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A bilinear transformation

By G. N. WATSON.

1. Introduction.

The problem which I enunciate and solve in this paper seems to
have originated in the study of properties of polyhedral functions.
I t is a problem of elementary analytical geometry of three dimensions,
and the solution which I give, though somewhat tedious, is both
elementary and direct. There are several comments which I have
to make about current solutions, but I reserve these until the end of
the paper since they will be more easily appreciated when it is
possible to compare the current solutions with my solution.

Complex numbers are represented on an Argand diagram. The
plane of the diagram is in contact with a Neumann sphere, the point
of contact S being the origin in the Argand diagram. The centre
and the radius of the sphere are O and a; we regard S as the south
pole of the sphere, the north pole being N. We take Ox, Oy, ON as
axes of reference, Ox and Oy being parallel to the real and imaginary
axes in the Argand diagram. A fixed point A is taken on the sphere
and, referred to these axes, the direction cosines of OA are denoted
by (I, m, n).

A (variable) complex number w is represented by a point P in
the Argand diagram; we take Q to be that point of the sphere whose
stereographic projection from N on the plane of the diagram is P.
We define Q' as the point to which Q is carried by the rotation of the
plane OAQ about OA through a constant angle a; it is naturally
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2 G. N. WATSON

supposed that rotation about OA is taken to be positive when it is
of the same screw nature as rotation from Ox to Oy about ON. The
stereographic projection of Q' from N on the Argand diagram is P',
and w' is the complex number represented by P'.

The problem which I propose is the determination of the simplest
form of the relation which connects the complex numbers w and w'.
I anticipate the working of my solution of the problem by stating
that the relation in question is

vow' (I — im) sin |a — 2aw' (n sin \a + i cos -2a)
— 2aw (n sin \a — i cos \a) — 4a* (I + im) sin £a = 0.

2. The solution of the rotational problem.

As a preliminary step, we express the coordinates (xr, y', z') of Q'y
in terms of the coordinates (x, y, z) of Q, the axes in both cases being
Ox, Oy, ON.

We take an auxiliary set of axes (without change of origin) the
direction cosines of the new set referred to the old being (Zx, m1( nx),
(l3, m2, n2t), (I, m, n); it is supposed that the new set is a rectangular
system of the same screw nature as the old. For the sake of
uniformity, we temporarily write (Z3, m3, n3) in place of (/, m, n).

Let the coordinates of Q and Q' referred to the new set of axes
be (£, r], C) and (f', -q', £')• The standard transformation formulae are

£ = l1x + *hV + niz> x> = h

7] = lix+ m2y + n2z, y' == mt $' -f- m2 rj' + m£',

C = l3x + msy + nsz, z' — nx f +n2 r{ + n£,

while the formulae for rotation about the new third axis are

$\— g cos a — rj sin a, t] = £ sin a + rj cos a, £' = £.

When we express x' in terms of x, y, z from these formulae, we
find that

x' = {lt {lxx + mxy + %z) + lz (l2x + w2y + n2z)} cos a

nxz) — lx {l2x + m%y +«2z)} sin a

This formula can be simplified by means of standard relation*
connecting direction cosines, namely

+ l2Tn2 = —l3m3 = —Im, l1n1 + l%nt = — In,

— hms = — na= —n, l^^ — lxn2 = + m.
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The simplified form of the formula for x' and the corresponding
results for y' and z' are as follows:

x' = x cos a + I (1 — cos a) (Ix -f- my + nz) -(- (mz — ny) sin a,

y' — y cos a + m (1 — cos a) (Ix + my + nz) + (nx — Zz) sin a,

z' = 3 cos a + n (1 — cos a) (Ix + my + ?iz) + (ly — mx) sin a.

It is not surprising that these formulae should have found their
way into a Cambridge examination paper. In fact they formed part
of question 5 in the paper set on the afternoon of Tuesday, June 7,
1904, in the Trinity College May Examination. I do not know who
composed the paper, but the style of this question is much more
characteristic of R. A. Herman than of any of his colleagues at that
time. I have not seen the formulae in print elsewhere, but I can
attribute that to my lack of familiarity with text-books on analytical
geometry of three dimensions.

