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Periodic attractors as a result of diffusion
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Abstract. We present a dynamical system in R2 with a global point attractor but so
that two such systems, when coupled by linear diffusion, produce a system in U4

with no point attractors and yet with all solutions bounded in the positive time
direction.

1. Introduction
In 1952 an article by Turing appeared on the effects of diffusion between biological
cells, [6]. He was interested particularly in the question whether diffusion could
result in periodic behaviour. Unfortunately the examples of dynamical systems
presented in this paper are all linear and it is impossible to have periodic behaviour
in any structurally stable linear system.

Smale dealt with that problem in 1976 by giving a structurally stable example,
[5]. The structural stability implies that such oscillations persist under small perturba-
tions of the dynamic equations and hence that these oscillations are not exceptional.

Before stating the main result of this article we explain what is meant by diffusion
between cells. In this we essentially follow the ideas of Turing.

Take two cells whose evolutions are described by

x1 =/ '(*'), X 'ER" and i = l, 2.

Assume that these cells are identical, i.e. f1=f2=f. The variable x1 describes the
state of the ith cell, so if we think of a cell as a purely chemical system, the
components of x' may be the concentrations of the different chemicals. Coupling
of the two cells by a permeable membrane (see figure 1) will result in diffusion,
caused by differences in concentrations of the chemicals.

FIGURE 1
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320 /. Barkmeijer 

We assume that the diffusion is proportional to this difference. So for a particular 
chemical, the mass transport per unit time from cell 2 to cell 1 equals 

fjLk{x\-xl

k), w i t h / x f c > 0 . 

Coupling thus gives the following system, the so-called Rashevsky-Turing equations: 

with D = diag (/t , , • • • , /x„), /A, > 0. 
In general diffusion, as it occurs in ($), has a damping effect. Yet there are 

examples of the contrary, cf. [3] , [5]. 
In this article we shall show some new such examples. We point out that, although 

( t ) gives a realistic model for two cells with diffusion, we do not have, for any 
f:U" -»R" and D = diag (/x1, • • •, fi„), a pair of cells and a membrane whose 
dynamics and diffusion is described by (/, D). We construct examples of (f, D) 
with which ( t ) produces periodic dynamics; we do not touch the problem of actually 
making two interacting cells with periodic dynamics. 

In studying the system {X), we take the dynamics of an isolated cell to be simple 
(i.e. not giving rise to periodic dynamics): 
from now on we assume that / has a global point attractor, which we may assume 
to be 0 henceforth. This means that for every solution x(t) of x=f(x): 

Remark. The cells we thus consider are not already oscillating on their own. This 
is in contrast with other studies, cf. [2] , [4]. 

Nevertheless, even under this assumption, diffusion between two identical cells can 
lead to complex dynamics as we shall see. 

Consider the case that / in ($) is linear; so / is represented by a matrix A (one 
might also think of A as the linearization of / at 0). If the singularity 0 of / is not 
degenerate, which we assume in the following, then the eigenvalues of A all have 
negative real part. It will be shown that for a rightly chosen pair (A, D) the zero 
solution of {%) is unstable. Then at least 0 is not a point attractor of ($). However 
by destabilizing the zero solution, other point attractors might arise or the system 
($) could even have unbounded orbits. 

We only want to consider pairs (f, D) for which the corresponding system (t) 
satisfies: 

(PI) the system ($) has no point attractors. 
(P2) the orbits of ($) are bounded in the positive time direction. 

In the case n = 4, there is the example of Smale, cf. [3]. For his choice of (f, D) 
the system {%) has a global periodic attractor y: 

for almost every />elR8, the orbit xp(t) through p converges to y for ( ^ + o o and y 
is a closed orbit. 

One might ask whether similar examples exist with a lower dimension of phase 
space. In this article it will be shown that this is indeed true, even for n = 2. 

,2n 

x(t)^0 as t-> +oo. 
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We conclude this introduction with the simple proof that no such example exists
for n = 1. For let r(t) = (x(t), y(t) * (0,0)) be a solution of (%) in the case n = 1.
Then we have:

by assumption on / and /x. As the solution r was arbitrary, 0 is a global point
attractor of {%).

