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ABSTRACT

The standard methods for the calculation of total claim size distributions and
ruin probabilities, Panjer recursion and algorithms based on transforms, both
apply to lattice-type distributions only and therefore require an initial
discretization step if continuous distribution functions are of interest. We
discuss the associated discretization error and show that it can often be reduced
substantially by an extrapolation technique.

KEYWORDS AND PHRASES

Total claim size distribution, ruin probabilities, discretization, acceleration of
convergence.

1. INTRODUCTION

As in the first part of the paper we are interested in the numerical evaluation
of a compound distribution v = YlT=oPkfJ'*k> where we regard fi and
{pk)k e ^o as given and "*" denotes convolution. This situation arises in the
standard risk theory model, where v is the distribution of the total claim size,
Pk is the probability that there are k claims within the period of interest,
and fj, is the distribution of the individual claims: see e.g. Asmussen (1987),
Beard et al. (1984), Grandell (1991) and Hipp and Michel (1990). We have
Pk — exp(—A)A*/k\ for some A > 0 if the claim arrival process is a Poisson
process. Some additional arguments show that the ruin probabilities in the
classical risk model, regarded as a function of the initial risk reserve, also fit
into this framework, with pk = (\ — p)k p for some p e (0,1). If /x is one-sided
and of lattice type, i.e. concentrated on the non-negative integer multiples of
some h > 0, then both the compound Poisson and the compound geometric
case can be handled numerically by Panjer recursion. Transform methods, in
conjunction with the fast Fourier transform algorithm (FFT), apply in the
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lattice case for two-sided distributions and quite general compounding
sequences (At)/teN0> ^or a m o r e detailed discussion and references see Part I of
the present paper, Griibel and Hermesmeier (1999). In Part I it was shown
that the aliasing errors that arise in connection with transform methods and
are absent in Panjer recursion, can be reduced by a suitable change of the
measure /z ("exponential tilting"). If \x not of lattice type, in particular if n
has a density, the use of Panjer recursion or transform methods requires an
initial discretization step, which leads to a discretization error. In the present
second part of the paper we show that Richardson extrapolation, also known
as extrapolation to the limit or acceleration of convergence, can be used in
many situations to reduce such discretization errors considerably.

Extrapolation methods are in the standard numerical toolbox and explained
in detail in most numerical analysis textbooks, see e.g. Section 3.5 in Stoer (1994).
Walz (1996) is a recent monograph on this subject, which also contains some
interesting historical references; see also Section 8 in Korner (1996). The basic
idea is simply this: if, for example, some real number y0 cannot be evaluated
directly but some approximation yu is amenable for all /J > 0, then the
approximations obtained for various /j-values can be combined into a better
approximation if the rate of convergence of >>/, to y0 with h —> 0 is known. If, for
example,

yh = y0 + cha + o{hP)' (1.1)

as h —> 0 with some constants a, (3 satisfying 0 < a < /3, then

^ y h ) = y 0 + o(h>i), (1.2)

i.e. combining the approximations obtained for h and h/2 results in an
approximation with an improved rate of convergence - the convergence has
been accelerated. A crucial aspect of this simple idea is the fact that in passing
from (1.1) to (1.2) we only need to know the value of a, but not of c. In
applications, and that includes the one we are interested in, a is often known
from some general qualitative considerations whereas c is difficult to obtain or
even involves the quantity y<>. Of course, an actual acceleration only occurs if
c^O. Further, one can obviously extend this by combining more than two
approximations if additional expansion terms in (1.1) are known.

Extrapolation to the limit underlies Romberg integration and is also a
standard method in connection with the numerical treatment of differential
equations where h can for example arise as the width of a grid when replacing a
differential equation by a difference equation. Bohman (1977) used an
extrapolation in the context of numerical inversion of characteristic functions.
Here we consider the approximation v/, obtained for the compound distribution
v with lattice-type methods if fx is replaced by some fi/, concentrated on the
integer multiples of h. The use of extrapolation methods in this context seems to
be new, but a "weak" result where integrals f 4>dv rather than the distribution v
itself are considered, was obtained in Embrechts, Grubel and Pitts (1993). The

https://doi.org/10.2143/AST.30.2.504638 Published online by Cambridge University Press

https://doi.org/10.2143/AST.30.2.504638


COMPUTATION OF COMPOUND DISTRIBUTIONS II 311

proof given there for a result of type (1.1) is entirely in the e-<5-style. The next
section contains a heuristic approach to that result that is based on the idea of
regarding a stochastic model as a non-linear operator, an idea that was also
useful in the context of analyzing aliasing errors in the first part of the present
paper. The third section contains our main result, where (1.1) is extended to
distributions. Whereas the weak result deals with real numbers and therefore
easily fits into the above description via (1.1) and (1.2) we now have a more
complicated situation, where measures rather than real numbers arise. This
requires a suitable notion of distance. The proof of our main result is somewhat
technical and therefore put away into an appendix, but the approach explained
in Section 2 can serve as a guideline. Section 4 deals with boundary effects and
numerical examples are given in Section 5.