3. The formulce for stereographic projection.

The formulae connecting the coordinates of P and Q are fairly
well known, but I work them out for the sake of completeness. Take
the colatitude (north polar distance) and the longitude of Q to be 8
and <f>, so that ^ is the phase of w. With SP and SN as coordinate
axes, the coordinates of N, Q, P are (0, 2a), (a sin 6, a-{-a cos 0),
(j w j , 0), so that, since these points are collinear, we have

a sin 8 a (1 + cos 6) _
\w\ + 2a '

and hence immediately
2a sin 9

w = — -1 — CO8 0 '

w = 2aC* cot id = 2° <* + *) ;
a — z

similarly we have
_ 2a (x' + iy')

W ~ • ' a - V *

4. The relation connecting w with w.
As a preliminary to calculating w' in terms of w, we begin by

expressing x' 4- iy' and a — z' in terms of x, y, z and thence in terms
of 8 and <j>. The results of these calculations do not appear to be ex-
pressible in any simple way as functions of w; the explanation of this
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is that they contain a common factor which is not an analytic function
of w. Accordingly, when we have calculated x' + iy and a — 2'in
terms of x, y, 2, we proceed to factorise the results. For the most
part, it is simpler to work with x, y, z than with 6 and <f>, provided
that we make a discreet use of the formulas

** + 2/2 + z2 = <**> Z 2 + m 2 + n 2 = l.

After expressing a — 2' as a homogeneous quadratic function of
cos I a and sin \a, thus

a — z — (a — z) cos* \a + (a + 2) sin8 \a
— 2n (Ix + my + nz) sin* |a — 2 (ly — mx) sin \a cos \a,

we proceed to factorise the expression on the right by evaluating its
determinant. We have

(a — 2) {(a + z) — In (Ix + my + nz)} — (ly — mx)z

= (a2 — 22) (Z8 + TO2 + n2) — 2n(a — z) (Ix + my + nz) — (ly — mx)*
= (x* + y%) (I2 + m2) + w2 (a2 - z2) — 2n (a — 2) (Zz + my)

— 2n2z (a — 2) — (ly — mx)%

— (Ix + myf — 2n(a — 2) (fo; + my) + n*(a — z)*
= (Ix + my + nz —na)3.

The last expression shews that (a — 2') (a — 2) can be written in
the form of the product of the pair of factors

(a — 2) cos Ja — (ly — mx) sin \a ± i (Za; + my -\- nz — na) sin \a,

and hence we have

a — z'
= {cos |a — nt sin \a + (m -f-17) e** cot |0 sin £a}

a — 2

X {cos |a + wi sin Ja + (m — t7) e-'* cot \0 sin |a}.

We now turn to x' + iy'. Evidently

*' + »2/' = (* + iy) (cos* -Ja — sin8 |a) + 2 (Z +tm) (Ix + my + nz) sin8 | a
+ 2 {2 (TO — iZ) — n(y — ix)} sin |a cos ^a;

and the determinant of this quadratic function of cos \a and sin \a.
is equal to

— (x + iy)2 + 2 (Z + im) (x + iy) (Ix + my -f nz)
+ {z(l + im) - n (x + iy)}*

= (n* - 1) (* + t» 2 + 2 (Z + im) (x + iy) (Ix + my) + z2 (I + im)2

= (Z + im) (x + iy) {2 (Zx + my) -(I- im) (x + iy)} +z*(l + im)2

= (l + *m)2 (x8 + y8) + 28 (Z + im)* = a*(l + im)*.
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The last expression shews that (x' + iy') (x + iy) can be written
in the form of the product of the pair of factors

(x + iy) cos Ja + {z (m — il) — n(y — ix)} sin Ja IP a (m — il) sin \a,

•and hence we have

. = {cos la + ni sin \a — (m — «'Z) e~'* tan f0 sin fa}
* + *y

X {cos Ja + ni sin fa + (wi — t7)e~ '* cot 10 sin |a}.

The products which have now been obtained for
aJ=jL and XL±il
a — z x + iy

have in common their second factor

cos -|-o + ni sin |a -f (m — il)e~** cot |0 sin |o ,

so that by division we have

w' cos la + ni sin Ja — (m — il)e~'<l> tan ^ sin \a
w ~ cos Ja — ni sin | a + (m+t7)e~'* cot |& sin |a '

Hence

w' w (cos \a + MI sin |a) — 2a (m — il) sin -|a
2a "~ 2o (cos -̂ -a — ni sin \a) + w (m -{• il) sin | a '

This is the formula which expresses w in terms of w. When we
clear of fractions, we obtain the bilinear relation

ww' (I — im) sin fa — law' (n sin \a + i cos fa)

— 2a«; (n sin |a — i cos -ia) — 4a2 (/ + im) sin |a = 0.