After completing the final version of this paper we became aware of another two
dimensional example, recently given by J.C. Alexander, [1].

Acknowledgement. I would like to express my gratitude to Prof. Floris Takens, who
suggested the problem and for the stimulating discussions we had during the
preparation of this article. Also thanks are due to the referee for giving many helpful
comments.

2. D-stability
In this section we take a closer look at the system:

D = diag (/*!,- • -,/in), /*,sO.
By assumption on /, 0 is a solution of ($). In order to satisfy (PI), 0 should not

be a point attractor. Linearizing ($) at 0 gives the following system:

with A = (D/)|0.
Using a linear transformation S,

sJ Id )
V-Id Id/

and consequently

S - I = l / Id - I d \

2\Id Id/

it easily follows that

0 A - 2 D

So we conclude o-(M) = cr{A)u<r(A-2D). Here a{M) denotes the set of eigen-
values of M.

We assumed that 0, the global attractor of/, is not degenerate. This means that
A = (D/)|0 satisfies

<r( A) c C" =f {z € C | Re z < 0}.

Definition 2.1. A n n x n matrix X, with o-(X)<= C~, is called D-stable if

a{A-D)c C", for every D = diag (/Uj,..., / O with / i ^ O .
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LEMMA 2.2. Every symmetric matrix A with o-(A)c C is D-stable.

Proof. Let A be a symmetric n x n matrix. For an arbitrary diffusion matrix D =
diag (/i!, • • •, fin), with AA, £ 0, also the matrix A — D is symmetric and consequently
cr(A-D)c:|R. Therefore it suffices to show that d e t ( A - D ) ^ 0 , for every nxn
diffusion matrix D. (If (A - D) has a positive eigenvalue then det (A - /AD) = 0 for
some / A € ( 0 , 1)).

Suppose det (A - D) = 0 for a certain diffusion matrix D. This would imply the
existence of a vector v ̂  0, so that Av = Dv. Then (AD, V) = {Dv, v) a 0, which gives
a contradiction, since v-^(Av, v) is a negative definite quadratic function. •

Remark A matrix which is not D-stable is called D-unstable.

So for a pair (f D) for which the system (t) satisfies (PI), it is necessary for (Df)\0

to be D-unstable.
Therefore we are going to characterize the D-stable 2x2- and 3 x 3 matrices. First

we need some notation. Let S, be the set whose elements are all subsets of { 1 , . . . , n}
with cardinality i. Here n is fixed. For o- = { a , , . . . , a,} s 1,, we shall denote by Aa

an (n — i) x (n — i) matrix obtained from an nxn matrix A by deleting the akth row
and column, k = 1, • • •, i.

The next identity can be easily checked:

(2.3) — d e t ( A - A I d ) | A = 0 = ' K - l ) 1 I detACT.

So by writing the characteristic polynomial of A in the form:

we have

(2.4) *, = ( - l ) ' I de tA, , i = 0 , . . . , n - l .

Before we formulate a proposition on D-stable matrices there are a few lemmas we
need.

L E M M A 2.5. Let A be an nxn matrix and < 7 e 2 , . If det ( A - D ) < 0 [ > 0 ] for every

n x n diffusion matrix D, then det (A^ — D ) > 0 [ s 0 ] for every (n — l ) x ( n —1) diffusion

matrix D.

Proof. We prove the lemma by contradiction. Let A be an n x n matrix with
det (A-D)< 0, for every nxn diffusion matrix D. Suppose that det (Aa - D) < 0,
for certain a- G XJ and D = diag (/Aj, • • •, ^n-i). Without loss of generality we may
assume that cr = {n}. Now let D(it) = diag(it!, • • •, /xn_,, ti), /A >0. In that case we
have

det ( A - D ( i i ) ) = const+fc(ann-/A), with k = det (ACT - D) < 0.