2. A HEURISTIC APPROACH

The investigation of total claim size distributions and ruin probabilities in the
risk model as quantities depending on the individual claim size distribution, the
claim arrival intensity and the premium income rate can be seen as a special
instance of a very general framework, where a stochastic model is regarded as a
functional that relates an output quantity /xout of interest to some known input
quantity [im. In mathematical notation the model can be represented by a non-
linear operator $> so that /xout = ^(/Xin). When we use Panjer recursion or
transform methods in the risk theory setting we essentially calculate ^(/x/,) and
take this to be an approximation for /xout, where /x/, is a discretized version of /xin.
In this section we argue that this general "functional" view can be used to
explain a result in Embrechts et al. (1993) that deals with the approximation of
integrals J 0t//xout for a given (smooth) function <f>: R —> R.

discretization \
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stochastic \
model /

integration "1
step J

h

I

to

I

I

f***(to)

discretization
parameter

model
input

model
output
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FIGURE 1: The basic decomposition.
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The basis for an extrapolation to the limit is a relation of the type (1.1), which in
the present context takes the form

= f ha + o(A") (2.1)

as h I 0 with some constants j3 > a > 0 and c(^;/i, ,0) ^ 0. To explain the
qualitative reasoning that can lead to such an expansion we decompose the
function h —> I(h) as in Figure 1. From this diagram it should be obvious that a
relation of the type (2.1) can be obtained from the local analysis of the specific
construction underlying the transition from /z to /z/,, together with a similar local
analysis of the stochastic model. Differentiability (in a suitable sense) of the
individual mappings, in conjunction with the chain rule, provides a mathematical
frame that can be used to justify the extrapolation to the limit. If "f is smooth
enough then the constant a will depend on the discretization design only
whereas c(^; /i, <pi) will involve the derivatives and will therefore not be easily
accessible. We remark at this point that extrapolation can be carried further by
combining more than one /(A)-value, and that a similar reasoning applies, now
involving higher order derivatives.

As we are dealing with weak results only it is natural to regard the measures
//, \ih, ^(n) and ^{nh) as linear mappings <f> —> /(/>rf/z on some linear space F of
functions cf>, i.e. as elements of the dual F' and F. Let 8X be the one-point mass
in x. We discretize /z by lumping together the masses of intervals of length h.
If we centre these masses we arrive at the following discretization design:

fih : = J 2 »{Ihk)6hk w i t h Iuc : = ( U - ^ h , ( k + 0 h\ ,k G Z . (2.2)

We now assume that pi has a density/and tha t /and <fi are sufficiently smooth
for the following approximation to be valid, which is based on a Taylor
expansion of the function x —> (</>(•*) ~ 4>(kh))f(x) at the point kh,

— (p(kh))f(x)dx = -—(f>'(kh)f{kh)hs + —-(f>"{kh)f{kh)hi + o(/*3).
12 24

Here it is crucial that the linear term in the expansion vanishes due to the
symmetry of the discretization intervals. Summing over k we obtain Riemann
sums for two integrals, and assuming suitable behaviour of the functions at ±00
an integration by parts yields

/ 4>dfi — / (pdfih = V j / (4>(x) — 4>{hk))f(x)dx

= S / t'WMd* + ̂ J<f>"(x)f(x)dx + o(h2)

-o{h2). (2.3)
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This is a statement on the local behaviour of the discretization mechanism, the
first step in the above diagram.

For the analysis of the second step we first consider a single convolution
power //*" (which could of course be regarded as a degenerate compound
distribution, with N = n). This means that our stochastic model is now the
non-linear operator

$ : F' -> ¥', $(/z)(0) := f <t>dn*n for all 0 e F.

