J. Austral. Math. Soc. (Series A) 55 (1993), 403-410

ON THE CHROMATIC UNIQUENESS OF CERTAIN TREES OF POLYGONS

Y. H. PENG

(Received 18 January; revised 27 September 1991)

Communicated by Louis Caccetta

Abstract

We establish a characterization of certain trees of polygons similar to that of n-gon-trees given by Chao and Li.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 05 C 75; secondary 05 C 15.

1. Introduction

The graphs which we consider here are finite, undirected, simple, and loopless. For a graph G, let $P(G; \lambda)$ denote its chromatic polynomial. Two graphs X and Y are said to be *chromatically equivalent* if $P(X; \lambda) = P(Y; \lambda)$. If H_1 and H_2 are graphs, we shall say that a graph H is of type (H_1, H_2) if it can be formed from the disjoint union $H_1 \cup H_2$ by identifying an edge of H_1 with an edge of H_2 .

Let *m* and $n_1, n_2, ..., n_m$ be integers satisfying $m \ge 1$ and $n_m > \cdots > n_2 > n_1 \ge 3$. Let \mathcal{G} be the class of graphs defined recursively by the rules: the n_i -cycle C_{n_i} is in \mathcal{G} for each i $(1 \le i \le m)$, and if H_1 and H_2 belong to \mathcal{G} then so does any graph of type (H_1, H_2) . The graphs in \mathcal{G} are called (n_1, n_2, \ldots, n_m) -gon-trees. They are evidently 2-connected planar graphs. If m = 1 and $n_1 = n$ then the graphs in \mathcal{G} are called n-gon-trees.

403

^{© 1993} Australian Mathematical Society 0263-6115/93 \$A2.00 + 0.00

Y. H. Peng

Let H be a graph of type (H_1, H_2) . Then every chordless cycle (induced cycle) in H is a chordless cycle in H_1 or a chordless cycle in H_2 . Also, the chromatic polynomial $P(H; \lambda)$ of H satisfies

(1)
$$P(H;\lambda) = \frac{P(H_1;\lambda)P(H_2;\lambda)}{\lambda(\lambda-1)}$$

It is well known that the chromatic polynomial of an *n*-cycle is given by $P(C_n; \lambda) = \lambda(\lambda - 1)Q(C_n; \lambda)$ where

(2)
$$Q(C_n; \lambda) = (-1)^n \sum_{i=0}^{n-2} (1-\lambda)^i.$$

We thus see that if G is an $(n_1, n_2, ..., n_m)$ -gon-tree then every chordless cycle in G has one of the lengths $n_1, ..., n_m$. An easy inductive argument using (1) and (2) also gives the following theorem.

THEOREM 1. If G is a $(n_1, n_2, ..., n_m)$ -gon-tree with k_i chordless n_i -cycles $(1 \le i \le m)$, then

(3)
$$P(G;\lambda) = \lambda(\lambda-1) \prod_{i=1}^{m} \left(Q(C_{n_i};\lambda) \right)^{k_i},$$

where $Q(C_{n_i}; \lambda)$ is defined by (2).

For *n*-gon-trees (m = 1), Chao and Li [1] proved that the converse of Theorem 1 also holds. The purpose of this paper is to prove the converse of Theorem 1 for a wider class of $(n_1, n_2, ..., n_m)$ -gon-trees.

In the remainder of this section we shall state some known results that will be useful in proving our characterization theorems.

THEOREM A. (Whitney [7]). Let G be a graph of order p and size q. Then

$$P(G;\lambda) = \sum_{k=1}^{p} \left(\sum_{r=0}^{q} (-1)^r N(k,r) \right) \lambda^k,$$

where N(k, r) denotes the number of spanning subgraphs of G having exactly k components and r edges.

https://doi.org/10.1017/S1446788700034121 Published online by Cambridge University Press

THEOREM B. (Chao and Zhao [3]). Let G be a connected graph of order at least 3, and with $P(G; \lambda) = (\lambda - 1)T(G; \lambda)$. Then

(a) T(G; 1) = 0, if and only if G has at least one cut-vertex;

(b) |T(G; 1)| = 1, if and only if G is a 2-connected graph and has no subgraph homeomorphic to the complete graph K_4 with 4 vertices;

(c) $|T(G; 1)| \ge 2$, if and only if G is a 2-connected graph and has at least one subgraph homeomorphic to K_4 .