So for /A big enough det ( A - D ( A I ) ) > 0 . This is the required contradiction which
proves the lemma for det (A- D)<0. The proof in the other case is similar. •

L E M M A 2.6. Let A be an nxn matrix with o-(A) c c ~ , then for i = 0, • • • , n - 1 the

following holds:

< 0 , if n is odd

[ > 0 , if n is even.
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Proof. Let the set of n eigenvalues of A be given by {A,, • • •, An}. The A, are roots
of the characteristic equation of A, so

det (A-A Id)= f[ (A,-A).
i = l

We obtain, using the notation of above,

s, = {-lY I ACTl ACTn ,, with cr = {al,- • • , o-n_,}.

If all eigenvalues of A are real, then the conclusion of the lemma is obvious. Now
suppose that A has one pair (A, A) of complex eigenvalues. Then we determine the
sign of the sum above by combining the right terms ACTl ^an_,-

Terms containing both A and A are comparable with terms only consisting of
negative reals because A • A > 0. A term which contains A but not A, we combine
with the term in the sum which equals it, except that A is replaced by A. Adding
these two terms gives a term which is the product of negative reals. This finishes
the proof in the case of one pair of complex eigenvalues. If A has more complex
eigenvalues the proof is analogous. •

So for matrices B, satisfying the premisses of Lemma 2.5 and Lemma 2.6, either
det Bv is non-negative for every o-e'Li, i fixed, or det BCT is non-positive for all cr.
Further there is at least one o- e Xf for which det BCT differs from zero.

For a n n x n matrix X we introduce the following notation, as far as defined: let

l(X) = s g n ( « - l ) s i g n ( n - 2 ) - • • sgn (0),

where we write for sgn(i) + or — according to the following convention:

+ , if 3<7 e 2,with det X&>0 and further det A^sO, Vo- e l ,
sgn(«) is | Jf 3 ( ? € S w i t h d e t X < Q a n d f u r t h e r d e t

Combining the previous results we obtain:

- { .

PROPOSITION 2.7. Let A be a D-stable nxn matrix, then A satisfies the following
property:

—I— • • •+, ifn is even

,—I— • • • - , ifn is odd.

Proof. In the case n is even, lemma 2.6 implies:
s,>0 for i = 0, • • - , n - l .

By Lemma 2.5 we know that det ACT>0 (<0) if and only if i is even(odd), where
o- e £,. This together with (2.4) proves the proposition for n is even. The proof for
n odd is analogous. •

For n < 3 the property mentioned in Proposition 2.7 is even necessary and sufficient
for A with <r(A) c C~ to be D-stable. In the case n = 1 this is trivial; for n = 3 we
prove it below. The simpler proof for n = 2 is left to the reader.

PROPOSITION 2.8. If A is a 3x3 matrix with t(A) defined and
(i) <7(A)cC";

(ii) t{A) = —I—;
then A is D-stable.
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Proof. Let A satisfy the two properties mentioned in the proposition Write A* =

A- D(fi), with (j. = (/*,, /M2, M3) and /i,,>0. We need to prove that

(*) <r(AM)n imaginary axis = 0 , VJA.

Using t(A) = —I—, we get by straightforward calculation

d e t ( A M ) < d e t A < 0 , VAI.

Thus Og cr(A'i), for all /A = (fi1, (JL,2, AI3).

Now suppose that for certain /JL = s, the matrix As has a couple of purely imaginary
eigenvalues. Then the remaining real eigenvalue of As is tr A \ For an arbitrarily
chosen AI the eigenvalues of AM are the roots of the characteristic equation of AM:

0 = - A 3 + A2trAM-A I detA£ + detAM =f<J>"(A).
o-eS,

From o-(A) c C ' w e conclude that *°(tr A0) = 4>°(tr A) > 0. For if <*>°(tr A) < 0 then
the polynomial *° would have a zero on the interval (-00, t rA]. In that case <t>°
must also have a non-negative zero, because tr A equals the sum of the zeros of $°.
This contradicts the assumption cr(A)cC~.

Further we have

— <l>M(trAM)>0, i = l , 2 ,3 .
d/JLi

For instance, if we denote det A£ by Af, where a = {i}, then

* M ( A M ) ( t r A H I A
=— (-t

3/n \

This is because of the property t(A) = —h—, by which

A i ^ - a ^ X ) , k = 1,2,3.