The derivative of $ at p, is a linear approximation to <I> that is locally correct at
/i. For a "curve" (^f)f>0 in the range of definition of $ that is of the form
p, = p + ep, p a finite signed measure of total mass zero, we see that

n J M M * ' " " " * P) as e - 0,

i.e. we have &fl{p) = np*(n~1^ * p. Note that this is linear in p. Returning to our
original model *&(//) = YlT^Pnt1*" w e therefore obtain

\2'fi(p) = v * p with v:=Y^npnn*{"-l). (2.4)

In order to obtain a statement of the form (2.1) from the analysis of the
individual steps in the above diagram (the last step is linear and does not require
any further investigation) we rephrase (2.3) as a differentiability property. Let
D : F —> F denote the "ordinary" differentiation of real functions. If we define
T: [0, oo) -> F' by T{h) := p^ for h > 0, T(0) := fi, we see that (2.3) can be
reinterpreted as

T'0+(l)=±»oD2, (2.5)

where the linear map T'o+ : K+ —> F' is the right derivative of T at 0, defined by

Y

Because of T'0+(a) = aT'0+(l) this derivative is completely specified by (2.5).
The chain rule that we now need can be written in the form

so that, replacing h by h2, we finally arrive at
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as h [ 0, which is (2.1) with a = (3 — 2 and

f 2 \ (2.6)

This agrees with the result obtained by Embrechts et al. (1993) and provides the
required theoretical justification for an extrapolation algorithm.

3. A STRONG RESULT

We continue to use the notation from the previous section; in particular, the
discretized version /z/, of \i is given by (2.2).

If we are interested in v = ^(/x) itself rather than in some specific integral
f (fidv we need to compare the two measures v and v/, = *(M/I)- We want to go
beyond convergence of v/, to v as h [ 0; in fact, applicability of an
extrapolation technique requires at least a "next term" result, and it is a
priori not clear what an expansion of the form (1.1) means if we deal with
measures instead of real numbers. If v has a smooth density fv we might hope
that

Mkh) = l-vh({kh})+g(kh)h« + O(k3) (3.1)

holds uniformly in k e Z for h J, 0 with some function g depending on $ and /x.
Again, we could then combine the approximations of type (3.1) obtained for
different /(-values into a new approximation with increased asymptotic accuracy
i f /3>a .

We will now carry out this programme rigorously under some smoothness
and growth conditions on the density of /x. These conditions preclude
boundary effects (see the next section) and our main result shows that
Richardson extrapolation will accelerate the basic ^-convergence to the rate
h4 as h i 0. In particular, under these assumptions we have a = 2 and 0 — 4
in (3.1).

Let C(4,7) be the space of all continuous functions / : R —> R with
continuous derivatives /W up to order i = A which satisfy

= O(|JC|-T) as x ^ ± o o for i = 0, . . . ,4. (3.2)

Here we take / ^ to be / itself. The use of these spaces is motivated by our
method of proof, which depends on Taylor series expansions to fourth order.
Let v := Y.7=\Pn^*n and vh := YlT=\P»^t" f o r a11 h > °- Hence, in contrast to
the previous section, our convolution series now begin with n = 1 rather
than n = 0. As /x*° — fi*h° — So this does not affect v - v/,. Also, as \i and the
sequence (pn)neN0

 a r e regarded as known, we know explicitly the atom of

the measure v = 'S^.pn^i*" at 0: if fi has a density then ^({0})" — 0

for all n e N, so thaT°v({0}) = Po.
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Theorem
Assume the n has a density /M 6 C(4,7) for some 7 > 1 and that (/?«)neN satisfies

sup(l + e)"pn < 00 for some e > 0. (3-3)

Let f be the continuous density of v and let fij, : /zNo —> K be defined by
fj,(kh) := Vh({kh})/h. Then there exists a continuous function g : M

limsup-pr-sup(l
A in « kGZ

1
< 00. (3.4)

Note that (3.3) holds for compound Poisson and compound geometric
distributions. The proof of the theorem is given in the appendix which also
contains an explicit formula for the limit function g. Informally, we could guess at
the behaviour of/,,/, be rewriting the value c(4»; /i, cp) in (2.6) via partial integration
such that only cj> itself appears in the integrals rather than 4>", and then inserting
Dirac's delta function for <j>. This would lead to

and this is indeed correct.
For any given x > 0 (3.4) implies

as n —> oo, n € N. This is a result of the form (3.1) that can be used for an
extrapolation to the limit. Indeed, as announced above, the rate itself does not
depend on the model input provided that the general qualitative assumptions in
the theorem are satisfied, but the next order term, i.e. the function g, does depend
on/, . If extrapolation methods required the explicit form of the next term they
would be useless in the present context as g is no easier to obtain than/,.

The theorem shows that the approximation can be done uniformly in x. In
practice one would typically be interested in the values of the density of the total
claim size distribution on a lattice hZ. One could then carry out the Panjer
recursion, or the transform based algorithm if fj, is not concentrated on a half
line, for h and h/2 and combine the results to obtain improved values on KL.
Numerical examples are given in Section 5.

