ON THE CHROMATIC UNIQUENESS OF CERTAIN TREES OF POLYGONS

Y. H. PENG

(Received 18 January; revised 27 September 1991)

Communicated by Louis Caccetta

Abstract

We establish a characterization of certain trees of polygons similar to that of n-gon-trees given by Chao and Li.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 05 C 75; secondary 05 C 15 .

1. Introduction

The graphs which we consider here are finite, undirected, simple, and loopless. For a graph G, let $P(G ; \lambda)$ denote its chromatic polynomial. Two graphs X and Y are said to be chromatically equivalent if $P(X ; \lambda)=P(Y ; \lambda)$. If H_{1} and H_{2} are graphs, we shall say that a graph H is of type $\left(H_{1}, H_{2}\right)$ if it can be formed from the disjoint union $H_{1} \cup H_{2}$ by identifying an edge of H_{1} with an edge of H_{2}.

Let m and $n_{1}, n_{2}, \ldots, n_{m}$ be integers satisfying $m \geq 1$ and $n_{m}>\cdots>n_{2}>$ $n_{1} \geq 3$. Let \mathcal{G} be the class of graphs defined recursively by the rules: the n_{i}-cycle $C_{n_{i}}$ is in \mathcal{G} for each $i(1 \leq i \leq m)$, and if H_{1} and H_{2} belong to \mathcal{G} then so does any graph of type (H_{1}, H_{2}). The graphs in \mathcal{G} are called ($n_{1}, n_{2}, \ldots, n_{m}$)-gon-trees. They are evidently 2 -connected planar graphs. If $m=1$ and $n_{1}=n$ then the graphs in \mathcal{G} are called n-gon-trees.
(c) 1993 Australian Mathematical Society 0263-6115/93 \$A2.00 +0.00

Let H be a graph of type $\left(H_{1}, H_{2}\right)$. Then every chordless cycle (induced cycle) in H is a chordless cycle in H_{1} or a chordless cycle in H_{2}. Also, the chromatic polynomial $P(H ; \lambda)$ of H satisfies

$$
\begin{equation*}
P(H ; \lambda)=\frac{P\left(H_{1} ; \lambda\right) P\left(H_{2} ; \lambda\right)}{\lambda(\lambda-1)} \tag{1}
\end{equation*}
$$

It is well known that the chromatic polynomial of an n-cycle is given by $P\left(C_{n} ; \lambda\right)=\lambda(\lambda-1) Q\left(C_{n} ; \lambda\right)$ where

$$
\begin{equation*}
Q\left(C_{n} ; \lambda\right)=(-1)^{n} \sum_{i=0}^{n-2}(1-\lambda)^{i} \tag{2}
\end{equation*}
$$

We thus see that if G is an $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$-gon-tree then every chordless cycle in G has one of the lengths n_{1}, \ldots, n_{m}. An easy inductive argument using (1) and (2) also gives the following theorem.

THEOREM 1. If G is $a\left(n_{1}, n_{2}, \ldots, n_{m}\right)$-gon-tree with k_{i} chordless n_{i}-cycles $(1 \leq i \leq m)$, then

$$
\begin{equation*}
P(G ; \lambda)=\lambda(\lambda-1) \prod_{i=1}^{m}\left(Q\left(C_{n_{i}} ; \lambda\right)\right)^{k_{i}} \tag{3}
\end{equation*}
$$

where $Q\left(C_{n_{i}} ; \lambda\right)$ is defined by (2).
For n-gon-trees $(m=1)$, Chao and Li [1] proved that the converse of Theorem 1 also holds. The purpose of this paper is to prove the converse of Theorem 1 for a wider class of $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$-gon-trees.

In the remainder of this section we shall state some known results that will be useful in proving our characterization theorems.

THEOREM A. (Whitney [7]). Let G be a graph of order p and size q. Then

$$
P(G ; \lambda)=\sum_{k=1}^{p}\left(\sum_{r=0}^{q}(-1)^{r} N(k, r)\right) \lambda^{k},
$$

where $N(k, r)$ denotes the number of spanning subgraphs of G having exactly k components and r edges.