Hence <I>M (tr AM) > 0, for every n = (/A,, /A2, ^3) with /A, &0. Here we reach a contra-
diction because 4>s(tr As) = 0. Therefore assertion (*) is true and the proposition is
proved. •

Conjecture. In the case n > 4 , the property from Proposition 2.7 is also necessary
and sufficient for A, with ( r ( A ) c C ' , to be D-stable.

Before we give an example of ($), satisfying (PI) and (P2), we state the next useful
lemma.

L E M M A 2.9. Let A be a D-stable nxn matrix and suppose there exists a constant

c > 0 such that f, occurring in ($), satisfies:

||Ax-/(x)||<c, forallxeW.

Then for every nxn diffusion matrix D, the system ($) has bounded orbits in the

positive time direction.

Proof. We study the system ($) for the pair (/, D) where D is an arbitrary diffusion
matrix. The vector field X associated with (t) can be written as:

X(x) = B(x)+C(x)= I b,jXj^-+ I Q(x)j-.
X X
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Here
A-D D

and the functions C{ are uniformly bounded. Because A is D- stable, there exists a
quadratic Lyapunov function i£, so that B(=Sf)<0 and B{SE) is quadratic. For this
function if,

and 8^/dXt is only linear. So for x with ||x|| sufficiently big, X(i?)(x)<0. This
gives the conclusion of the lemma. •

Remark. For every matrix B with cr(B) <= C~ there exists a set W of diffusion matrices
so that ff(B-2D)cC~ for DeW. Lemma 2.9 can obviously be reformulated for
such a matrix B, restricting the choice of D to the set W.

The following conditions on / are imposed to make the study of the dynamics of
($) easier:
We require tha t / is odd. Then A and Ax are invariant under the flow of (t), where
A and A"1" are given by:

We assume/to be injective as well, then the singularities of (t) are all contained
in A\

3. An example in dimension 2
We now show the existence of a dynamical system ($), see the introduction, on U4

which satisfies the properties (PI) and (P2):
(PI) the system ($) has no point attractors;
(P2) the orbits of ($) are bounded in the positive time direction.

The dynamical system / on R2 we shall take, describing the dynamics for each cell
apart, is quite simple. It is linear with a disturbance in a vertical strip around the
y-axis. More precisely, except for the vertical strip S = {(x, y) e U2\\x\ < 3},/is linear:

\y) V-4.1 4/W
with c = 4.1 +1 sin 3 = 4.29.

On the strip 5 the dynamics is given by

' x = — 4 sin x — 4.1 x + 8j>

[y = —4.1x + 4_v

With this choice / is odd and injective. Because the dynamics for the system (t)
appears to be persistent for this/ the example can be made C1 by perturbing/ a little.
Now / is fixed, it is only the appropriate diffusion matrix that further matters. For
the moment we take the diffusion matrix of the form

diag(A, 0) withA>0.
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We use Lemma 2.9 to conclude that for certain matrices of this form, the system
(*) satisfies (P2).

We have
||Ax-/(x)||<max|4sin f-ff sin3|, forallxeR2.

So | |Ax-/(x)| | is uniformly bounded on U2. As t r (A-2D)<0, it is not possible
for the 2x2 matrix A-2D to have two eigenvalues with non-negative real part.
Therefore <r(A-2D)cC~if and only if det (A-2D)>0, which is equivalent to

A<2.O5-f sin3 = A4=1.96.
So by Lemma 2.9:

the system ($) satisfies (P2) for 0< A <A4.

There remains property (PI). For that we take a look at the singularities of (t) with
A e [0, A4). In particular 0 is a singularity of {$) and

By Proposition 2.7 this matrix is D-unstable, so the zero solution of ($) can be
destabilized. For this it is necessary and sufficient that

det((D/) |0-2D)<0 which is equivalent to A>0.05 = A0.

So for the system ($) to satisfy (PI) and (P2), it is necessary that A e (Ao, A4) We
now check whether this condition is also sufficient.