4. BOUNDARY EFFECTS

In an insurance mathematics context the main (but not only) application of
compound distributions appears in connection with the total claim size over a
given period of time. This total claim size is the sum of a random number of
individual claims of random size, and it is natural to assume that these individual
claims are nonnegative. To many "one-sided" distributions of interest, such as
the exponential distribution, the theorem in the previous section cannot be
applied directly, as the corresponding density does not satisfy the smoothness
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conditions at the left endpoint 0 of its support. In such cases we can often argue as
in connection with the atoms at 0 (see the discussion following (3.2)): as we regard
the compounding sequence (/>«)neN and the individual claim size distribution \i as
known, we can easily obtain the value of the compound density at 0 explicitly. If
e.g. n is the exponential distribution with parameter A, then the convolution
powers /j,*" with n > 1 do not contribute to the value/v(0) of the compound
density at 0, which yields /v(0) — pif^O). Here and in the following we always
take the version of the density that is continuous from the right at 0.

Regardless of such a practical attitude it is mathematically interesting to
understand the behaviour of extrapolation algorithms in "non-smooth" cases.
The discussion in this section concentrates on the essential points but does not
carry out the details; some of these are given in Hermesmeier (1997). We assume
that n is concentrated on the nonnegative real numbers and that it has a density
fn that apart from being continuous from the right at 0 also satisfies the
smoothness conditions implicitly present in the approximations made below. We

ignore the atom of the compound distribution v at 0, fv = y^JJgf*" is the

compound density. The discretization is the same as in the previous subsections,
but the step from v/, to/Vi/, has to take into account that/v vanishes for negative
arguments: we put/v,A(0) := vh({0})/(h/2).

We first consider weak results as in Section 2. We continue to use the
discretization scheme given in (2.2). Now the linear term in the Taylor expansion
for the integrals aver the //,/t-intervals does not disappear at the boundary k = 0,
and we obtain

/ l + o(h2),
Jim 8

which leads to

/
[ h h f°°

(bdu- / d>du,h = — 6'(0)f(0)+— / d>'(x)f'(x)dx
J 8 12 Jo

/,2 /•«» ;/ 2

24 io
h2 / f°° \

= " 24 U 0"(xV(fifx) " ^'(°^°) j + °^2)-
The second and third step of the decomposition in Figure 1 remain unchanged,
(2.5) now becomes

so that finally (2.1) is seen to hold with a = /? = 2 and

OnS"j ~f(0) J 4>'d(f^
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Hence, for the weak result, we are essentially in the same situation as in
Section 2. It is only the constant that changes, and this constant is not needed
for the algorithm.

In connection with strong results it is of course the behaviour of the
approximation at the boundary that is of special interest. We assume that the
density /M of /i can be written in the form

with some function r satisfying lirn^o Kx) = 0. Then

with some function f satisfying lim/^o r(h) = 0. All convolution powers of///, are
concentrated on the right half-line, hence

00

v*({0}) =

= PUih({0})+p2fih({0})2+o(h2)

piM0)h + (^./;(0) + ̂ 2 / , ( o ) ^ + o(h2)

(a condition such as (3.3) is needed in order to show that the terms from n — 3
onwards may be neglected in the above infinite sum). As/v(0) = />i/p(0) and
A*(0) = vA({0})/(*/2) this yields

I (/;./,(0) -/v(0)) = \pif,(0) + \p2MO)2 + o(l).

This is again a result of type (2.1), but now we have a—\, whereas we had
a =• 2 in all the cases considered previously. As a consequence the correct
extrapolation formula would now combine /v/,(0) and /v/,/2(0) into
2/V.A/2(0) -/v,*(0) rather than (4/ViA/2(0) - / V , A ( 0 ) ) / 3 as the case a = 2.

Why are the conclusions different in the weak and the strong situation?
Due to the final integration step the former case is basically of a global nature,
which means that a single point with a differing rate does not matter.

5. NUMERICAL EXAMPLES

In this section we consider two examples, one where the conditions of the
theorem in Section 3 are satisfied, the other with a claim size density that has a
jump at 0. For both these examples some gamma distribution T(r], A) with shape
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parameter 77 > 0 and scale parameter A > 0 will be used; the corresponding
density is

Exponential distributions arise if the shape parameter has the value 1. Gamma
distributions are convenient in the present context as their convolution powers
can be given explicitly: if JJL = F(?7, A) then //*" = T(nrj, A) for all n € N. We
consider the compound Poisson case where we take the mean of the Poisson
distribution to be 10. We then have an explicit series representation for the
compound density,

10"Am'xm>-1

for all x > 0.