This relation holds for all values of the constants and variables
with the customary convention that w' is " the point at infinity "
when w is equal to — la (cot \a — ni)j(m + il), provided that I and m
«re not both zero and that a is not an integral multiple of 2TT, with a
similar convention about w being " the point at infinity." The reader
should find no difficulty in examining how the relation simplifies in
the special cases (i) I = m = 0, n = ±_ 1, (ii) sin \a — 0.

The significance of the discarded factor

cos \a + ni sin Ja + (m — il) e~{* cot Id sin Ja,

is worth mention. ' When it vanishes, the conjugate expression, which
may be written in the form

w
cos \a — ni sin \a + («t + il) — sin £a

2(A
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must also vanish. This means that w' must be infinite, provided that
4± 1.

5. The self-corresponding points of the transformation.

We obtain the self-corresponding points of the transformation
by taking Q (and Q') to be either at A or at the point antipodal to A.
It is therefore evident that they are

2 l±Jm ol + im

2 a

1 - n ' 1 + v '
provided that n is not equal to ± 1 (in these exceptional cases, I and m
are both zero).

These considerations shew that the bilinear transformation can
be written in the alternative form

(1 + n) w + 2a (I + im) _ (1 + n) w + 2a (I + im)
(T — n)w' — 2a~(l + »»n) = (l — w)w — 2a (I + im)'

where K is the multiplier of the transformation. Substitute on the
left for w its value in terms of w; it is then found after some fairly
straightforward algebra that

Z = efa.
The bilinear transformation can consequently be written in the

alternative forms
(1 +n)w' + 2a (I + im) _ ia (1 + n)w+2a (I + im)
Jl—n)w' — 2ajr+~im) ~ e (T^~») w — Ya (I + im)'

w' + 2a(l + im)l(l + n) _ iaw + 2a(l + im)/(l + n)
w' — 2a{l+im)/(l — n) ~6 w — 2a {I + im)/(l — n)'

These forms of the bilinear transformation are of less value than
the form obtained in §4, since one is nugatory and the other is
meaningless in the special cases n == j - 1.

6. Conclusion.

There are two solutions of tbe problem which have come to my
notice. The older, given by Cayley (1), seems to me to be fundamen-
tally the same as mine, except that he makes use of a number of
formulse in the theory of rotations instead of formulae involving
direction cosines; his work, moreover, is partially in the nature of
a verification rather than a direct proof, and this enables him to
evade the introduction of a factor corresponding to the factor which
was discarded in §4. This factor seems to me to have its uses, because
it indicates that non-analytic functions are liable to obtrude them-
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selves incidentally in work about analytic functions. I mention also
that Cayley raises the question of specifj'ing signs of rotations only
to dismiss it.

The newer solution is due to Forsyth (2). This is on the lines
of the work of §5 supra. It appears to me to be divisible into three
parts, thus: (i) It is remarked that the representation of the P'-plane
on the P- plane is conformal, by reason of simple properties of stereo-
graphic projection. Hence w' is a monogenic function of w, and
conversely (a minor point is that due allowance has to be made for the
possibility of w' or w becoming infinite). Moreover the correspondence
connecting P' with P is (1, 1).

(ii) It is inferred that the monogeneity and (1,1) correspondence
obtained in (i) are sufficient to ensure that w' and w are connected
by a bilinear relation.

(iii) The self-corresponding points of the bilinear transformation
are obtained b}* elementary geometry (as in §5), and the multiplier K
is then determined by taking w (and therefore also w') to be " near "
a self-corresponding point. If the self-corresponding point is called
w0, then

K\=Mm
\w' — w0

\w — w0
arg K = lim arg w — w{

w — w.

and hence we have
| K | = 1, arg K = a.

It is not explained by Forsyth why the phase has to be + a and
not — a, nor does he explain why he takes w0 to be — 2a {l-\-im)j(l -\-n),
and not the other self-corresponding point; there is no difficulty in
verifying that each of the incorrect choices yields the same incorrect
result.

It is, of course, quite natural to use complex differentiation to
deal with (i) and (iii) near the end of a work on theory of functions,
even in the discussion of a problem of elementary geometry. The
proposition which is the subject of (ii) is probably regarded as
" obvious," this term being used to indicate that a really convincing
proof of the proposition is much too troublesome to construct.
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