As mentioned before / is odd, so Ax is invariant under the flow of (t). In Ax we
know of singularities of (t) different from 0, for A e (Ao, A4). This follows directly
from an index argument. To see this, assign to each singularity a number —1 or +1,
the so-called index, whose value depends on the character of the singularity. The
index of a saddle for instance is -1 and of an attractor +1. After we have chosen
a suitable neighbourhood of 0 in Ax, the sum of the indices of the singularities of
($) in this neighbourhood must remain +1, for A e [0, A4]. As the zero solution
destabilizes for A > Ao, the existence of singularities different from 0 follows for
A e (Ao, A4). In fact there are two extra singularities in Ax, as we shall see below.
Considering these as singularities of the flow on Ax, none of them is a saddle point.
We remark that in the following, we often drop the variable A for convenience.

Let A e (Ao, A4) and suppose z # 0 is a singularity of (t). Because / is odd and
injective, z is of the form (p, -p), with p a singularity of f—2D. So it suffices to
look for singularities p = (x, y) off-2D and because/is odd we may assume x> 0.
It is clear that for A e (Ao, A4) the singularities of f—2D are in the strip S.

We have that p = (x, y) is a singularity of /— 2D if and only if

(4.1-2A)x = 4sinx

This system of equations has a unique pair of solutions, (x, y) and (—x, —y) # (0,0)
depending on A, provided A e (Ao, A4). We conclude:
for Ae(A0,A4) there is a unique singularity (x(A),>>(A)) o f / - 2 D with x(A)>0.
The function A>-»x(A) is monotonically increasing.
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We next investigate whether for every A £ (Ao, A4), the pair of singularities different
from 0 are point attractors of ($). By symmetry we only have to care about one
singularity; we take the one with x =-0.

The eigenvalues of the linearized system at (p, -p) are given by a-(B) u a(B-2D)
with

For B we have d e t B > 0 and t r B = - 4 cos x - 0 . 1 . So

(3.2) tr B = 0 if and only if x = IT - arcos ^ = x,.

To x, corresponds a unique Kx e (Ao, A4) such that xt = x(A,), see above.
The eigenvalues of B, which depend on A, cross the imaginary axis with positive

speed at A = A, ==0.8:

So we can picture o-(B) as follows:

Ao = 0.05

FIGURE 2. Dependence of a-(B) on the variable A. Here the sign - or + corresponds to an eigenvalue
with negative or positive real part respectively.

By choosing a diffusion matrix with A e (A,, A4), we already achieve that none of
the stationary solutions of (X) is a point attractor.

MAIN RESULT. There exists a dynamical system f on U2 with a global point attractor,
so that for a properly chosen D, the system ($) has

(i) no point attractors;
(ii) bounded orbits in the positive time direction.

Moreover the system (t) is persistent, i.e. small perturbations of it, such as for
instance a system with a slightly different diffusion matrix, also have the two
properties mentioned above. Numerical observations give the existence of periodic
attractors for the system (t). For this see figure 7.

Of course we can exploit the dynamics of (t) further. Assume D is still of the
form diag (A, 0), AaO. For knowing the local dynamics of the singularities com-
pletely, we also have to look at o-(B-2D). The details of this analysis are given in
the appendix (§ I).
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It results in the following:

/. Barkmeijer

Ao = 0.05 A, =0.8 A3=1.9

FIGURE 3. Dependence of cr(B-2D) on the variable A.

Thus it is even possible to force the singularities different from 0 to be repellers:
just take A e (A2, A3).

Finally if D is of the form D = diag(A,/x) with A, / i > 0 , we get figure 4. For
details see the appendix (§ II).

Ao A, A3 A4

F I G U R E 4. Various areas in the A, ji-plane, all with different dynamics for (t). For each area the sign
of the real part of the eigenvalues of the linearized system at 0 and at one of the other singularities, if
these at least exist, are given beneath. The first two eigenvalues concern internal behaviour in A^, the
remaining pair normal behaviour. With the sign - or + corresponds an eigenvalue with negative or
positive real part respectively.

I: , 0 is the sole singularity of (I).
II: - + — , .

Ill: - + — , + + — .

V: —I , 0 is the sole singularity of ($) and there exist unbounded orbits in Ax.