From this formula it is easy to obtain fv{x) to any desired degree of accuracy by
simply summing the first few H-terms (50 are by far enough for our purposes - if
N has a Poisson distribution with mean 10 then P(N > 50) « 0.362 • 10"19, and
this is an upper bound for the Ll -distance between the true compound density
and its approximation obtained by summing to n = 50 only). We can therefore
compare the quality of the approximations obtained for different values of the
discretization parameter and assess the merits of Richardson extrapolation.

- 5 -

- 6 -

- 7 -

- 8 -

- 9 -

- 1 0 -

- 1 1 -

-12

= 1.0

0 20 40 60 80 100 120 140 160 180 200
FIGURE 2: Logarithmic absolute errors for fi = F(6,1).
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Our first example has r\ = 6 and A = 1, with these values the conditions of the
theorem in Section 3 are satisfied. Figure 2 contains three curves which all
display some error

logiol/"v,appro*M-/vM| f o r * = 0,1,2,.. . , 199,200

on a logarithmic scale for this example. From top to bottom the first curve is
the result with discretization parameter h — 1.0, the second with h — 0.5 and
the third gives the errors for the extrapolation approximation that arises if
these two approximations are combined as explained in the previous sections.
Apart from some initial confusion at the left boundary, an aspect that will be
discussed below, the substantial gain in accuracy achieved by the extrapola-
tion is obvious.

In the second example we take the claim size distribution to be exponential
with mean 6, Figure 3 displays the corresponding error curves. Interestingly, we
again have a noticeable gain through extrapolation, even though the conditions
of our main theorem are not satisfied in this case.

-5-

-6-

-7-

-8-

-9-

-10-

-11-

-12-

-13-

1.0

i

0 20 80 100 120 140 160 180 20040 60
FIGURE 3: Logarithmic absolute errors for fi = r ( l , 1/6).

For a better understanding of the behaviour near the boundary x = 0 we
display magnified parts of Figures 2 and 3 in Figure 4. On first sight the
behaviour observed in these two examples seems at variance with the
mathematical results: the first example satisfies the conditions of the theorem
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and the second does not, but we have an improvement by extrapolation at x = 0
in the latter case whereas the extrapolation increases the error at x — 0 in the
first example ("*" is above "o" at x = 0 in part (a) of the figure). But behold, it is
the mathematical result that helps to explain the phenomenon: the limit function
g that appears in the theorem (see the discussion following the theorem) has the
value 0 ats = 0 for y = F(6,1) which means that the constant c in (1.1) vanishes.
In fact, this amounts to the same as using the wrong a-exponent in the
extrapolation, and this is responsible for the disappointing performance of the
extrapolation in this special example at this particular x-value.

From the discussion in Section 4 we know that for \x = F(l, 1/6) the correct
extrapolation would use a = 1 at x = 0. As the extrapolation shown in the
figures is based on the assumption that a = 2 it is surprising that we obtain an
improvement nevertheless ("*" is below "o" at x — 0 in part (b) of the figure).
Again, it is worth looking at the details: the values obtained for /v(0) with
h = 1.0, h = 0.5 and the a = 2 based extrapolation are 0.1111892, 0.0915200
and 0.0849636 respectively, whereas the true value is 0.0756665. An extrapola-
tion with a = 1 however leads to 0.0718508, which is closer to the true value (all
these numbers have been multiplied by 1000). The error value obtained with the
linear extrapolation is given as "©" in Figure 4 (b). One should note, however,
that the actual order of magnitude of the error at the boundary is much smaller
in the first than in the second example.

-5-1

- 6 -

- 7 -

- 9 -

-10 J

X X X

o o o

- 4 - 1

- 5 -

- 6 -

- 7 -

- 8 -

- 9 J

x x x

n O O

* * * * * *

I ' I ' I ' I ' I
0 2 4 6 8

FIGURE 4: Behaviour near the boundary
x : h = 1.0, o : h = 0.5, *: extrapolation, (B: see text.
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Our general mathematical findings can be summarized as follows: smoothness of
a stochastic model, regarded as a mapping in a suitable infinite-dimensional
setting, implies that the order of magnitude of the discretization error on the
input side will reappear at the output side, and this in turn means that an
extrapolation to the limit will work, since we control the input error by choosing
the discretization. This can be used as guidance in the choice of a discretization
design. For example, the dicretization

oo

J4 :=$>(/;*)*** with /̂ o := [0, A],/^ := (A: • A, (A: + 1) • A] for k e N

for one-sided distributions, which is mentioned in Hipp and Michel (1990), leads
to a — 1 rather than a = 2 in (3.1) and is therefore inferior to the one we used in
the previous sections. Also, one could take this further and argue as follows: if
interest is in the compound density and if the density f^ of the individual claim
size distribution is easily accessible then a direct discretization of/^ might well
lead to a better approximation - after all, there would then be no discretization
error on the input side. Indeed, the methods and auxiliary results introduced in
the appendix for the proof of our theorem can be used to show that, under some
smoothness conditions, an approximation obtained for the compound density fv