Theorem B. (Chao and Zhao [3]). Let G be a connected graph of order at least 3 , and with $P(G ; \lambda)=(\lambda-1) T(G ; \lambda)$. Then
(a) $T(G ; 1)=0$, if and only if G has at least one cut-vertex;
(b) $|T(G ; 1)|=1$, if and only if G is a 2 -connected graph and has no subgraph homeomorphic to the complete graph K_{4} with 4 vertices;
(c) $|T(G ; 1)| \geq 2$, if and only if G is a 2 -connected graph and has at least one subgraph homeomorphic to K_{4}.

We also need the next result which gives explicit expressions for the first four coefficients of the chromatic polynomial of a graph.

Theorem C. Let G be a graph of order p and size q. If $P(G ; \lambda)=$ $\sum_{i=0}^{p} a_{i} \lambda^{p-i}$ is the chromatic polynomial of G, then
(a) $a_{0}=1, a_{1}=-q$;
(b) $a_{2}=\binom{q}{2}-N_{Q_{3}}$;
(c) $a_{3}=-\binom{q}{3}+(q-2) N_{Q_{3}}+N_{Q_{4}}-2 N_{K_{4}}$;
where $N_{K_{i}}$ and $N_{Q_{i}}$ denote the number of complete graphs K_{i} and chordless cycles C_{i} respectively in G, and $\binom{q}{i}$ is the binomial coefficient.

We end this section with the following result which is a corollary of a more general result established in [5].

Lemma D. Let G be a bipartite graph which has no subgraph $K(2,3)$. If a graph H is chromatically equivalent with G, then $N_{Q_{6}}(H)=N_{Q_{6}}(G)$.

2. Tree of Polygons

In this section we shall prove the converse of Theorem 1 for a wider class of ($n_{1}, n_{2}, \ldots, n_{m}$)-gon-trees. We first establish the following key result by using Whitney's theorem and a technique introduced by Farrell [4].

Theorem 2. Let G be a graph of order p and size q with girth $k \geq 3$. If $P(G ; \lambda)=\sum_{i=0}^{p} a_{i} \lambda^{p-i}$ is the chromatic polynomial of G, then
(a) $a_{i}=(-1)^{i}\binom{q}{i}$, for $i=0,1, \ldots, k-2$;
(b) $a_{k+i-1}=(-1)^{k+i-1}\left\{\binom{q}{k+i-1}-\sum_{j=0}^{i}\binom{q-k-j+1}{i-j} N_{Q_{k+1}}\right\}$, for $i=0,1, \ldots$, $\lfloor(k-3) / 2\rfloor$.

Proof. (a) Let i be any integer such that $0 \leq i \leq k-2$. By Theorem A , the coefficient of λ^{p-i} is

$$
a_{i}=\sum_{r=0}^{q}(-1)^{r} N(p-i, r)
$$

where $N(p-i, r)$ is the number of spanning subgraphs of G with $p-i$ components and r edges. But in a spanning subgraph with $p-i$ components, no component can have more than $i+1$ vertices. Since $i \leq k-2$ and G has girth k, all such spanning subgraphs are forests with exactly i edges, and every set of i edges gives such a forest. So the contribution of these graphs to a_{i} is therefore

$$
(-1)^{i}\binom{q}{i}
$$

Thus we have the required result.
(b) Let i be any integer satisfying $0 \leq i \leq\lfloor(k-3) / 2\rfloor$. By Theorem A ,

$$
a_{k+i-1}=\sum_{r=0}^{q}(-1)^{r} N(p-k-i+1, r)
$$

where $N(p-k-i+1, r)$ is the number of spanning subgraphs of G with $p-k-i+1$ components and r edges. No component of such a spanning subgraph can have more than $k+i$ vertices. Since the girth of G is k and $i<\lfloor(k-1) / 2\rfloor$, these spanning subgraphs of G are forests with exactly $k+i-1$ edges or unicyclic graphs of girth $\geq k$ with $k+i$ edges. Thus we can categorize them as follows:
(i) $S_{j}=\{$ Unicyclic graphs with one chordless $(k+j)$-cycle plus $i-j$ edges $\}$, for $j=0,1, \ldots, i$.
(ii) $S_{i+1}=\{$ Forests with $k+i-1$ edges $\}$.

We shall now calculate the contributions of all the graphs in $S_{j}(0 \leq j \leq i+1)$ to the coefficient a_{k+i-1}.

