeneous of degree 1, it
contains S2

p completely isometrically. Therefore, by Lemma 2.6, we have the estimate

∥tn ⊗ idS2
p
∥M2,1⊗̌S2

p→M1,2⊗̌S n
p
≥ 2

∣p−2∣
2p > 1. This shows that M must be subhomogeneous

of degree 1. Hence, by [20, Theorem 7.1.1], we get that M is an abelian von Neumann
algebra. ∎

3 Column–row property for other operator spaces

We shall now study the completely bounded versions of the notions CRP and CMP.
To state our result, we introduce the following definitions.

Definition 3.1 Let E be an operator space. We say E has the CMP if there exists a
constant C > 0 such that, for all n ∈ N and [x i j]n

i , j=1 ∈ Mn(E), we have

∥[x i j]n
i , j=1∥Mn(E) ≤ C∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11
⋮

xn1
⋮

xnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥Mn(E) .

Definition 3.2 Let E be an operator space. E is said to satisfy the completely bounded
CRP if there exists a constant C > 0 such that, for all n ≥ 1, we have

∥[x1 . . . xn]t ↦ [x1 . . . xn]∥cb ,Mn ,1(E)→M1,n(E) < C .

We now show that there is no nontrivial operator space with the completely
bounded CRP.

Proposition 3.1 Let E be an operator space which is not equal to the zero vector space.
Then E does not have the completely bounded CRP.

Proof Let e ∈ E be such that ∥e∥ = 1. Then it follows from the property of the
operator space injective tensor product [6, p. 142] that the map in ∶ Mn ,1 → Mn ,1⊗̌E
given by x ↦ x ⊗ e is a complete isometry. Also tn(x ⊗ e) = tn(x) ⊗ e for all x ∈ Mn ,1 .
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We have ∥tn∥cb ,Mn ,1⊗̌E→M1,n⊗̌E ≥ supN≥1,[x i j]N
i , j=1≠0

∥[tn(x i j)]
N
i , j=1∥MN (M1,n)

∥[x i j]N
i , j=1∥MN (Mn ,1)

=
√

n. The last
estimate in the above inequality follows from [16, p. 22]. This shows that E does not
have completely bounded CRP. This completes the proof of the theorem. ∎

We present a characterization of CRP for C∗-algebras. First, we need the following
lemma.

Lemma 3.2 Let E be an operator space. Then E has CRP iff E∗∗ has CRP.

Proof Note that if E∗∗ has CRP, then E has CRP follows from the fact that the
natural inclusion of E inside E∗∗ is a complete isometry [6, Proposition 3.2.1]. To prove
the converse, note by the duality between the projective and injective tensor product
of operator spaces (see [16, Theorem 4.1]) and the fact that M∗n ,1 = M1,n completely
isometrically (see [16, Exercise 2.3.5]), we have ∥tn ⊗ idE∗∗∥Mn ,1⊗̌E∗∗→M1,n⊗̌E∗∗ = ∥tn ⊗
idE∥Mn ,1⊗̌E→M1,n⊗̌E . The proof follows by using Lemma 2.1. ∎

Theorem 3.3 Let A be a C∗-algebra. Then A has CRP iff A is subhomogeneous.
Moreover, A has CRP with constant 1 iff A is abelian.

Proof One direction follows from [18]. Note that if A has CRP, then by Lemma 3.2,
A∗∗ is a von Neumann algebra which has CRP. However, it is folklore that if A∗∗ is not
subhomogeneous then it contains Mn for all n ≥ 1. We get a contradiction by looking
at An and Bn defined in Section 2. ∎

Remark 3.4. One can also have the following alternative approach. Recall that the
Haagerup tensor product norm on the algebraic tensor product is defined by

∥z∥h ∶= inf
⎧⎪⎪⎨⎪⎪⎩
∥

n
∑
i=1

x i x∗i ∥
1
2 ∥

n
∑
i=1

y∗i y i∥
1
2

∶ z =
n
∑
i=1

x i ⊗ y i

⎫⎪⎪⎬⎪⎪⎭
(z ∈ A⊗ A).

Let us consider inv ∶ A⊗ A → A⊗ A, defined on the elementary tensors by inv(x ⊗
y) ∶= x∗ ⊗ y∗ . If A has CRP it follows that for some C > 0 and for all z ∈ A⊗ A,
∥inv(z)∥ ≤ C∥z∥. The result follows from [9, Part (iii) Theorem 2.2.]. If C = 1, then
A is abelian follows from [9, Theorem 2.3].

Remark 3.5. Operator spaces for which ∥idE∥cb ,E→Eo p = 1, have been studied for
C∗-algebras and operator algebras in [4, 12].

The following list summarizes the results which establishes CRP and other related
properties for some well-known examples of operator spaces. Checking the properties
are easy in the most of the cases and some of it maybe present in the literature.
• MIN(E), MAX(E), and Lp(Ω), for 1 ≤ p ≤ ∞, have CRP with constant 1, where

MIN(E) and MAX(E) denote the so called minimal and maximal quantization of
a Banach space E. For MIN(E) and MAX(E), this follows from their definitions.
By duality and interpolation one sees that the result for Lp(Ω) follows from com-
plex interpolation. Moreover, MIN(E) has CMP with constant 1. This is because
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MIN(E) embeds completely isometrically into C(K) for some compact Hausdroff
topological space K [6, Proposition 3.3.1] and for all [ f i j]n

i , j=1 ∈ Mn(C(K)), we have
sups∈K ∥[ f i j(s)]∥o p ≤ sups∈K(∑

n
i , j=1 ∣ f i j(s)∣2)1/2 .

• The operator Hilbert space over the indexing set I, denoted by OH(I), have CMP
with constant 1, which further implies that S2 (the class of Hilbert–Schmidt oper-
ators on �2) and, more generally, L2(M) have this property as well with constant 1,
where M is a semifinite von Neumann algebra. Note that, by the description of the
norm of OH(I), we have the formula

∥[x i j]n
i , j=1∥Mn(OH(I)) = ∥[[⟨x i j , xk l ⟩]n

k , l=1]
n
i , j=1∥

1
2
Mn2

.

From Lemma 2.3, we get ∥[a1 . . . an]t∥Mn ,1(OH(I)) = (∑n
i , j=1 ∣⟨a i , a j⟩∣2)

1
4 , and thus,

we get the trivial inequality

∥[x i j]n
i , j=1∥Mn(OH(I)) ≤

⎛
⎝

n
∑

i , j=1

n
∑

k , l=1
∣⟨x i j , xk l ⟩∣2

⎞
⎠

1
2

.

• The column Hilbert space C has the CRP with constant 1. The row Hilbert space
does not have the CRP.

4 Concluding remarks

In the literature, there are several important studies on properties which have a
certain resemblance to CRP. An operator space is called symmetric if it is completely
isometric to its opposite [4] via the identity map. Okayusu [12] showed that a
C∗-algebra is symmetric if and only if it is commutative. Thus Theorem 3.3, can
be considered as a generalization of the aforementioned result. Using Okayusu’s
characterization, Tomiyama [23] studied the positivity of the transpose map on C∗-
algebras. Furthermore, Blecher [4] extended Okayusu’s result and showed that any
unital operator algebra which is symmetric must be commutative. We refer the reader
to [18] for some related results. Our characterizations on Lp-spaces with CRP can
be observed as a contribution toward results belonging to the theme of the above
direction. Moreover, estimates on the completely bounded norm of the transpose
maps on noncommutative Lp-spaces were crucial in the recent work of Le Merdy
and Zadeh for studying separating maps on noncommutative Lp-spaces (see [10, 11]).
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