by applying Panjer recursion or transform based methods directly to the
sequence of values f^kh), k = 0,1,2,... rather than to fj,(h,k) will give an error
of magnitude 0{h ) . In Figure 5 we display the errors obtained in the first of the
above numerical examples with the direct method and the same discretization
parameters as used previously, together with the extrapolation error curve
(which is the same as the bottommost curve in Figure 2). It is interesting to see
that the latter is below the error obtained with the direct method on a substantial
range of x-values, but not on the whole axis. An advantage of the discretization
via fj.(h,k) is that we now know the behaviour of the error, which makes this
method "extrapolatable"; a linear or quadratic extrapolation leads to a
deterioration if we naively apply it to the results obtained with the direct
discretization of/M.
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FIGURE 5: Logarithmic absolute errors for n = F(6,1), direct discretization.

APPENDIX

Proof of the theorem
The proof uses elementary arguments and techniques only, but is somewhat
lengthy. To increase readability we divide the appendix into subsections,
dealing with functions on the real line in the first, with functions on lattices in
the second and relations between these via discretization operators in the third
part. The final subsection then combines the material from the first three
subsections into the proof of the theorem, which we first reformulate in the
new notational framework. Throughout, 7 is a fixed real number greater than
1. The discretization parameter h is generally assumed to vary over the
interval (0,1], but the choice of 1 as the upper bound is not important. A
sequence (an)neN of real numbers is said to grow subexponentially fast if

lim^ootl + e)~"an = 0 for all e > 0, it decreases at an exponential rate if

limn^oo(l + e)"an = 0 for some e > 0.
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A.I For measurable functions / : K —> M the supremum norm with weight
function x —> (1 + |x|)7 is given by

Let #0(7) be the linear space of such functions/with |1/1|OT< 00. Since 7 > 1 all
elements of #0(7) a r e integrable, i.e.

llo,i:= / \f{x)\dx < 00 for all / G

(Note that || • ||0 , is an integral norm and thus differs in nature from || • ||0 We
always have 7 > 1, so no confusion should arise from the positional similarity of
the indices, which is meant to keep the notation compact.) This implies that the
convolution/*g of any/,g € #0(7), defined by

/* g(x) := Jf(y)g(x - y)dy for all xeR,

exists. Since 7 > 1 we also have

KO(7) := sup(l + \x\y / (1 + \y\r(l + \x-y\ydy < 00,
R J

which can be used to obtain inequalities relating convolution and || • ||07-norm.
For the integral norm such an inequality is a well known consequence of
Fubini's theorem, i.e.

In the corresponding statement for supremum norms an additional constant
appears on the right hand side and good bounds for this constant are of some
importance for us. The first part of the following lemma implies that .60(7) is
closed with respect to convolution, the second part shows that the || • ||0 -norms
of the convolution powers of a probability density increase subexponentially fast.

Lemma A.I (i) |[/*g||0,7 < «o(7)ll/llo,7lkllo,r
(ii) For all n G N, \\T%n < «7|l/llo,7ll/llS^-

Proof: Part (i) is immediate from the definitions. For (ii) we first use convexity
of x —> (1 + \x\)J to obtain for all x\,X2, • • • ,xn,

1 + -(x\ + x2 + •.. + xn)
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This yields with x\ :— x — x2 — ... — xn

< rf-x (j...J(l + \Xi \y\f(xi)\\f(x2)\... \f(xn)\dx2 ...dxn

f f t

J J
+ ... + J ...j{\ + \xn\y\f{x,)\\f{x2)\... \f(xn)\dx2. ..dxA.

Using (1 + \x\y\f(Xl)\ < |l/l|Oi7 we obtain

f
... I (1 + \xi\y\f(xi)\\f(x2)\...\f(xn)\dx2...dxn

0,1J\f(x2)\dx2...\f(xn)\dxn^ 11/110,7

For k = 2,..., n the same inequality with x^ instead of x\ yields

J ... I (I + \xk\r\f[Xl)\\f[x2)\... [f(xn)\dx2 ...dxn

< \\f\\onj • • J ^ - *2 - • • • - xn)\ J \f(Xj)\dx2... dxn.