Let j be any integer such that $0 \leq j \leq i$. All the graphs in S_{j} have one chordless $(k+j)$-cycle plus $i-j$ edges. Since G has girth k and $i<\lfloor(k-1) / 2\rfloor$, there is no other such graph which is not in S_{j}. Therefore the contribution of these graphs to a_{k+i-1} is

$$
\xi_{j}=(-1)^{k+i}\binom{q-k-j}{i-j} N_{Q_{k+j}}
$$

All the graphs in S_{i+1} contain $k+i-1$ edges. Since G has girth k and $i<\lfloor(k-1) / 2\rfloor$, the only other graphs with $k+i-1$ edges which are not in S_{i+1}
are unicyclic graphs with one chordless $(k+j)$-cycle plus $i-j-1$ edges, for $j=0,1, \ldots, i-1$. Hence the contribution of all the graphs in S_{i+1} to a_{k+i-1} is

$$
\xi_{i+1}=(-1)^{k+i-1}\left\{\binom{q}{k+i-1}-\sum_{j=0}^{i-1}\binom{q-k-j}{i-j-1} N_{Q_{k+j}}\right\} .
$$

By adding all the contributions $\xi_{j}(0 \leq j \leq i+1)$ to a_{k+i-1}, and using the binomial identity $\binom{r}{s}+\binom{r}{s-1}=\binom{r+1}{s}$, we get the required result.

COrollary 3. If two graphs G and H are chromatically-equivalent, then they have the same girth. Furthermore, if the girth of G is $k \geq 3$, then H and G have the same number of chordless i-cycles for $3 \leq i \leq k+\lfloor(k-3) / 2\rfloor$.

Our characterization theorems depend on the following lemma.
LEMMA 4. Let G be a connected graph of order p, size q, and with chromatic polynomial given by (3). Then
(a) $p=\sum_{i=1}^{m}\left(n_{i}-2\right) k_{i}+2$ and $q=\sum_{i=1}^{m}\left(n_{i}-1\right) k_{i}+1$;
(b) G is a 2 -connected planar graph with $\sum_{i=1}^{m} k_{i}$ interior regions.

Proof. (a) It is easy to see that $\left(Q\left(C_{n_{i}} ; \lambda\right)\right)^{k_{i}}$ has degree $\left(n_{i}-2\right) k_{i}$ and that the coefficient of $\lambda^{\left(n_{i}-2\right) k_{i}-1}$ is $-\left(n_{i}-1\right) k_{i}$. Thus

$$
P(G ; \lambda)=\lambda(\lambda-1) \times \prod_{i=1}^{m}\left(Q\left(C_{n_{i}} ; \lambda\right)\right)^{k_{i}}
$$

has degree $h=\sum_{i=1}^{m}\left(n_{i}-2\right) k_{i}+2$ and its coefficient of λ^{h-1} is $-\left(\sum_{i=1}^{m}\left(n_{i}-\right.\right.$ 1) $k_{i}+1$). Hence we conclude that (a) holds.
(b) Let $P(G ; \lambda)$ be written as $P(G ; \lambda)=(\lambda-1) T(G ; \lambda)$, that is,

$$
T(G ; \lambda)=\lambda \prod_{i=1}^{m}\left(Q\left(C_{n_{i}} ; \lambda\right)\right)^{k_{i}} .
$$

Then $|T(G ; 1)|=\left|1 \prod_{i=1}^{m}\left(Q\left(C_{n_{i}} ; 1\right)\right)^{k_{i}}\right|=1$, since $\left|Q\left(C_{n_{i}} ; 1\right)\right|=1$ for $1 \leq$ $i \leq m$. By Theorem $\mathrm{B}(\mathrm{b}), G$ is a 2 -connected graph and has no subgraph homeomorphic to K_{4}, and hence G is a planar graph (see [1, Lemma 6]).

The well-known theorem of Euler states that the p vertices, q edges, and f regions of a planar graph satisfying $p+f=q+2$. Thus for the graph G, we have $\sum_{i=1}^{m}\left(n_{i}-2\right) k_{i}+2+f=\sum_{i=1}^{m}\left(n_{i}-1\right) k_{i}+1+2$, and $f=\sum_{i=1}^{m} k_{i}+1$, that is, G has $\sum_{i=1}^{m} k_{i}$ interior regions.