In the last part of this section we give some details about the dynamics of ($) for
a pair (A, /u,) e IV (see figure 4). For such a pair the dynamics on A and Ax is simple.
On A we have / dynamics; all orbits spiral towards 0, see figure 5.
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- 6

-10 I I- I
-10 - 6 - 2 2 6 10

FIGURE 5. Dynamics of (t) on A.

And a sketch of the phase portrait on Ax is the following:

FIGURE 6. Dynamics of (t) on A^ for a pair (A, /a) e IV.

Even with this we do not yet know the complete dynamics of ($). However, we at
least know that the orbits are bounded in the positive time direction and point
attractors are absent. The system could have periodic behaviour: an attracting
periodic orbit, created at F, by Hopf bifurcation and which survived the stronger
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diffusion. Also the system might exhibit a strange attractor. In order to get more
information about the dynamics we did some numerical work. Therefore we took
a set of initial values in R4 not lying on A or Ax, and iterated these in forward time
direction. Then the orbits were projected orthogonally onto A and Ax. In figure 7
some parts of a projected orbit are shown.

(A)

3.00

1.80

0.60

-0.60

-1.80

-3.00 J_
-3.00 -1.80 -0.60 0.60 1.80 3.00

(B)
3.50 r

2.80

2.10

1.40

0.70

0.00
0.00 0.70 1.40 2.10 2.80 3.50

F I G U R E 7. Some projected parts of an orbit with initial value (5, 3, 0, 0) in the case D = diag (1.7, 0.005).
The plots (A) (C) and (E) are projections onto A and (B), (D) and (F) are projections onto A±.

(A) T = 0-9 (B) T = 0-15
(C) T = 30-35 (D) T = 30-35
(E) T= 110-115 (F) T= 110-112
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Notice the long stabilization time compared with the period of the closed orbit.
This is probably due to the weak character of the attractor. The system might be
close to a T2-bifurcation.

Other initial values gave at last the same two closed orbits, or by symmetry of
(t) the two orbits rotated 180° around 0 in A and Ax. Moreover different projections
showed also two closed orbits.

(C)

3.00

1.80

0.60

-0.60

-1.80

-3.00 I I
-3.00 -1.80 -0.60 0.60 1.80 3.00

(D)

2.60

2.34

2.08

1.82

1.56

1.30
1.30 1.56 1.82 2.08 2.34 2.60

FIGURE 7 (continued).
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(E)
3.00 r

1.80

0.60

-0.60

-1.80

-3.00 I I I I J
-3.00 -1.80 -0.60 0.60 1.80 3.00

(F)

2.50

2.30

2.10

1.90

1.70

1.50
1.50 1.70 1.90 2.10 2.30 2.50

FIGURE 7 (continued).

So there is numerical evidence of the existence of a periodic attractor for (t).
This result seems to hold for every (A, fi) between the arcs r , and T4.

4. Appendix
I. In this part we study a(B-2D). We assume D is of the form diag(A, 0), A>0.
Recall that B = (Df) \ p, with p a singularity of / - 2 D. Let p = (x, y) with 0 < x < 3,
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p depending on A. We have

tr (B)>tr (B-2D) = -4 cos x-0.1 -2A = -4 cos x-4.2+ S1" *
x

see (3.1). Define a function g on (0, 3) by
4 sin x

g(x) = -4 cos x - 4.2 H .
x

Regarding both singularities of (t) different from 0 as singularities of the flow on
Ax, none of them is a saddle point. So the zeros of g correspond with purely
imaginary eigenvalues of B-2D. We already know that g<0 on (0, x,), see (3.2).
The function <p with <p(x) = (sin x)/x is decreasing on (0, TT), SO for 3> x> xx > 0
we get

g(x) < 4<p(x,) - 4 cos x - 4.2 < -4 cos x -1.68
and consequently g<0 on (0,2). Repeating this procedure, we eventually obtain
g<0on (0,2.3].

The function g certainly has zeros on (0, 3). For instance g (2.7) > 0 and g (3) < 0.
In fact we have:
LEMMA 4.1. The function g has exactly two zeros on (0, 3).
Proof. It suffices to show that g' has at most one zero on (2.3, 3). Differentiating g
we get

4 cos x
g'(x) = — (fgx-x2fgx-x), xe(2.3, 3).