As Xk appears only in the first factor of the integrand we can use that

/ \f(x-x2- ... -xn)\dxk = |[/l|Ojl for all x2,...,xk_uxk+u...,xn

to rewrite the multiple integral as a product of single integrals, which yields the
upper bound ll/llo^l/lltn1 again. Put together these estimates result in

This final bound does not depend on x, hence (ii) follows. •

A.2 For functions a/, : KL ->Mwe proceed similarly to the previous subsection:
we introduce the norm

\\ah\\, :=sup(l+ \k\hy\ah(kh)\
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and let 5/,(7) be the space of such functions ah with ||a/,||/,7 < 00. The elements
of this space, regarded as sequences, are absolutely summable, i.e.

lkl lA, , :=*X>A(*/i) |<oo for all ah G Bh(-y).
keZ

In particular, we can define the convolution product a/, * bh of ah, bh G Bh(j) by

ah * bh{kh) := h^ah(jh)bh({k -j)h) for all keZ.
jez

We use the same symbol to denote convolution on 2?/,(7) and on Bo{j) since the
respective space should be clear from the context; the symbols f,g, • • • generally
denote functions on R, a/,, bh, • • • functions on KL.

Since 7 > 1 we have

K,(7) := sup sup/i(l + \k\hf V (1 + [/|/jp(l + I* - # P < 00,
0</I<1 keZ j^i

which can again be used to obtain norm inequalities. We omit the proof of the
following lemma as it is very similar to the proof of Lemma A.I.

Lemma A.2 (i) For 0 < h < \,\\ah * bh\\hn < KI(7)II«A|IA,7II*AIIA,7-

(ii) For all n G N, ||a*"llA)7 < ^hhWhJ"^•

A.3 We now relate the function spaces introduced in the previous two
subsections to each other. Two canonical families (II/,)0</K1 and (7/,)0</K1 of
discretization operators are given by

n*: BoCr) ^ ( 7 ) , nh(/)(kh) •. =f{kh),

and

Th : S o ( 7 ) - Bh(j), Th(f){kh) :=\f f(x)dx,
hJihk

with

hk := (U - l\, U + ^jh] for all k G Z.

We note in passing that ||ri/,(/)||. < |[/l|07, which implies that II/, is continuous.
An argument from the proof of Lemma A.3 (i) below can be used to show that
II^A(/)IIA7 ^ 27|l/l|07, i.e. Th is also a continuous linear operator.

In connection with these discretizations often a whole family (rh)0<k<l of
functions rh : hZ —> R arises and we are then interested in a local boundedness
condition of the form

(B) lim sup||rA||A < 00,
A-.0
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i.e. \\rh\\ha = O(l) as h —> 0. If we have such a family (r^j for each n e N,
a uniform subexponential bound of the form 0<h-'

(S) lim supsup(l + e) '["'I < o o f o r a l l e > 0
IU,7

will be needed. For (B) and (S) some rules are easily established. Obviously, both
conditions continue to bold for finite linear combinations of families. Moreover,

if (S) holds for f r£ j , n £ N, and if (gn)nen decreases at an exponential rate,

then (r/0o</,<i defined by rh •=
zY^T=icInrh' satisfies (B). Also, if (r,'A

r2h) , «£N, are two families satisfying (S), and if we define

n £ N, by

n

k=0

then (S) also holds for in') , n £ N. These rules will be used below without

further comment, with the exception of the last one which we will refer to as the
convolution stability associated with condition (S). Generally, a*h° * b/, := bh\
below we similarly interpret/*0 * g as g for/,g, £ #0(7)-

As an example consider r£' := Ui,(f)*n for a continuous probability density
/ € ^0(7). Using Lebesgue's theorem on dominated convergence it is easy to
see that

limp,(/)!!,, ,= 11/110,1=1,

so for any e > 0 we can find an ho > 0 such that ||n/,(/)||A ,< 1 + e/2 for all
h < ho. Then, by Lemma A.2 (ii),

< «7||nA(/)||A>7(l +E/2)"-1 for all h < h,n £ N.

hence (S) holds for the family (r{n)) , n £ N.
3 V h )o<h<\

We next investigate the interplay between discretization and convolution. Let
C(k, 7) be the space of k times continuously differentiable functions / : R —> M
with / ' ' ' £ -60(7) for / = 0, • • •, k. This is compatible with the definition given
in Section 3. We note that differentiation can be carried into one of the factors of
a convolution product, i.e. (f*g)' —f*gl f o r / e #0(7),g £ C(l,7).