We are now ready to state and prove our main result.

THEOREM 5. Let $m \geq 2$ and let n_{i} be integers satisfying $3 \leq n_{1}<n_{2}<$ $\cdots<n_{m} \leq n_{1}+\left\lfloor\left(n_{1}-3\right) / 2\right\rfloor$. Then a graph G is a $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$-gon-tree with k_{i} chordless n_{i}-cycles $(1 \leq i \leq m)$ if and only if

$$
P(G ; \lambda)=\lambda(\lambda-1) \prod_{i=1}^{m}\left(Q\left(C_{n_{i}} ; \lambda\right)\right)^{k_{i}}
$$

where $Q\left(C_{n_{i}} ; \lambda\right)$ is defined as in (2).
Proof. The necessity follows from Theorem 1. To prove the sufficiency we proceed as follows. We first claim that G has k_{i} chordless n_{i}-cycles for $1 \leq i \leq m$. Since G is chromatically-equivalent to a $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$-gon-tree with k_{i} chordless n_{i}-cycles ($1 \leq i \leq m$), the claim follows from the corollary to Theorem 2.

By Lemma 4 and the above claim, $P(G ; \lambda)=\lambda(\lambda-1) \prod_{i=1}^{m}\left(Q\left(C_{n_{i}} ; \lambda\right)\right)^{k_{i}}$ implies that G is a 2 -connected planar graph with $\sum_{i=1}^{m}\left(n_{i}-2\right) k_{i}+2$ vertices, $\sum_{i=1}^{m}\left(n_{i}-1\right) k_{i}+1$ edges, $k=\sum_{i=1}^{m} k_{i}$ interior regions, and k_{i} chordless n_{i}-cycles $(1 \leq i \leq m)$. We now proceed by induction on k to show that G is indeed a $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$-gon-tree with k_{i} chordless n_{i}-cycles $(1 \leq i \leq m)$. For $k=1$, that is, $k_{i}=0$ for all $i, 1 \leq i \leq m$ except $k_{r}=1$ for some r, $1 \leq r \leq m$, it is clear that G is a $\left(n_{r}\right)$-gon-tree with one chordless n_{r}-cycle. Assume that the conclusion holds for $k-1=\sum_{i=1, i \neq t}^{m} k_{i}+\left(k_{i}-1\right)$, for some $t, 1 \leq t \leq m(k \geq 3)$. That is, if G^{*} is a 2-connected planar graph with $\sum_{i=1}^{m}\left(n_{i}-2\right) k_{i}+2-\left(n_{t}-2\right)$ vertices, $\sum_{i=1}^{m}\left(n_{i}-1\right) k_{i}+1-\left(n_{t}-1\right)$ edges, $k-1$ interior regions, and k_{i} chordless n_{i}-cycles ($1 \leq i \leq m, i \neq t$) and $k_{t}-1$ chordless n_{t}-cycles, then G^{*} is a ($n_{1}, n_{2}, \ldots, n_{m}$)-gon-tree with k_{i} chordless n_{i}-cycles ($1 \leq i \leq m, i \neq t$) and $k_{t}-1$ chordless n_{t}-cycles.