For zeros of g' on (2.3, 3) we only need to look at the expression between parentheses.
Define h by h{x) = tgx - x2 tgx - x. Then for xe (2.3, 3):

1-x2

h'{x)= 5 Ixtgx -1< 1 - x2 - 2xtgx - 1 = -x(x + 2fgx)<0,
cos x

because tg (2.3) > -1.12.
So h is monotonically decreasing on (2.3, 3) and thus g' has at most one zero on

(2.3,3). •

With the two zeros of g, which we denote by x2 and x3, correspond two unique and
different values for A, A2 = 1.62 and A3~ 1.91 respectively. This concludes the analysis
leading to figure 3.

II. We now take diffusion matrices of the form

diag (A, /J.) with A, /x > 0.

A diffusion matrix D destabilizes the zero solution of ($) if and only if

det((D/)|0-2D)<0, which is equivalent to 4A(/x, -2) + 0.4<0.

As the system ($) has to satisfy (PI) it follows that 0< fi <2.
Let Fo be the graph of y0, where

0.1
7O(M)=Z , 0</x<2,

2-/x
so yo(0) = Ao.
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For (A, fx) on the left of Fo, 0 is a point attractor of ($), and for (A, /x) on the
right the zero solution of ($) is unstable.

For the system (t) to have bounded orbits it is necessary and sufficient that

de t (A-2D)>0

which is equivalent to

(4A+2c)(/u-2) + 32.8>0, c = 4.1+|sin3.

Let F4 be the graph of y4, where

8 2 c1 0 2T , 0 / A < 2 .
2-fi 2

As the system ($), must satisfy (PI) and (P2) we thus necessarily have to choose
(A, /x) between the arcs Fo and F4. Choosing (A, /x) in that way gives rise to a pair
of singularities besides 0. For if we take D = diag (A, /*), then p = (x,y)^0 is a
singularity of /— 2D if and only if

/ 16.4 \
-4s inx+ 4.1-2A x = 0

\2-fi )(5.2)

with A > 0, 0 < /x < 2.
From this the existence of the two singularities easily follows. To investigate their

stability we linearize in (p, —p). The eigenvalues of the linearized system are given
by

a(B)ua(B-2D)

with

We already know that tr B = 0 if and only if x = Xi = n - arcos 4̂ . Substituting this
value for x in (5.2), we define Yl to be the graph of y^ where

2 . 0 5 \ 0 ^ < 2 .
2-ix xl

Then for (A, /x) onT, we have tr B = 0. It is easily checked that yd < y\ = j \ - This
fixes the mutual position of To, F, and F4.

There remains the arcF2. Let F2be the arc on which tr (B-2£>) = 0. So for (A, fi)
on F2, we get by (5.2) that p = (x, y) must satisfy

4sinx 16.4
-4cosx + 4 + 2/x = 0,

x 2 — /x

or equivalently

(5.3) g(x) =

with g as denned in § I. This implies that
F2<={(A, /ti)e[R2|A>0 and 0 < / A < / 2 } ,
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where (L is uniquely determined by

2 ^ / 2 + T ^ T ) - 8 . 2 = max Wr).
\ 2—/J,/ l£(0,3)

And for every /A e [0, p.] there exist x? and x? satisfying (5.3) and x2 =s xf < x? < x3.
In particular x,M = x?, x° = x2 and x°r = x3.

For a solution (x, y) of (5.2) we obtain by differentiating (5.2)

(5.4) — >0 and — <0.

d\ dfi

Write x? = x(X,(fi), /A) and x? = x(Xr(fi), ft) /x e [0, /2], we have by (5.4)

A,(/t)<

Now let 0 < fi < /I < /x, then

and by (5.4) we conclude X,(fi)<X,(fl). In a similar way from 0 S J H < / I < / 1 it
follows that

Xr(fJL)> Xr(fl).

It is obvious that r ! n r 2 = 0 . Thus we have dealt with the arc F2 as well. This
explains figure 4.
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