Lemma A.3 F o r / g e C(k, 7) let ctn(f,g) be defined by

y=o
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(i) Iffg G C(2,7) then, for 0 < h < 1,

327

(ii) / / / , £ G C(4,7) then, for 0 < A < 1,

Proof: (i) We expand ^ ( x ) :=f(x)g(kh — x) for x G hj about x = jh to obtain

</>*(*) =J\jh)g{{k -j)h) + (x -jh)4>'(jh)+\(x -jh)24>"{^}{x))

hf(jh)g((k -j)h) - I f{x)g(kh - x)dx

The integral evaluates to A3/24. Clearly,

with some 0y(x) 'M -̂  € hj- Integrating over x € Iy we see that the linear term
vanishes and

/ \{X-Jhfdx.
hjL

( " 0 +M)g"(kh - 0.
For x,y G //,; we have (1 + | x | ) / ( l + \y\) < 2, so that

\r'{tkj(x))\ < (i+^/W)"7ii/"iio,7< 2̂ (1 + i # n i / i o , r

Similar inequalities hold for the other terms in <$'k, so we obtain

which finally gives

2 2 7

2 « i ( 7 )
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(ii) Expanding fa up to the fourth order we obtain as in the proof of the first part

hUlijhhf(Jh)g((k -j)h) - f f(x)g(kh - x)dx - yh
J hj

We have

2nh(f') * nh(g') + nh(j) * uh(g"))(kh)

= (Hh(f" *g-2f'*g' + /* g") + h2rh){kh)

with

\\rh\\ha< 22'>Kl(1)(c2n(f",g)+c2,.l(f',g')+c2n(f,g"))

by part (i). Since f"*g — 2/' * g1 + / * g" = 0 we obtain the assertion on using
the triangle inequality. •

Lemma A.4 IffG C(4,j) is a probability density, then

where (r^) , n G N, satisfies (S).

Proof: We have

7=1

with

RHJ : = n A ( / ) *

We know that (Hh(f}*")0<h<l,n e N, satisfies (S). By Lemma A.3 (ii)

with c(f, n, 7) a linear combination of terms of the form

, 0 < /, k < 4.
0,7

0,7

These grow subexponentially fast, hence (h 47?/,n)0</i<1,« e N, also satisfies (S)
and the assertion of the lemma follows since (S) is stable with respect to
convolution. •
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Lemma A.5 Iff G C(4,7) is a probability density, then

where (r{
h"

]\ ,n G N, satisfies (S).

Proof: Expanding / about x = kh we obtain

J[x) =f(kh) + (x- kh)f'(kh) + l-(x- kh)2f"(kh)

with some &(x) £ //,& if x £ //,&. Integration over x € Ihk results in

(rh{f)-

with

(x -

Continuing in the style of the proof of Lemma A. 3 (i) and using
Jhk (x - khfdx = /;5/80 we obtain

Ki- 1 9 2 o

As in the proof of Lemma A.4 we now use a suitable decomposition of the
difference,

It is known that (S) holds for (nA(/)*")0</l<,,« G N. Similarly, (S) also holds for

(^(/T")o</,<i' « e N, as we even have ||rA(/)*"||Ail = 1 for all h > 0, n G N.

Convolution stability gives (S) for the sum on the right hand side. Multiplying
this sum by some (r/,)0<A<1 satisfying (B) does not destroy (S). Hence, in
summary, we have

24

where (^"') ,« G N, satisfies (S). By Lemma A.4 we may replace Uh(f)*" by

Uh(f*n), and the statement of the lemma follows. •
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A.4 For probability densities / e -60(7) and probability functions a/, e 2?* (7)
(i.e. ah has non-negative entries and \\ah\\h ,= 1) we define &(/), *(«/,) by

Again it should be clear from the context whether it is the continuous or the
discrete version of the functional that \E» refers to. We generally assume that the
probabilities (/?n)neNo decrease at an exponential rate. Lemma A.I (ii) and
Lemma A.2 (ii) then imply that * ( / ) and *(«/,) are again elements of B0(~f) and
Bh{l) respectively.

In terms of the operator and norm notation introduced above (3.4) can be
written as

hence the theorem in Section 3 is a consequence of the following result.

Theorem A.6 Let f £ C(4,7) be a probability density. Then

24T,
n=\

and

*(rA(/)) = nA(*(/)) + /j2n,(g) + h\h,

where (>7J)O</KI satisfies (B).

Proof: To see that g is an element of Bo (7) we use parts (i) and (ii) of Lemma A.I.
With Lemma A.5 and the continuity of II/, we obtain

n=\

71=1 2 4

where (B) holds for (ri,h)0<h<l by the remark following the definition of (S).
Similarly Lemma A.3 yields

oo

* Yihif") = J2»P»nh(f
{"-]) */") + h2r2M ,
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with (r2,h)0<h<] satisfying (B). Put together, these two equations imply the
assertion of the theorem. •
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