We now consider k. Suppose that G is not a ($n_{1}, n_{2}, \ldots, n_{m}$)-gon-tree with k_{i} chordless n_{i}-cycles $(1 \leq i \leq m)$. If G contains $h(h \geq 2)$ chordless cycles $C_{r_{j}}(1 \leq j \leq h)$ which share exactly one common edge e, then $G-e$ is a 2 -connected planar graph with $k-1$ interior regions, $\sum_{i=1}^{m}\left(n_{i}-2\right) k_{i}+2$ vertices, $\sum_{i=1}^{m}\left(n_{i}-1\right) k_{i}$ edges, and k_{i} chordless n_{i}-cycles $\left(1 \leq i \leq m, i \neq r_{j}\right.$ for $1 \leq j \leq h), k_{r_{j}}-1$ chordless $n_{r_{j}}$-cycles, and one chordless $n_{r_{1}+r_{j}-2}$-cycle for each $2 \leq j \leq h$. But $G-e$ is not a $\left(n_{1}, n_{2}, \ldots, n_{m}, n_{r_{1}+r_{2}-2}, n_{r_{1}+r_{3}-2}, \ldots, n_{r_{1}+r_{h}-2}\right)$ -gon-tree with k_{i} chordless n_{i}-cycles $\left(1 \leq i \leq m, i \neq r_{j}\right.$ for $\left.1 \leq j \leq h\right)$, $k_{r_{j}}-1$ chordless $n_{r_{j}}$-cycles, and one chordless $n_{r_{1}+r_{j}-2}$-cycle for $2 \leq j \leq h$, contradicting our induction hypothesis. So any two chordless cycles of G
have either no or at least two edges in common. But then, since G is a 2connected planar graph with $\sum_{i=1}^{m} k_{i}$ interior regions and k_{i} chordless n_{i}-cycles ($1 \leq i \leq m$), it is not difficult to see that G has no more than $\sum_{i=1}^{m}\left(n_{i}-2\right) k_{i}+2$ edges, which is strictly less than $\sum_{i=1}^{m}\left(n_{i}-1\right) k_{i}+1$, again a contradiction.

3. Special Cases

We shall in this section characterize two other trees of polygons which are not established in Theorem 5. Firstly we need the following two results.

Lemma 6. If a graph G is chromatically-equivalent to a $(3,4)$-gon-tree with k_{1} triangles and k_{2} chordless 4 -cycles, then G has the same number of triangles and chordless 4-cycles.

Proof. This follows from Theorem C.

Lemma 7. If a graph G is chromatically-equivalent to a $(4,6)$-gon-tree with k_{1} chordless 4 -cycles and k_{2} chordless 6 -cycles, then G has the same number of chordless 4 and 6 -cycles.

Proof. This follows from the corollary to Theorem 2 and Lemma D.
We are now ready to give the characterizations of $(3,4)$-gon-trees and $(4,6)$ -gon-trees which can easily be proved using Lemmas 6 and 7 , and similar arguments to those used in establishing Theorem 5.

Theorem 8. A graph G is a $(3,4)$-gon-tree with k_{1} triangles and k_{2} chordless 4 -cycles, where $k_{1}+k_{2} \geq 1$, if and only if

$$
P(G ; \lambda)=\lambda(\lambda-1)(\lambda-2)^{k_{1}}\left(\lambda^{2}-3 \lambda+3\right)^{k_{2}} .
$$

Theorem 9. A graph G is a $(4,6)$-gon-tree with k_{1} chordless 4 -cycles and k_{2} chordless 6 -cycles, where $k_{1}+k_{2} \geq 1$, if and only if

$$
P(G ; \lambda)=\lambda(\lambda-1)\left(\lambda^{2}-3 \lambda+3\right)^{k_{1}}\left(\lambda^{4}-5 \lambda^{3}+10 \lambda^{2}-10 \lambda+5\right)^{k_{2}} .
$$

In concluding this paper, we note that the converse of Theorem 1 holds if the following conjecture is true.

CONJECTURE. If a graph G is chromatically equivalent to a $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$ -gon-tree with k_{i} chordless n_{i}-cycles $(1 \leq i \leq m)$, then G has k_{i} chordless n_{i}-cycles for $i=1,2, \ldots, m$.

Acknowledgement

The author is grateful to the referee for his comments and suggestions.

References

[1] C. Y. Chao and N. Z. Li, 'On trees of polygons', Arch. Math. 45 (1985), 180-185.
[2] C. Y. Chao and E. G. Whitehead Jr., 'On the chromatic equivalent of graphs', in: Theory and applications of graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) pp. 121-131.
[3] C. Y. Chao and L. C. Zhao, 'Chromatic polynomials of connected graphs', Arch. Math. 43 (1984), 187-192.
[4] E. J. Farrell, 'On chromatic coefficients', Discrete Math. 29 (1980), 257-264.
[5] Y. H. Peng, 'On the chromatic coefficients of a bipartite graph', submitted.
[6] E. G. Whitehead Jr., 'Chromatic polynomials of generalized trees', Discrete Math. 72 (1988), 391-393.
[7] H. Whitney, 'The colouring of graphs', Ann. of Math. 33 (1932), 688-718.
Department of Mathematics
Universiti Pertanian Malaysia
43400 Serdang
Malaysia