We also need the next result which gives explicit expressions for the first four coefficients of the chromatic polynomial of a graph.

THEOREM C. Let G be a graph of order p and size q. If $P(G; \lambda) = \sum_{i=0}^{p} a_i \lambda^{p-i}$ is the chromatic polynomial of G, then

(a) $a_0 = 1, a_1 = -q;$

(b) $a_2 = \binom{q}{2} - N_{Q_3};$

(c) $a_3 = -\binom{q}{3} + (q-2)N_{Q_3} + N_{Q_4} - 2N_{K_4};$

where N_{K_i} and N_{Q_i} denote the number of complete graphs K_i and chordless cycles C_i respectively in G, and $\binom{q}{i}$ is the binomial coefficient.

We end this section with the following result which is a corollary of a more general result established in [5].

LEMMA D. Let G be a bipartite graph which has no subgraph K(2, 3). If a graph H is chromatically equivalent with G, then $N_{Q_6}(H) = N_{Q_6}(G)$.

2. Tree of Polygons

In this section we shall prove the converse of Theorem 1 for a wider class of (n_1, n_2, \ldots, n_m) -gon-trees. We first establish the following key result by using Whitney's theorem and a technique introduced by Farrell [4].

THEOREM 2. Let G be a graph of order p and size q with girth $k \ge 3$. If $P(G; \lambda) = \sum_{i=0}^{p} a_i \lambda^{p-i}$ is the chromatic polynomial of G, then

(a) $a_i = (-1)^i {\binom{q}{i}}, \text{ for } i = 0, 1, \dots, k-2;$

(b) $a_{k+i-1} = (-1)^{k+i-1} \left\{ \binom{q}{k+i-1} - \sum_{j=0}^{i} \binom{q-k-j+1}{i-j} N_{\mathcal{Q}_{k+j}} \right\}, \text{ for } i = 0, 1, \dots, \lfloor (k-3)/2 \rfloor.$

Y. H. Peng

PROOF. (a) Let *i* be any integer such that $0 \le i \le k - 2$. By Theorem A, the coefficient of λ^{p-i} is

$$a_i = \sum_{r=0}^{q} (-1)^r N(p-i,r),$$

where N(p - i, r) is the number of spanning subgraphs of G with p - i components and r edges. But in a spanning subgraph with p - i components, no component can have more than i + 1 vertices. Since $i \le k - 2$ and G has girth k, all such spanning subgraphs are forests with exactly i edges, and every set of i edges gives such a forest. So the contribution of these graphs to a_i is therefore

$$(-1)^i \binom{q}{i}.$$

Thus we have the required result.

(b) Let *i* be any integer satisfying $0 \le i \le \lfloor (k-3)/2 \rfloor$. By Theorem A,

$$a_{k+i-1} = \sum_{r=0}^{q} (-1)^r N(p-k-i+1,r),$$

where N(p - k - i + 1, r) is the number of spanning subgraphs of G with p - k - i + 1 components and r edges. No component of such a spanning subgraph can have more than k + i vertices. Since the girth of G is k and $i < \lfloor (k-1)/2 \rfloor$, these spanning subgraphs of G are forests with exactly k+i-1 edges or unicyclic graphs of girth $\geq k$ with k + i edges. Thus we can categorize them as follows:

(i) $S_j = \{ \text{Unicyclic graphs with one chordless } (k + j) \text{-cycle plus } i - j \text{ edges } \}, \text{ for } j = 0, 1, \dots, i.$

(ii) $S_{i+1} = \{ \text{ Forests with } k + i - 1 \text{ edges } \}.$

We shall now calculate the contributions of all the graphs in S_j $(0 \le j \le i+1)$ to the coefficient a_{k+i-1} .

Let j be any integer such that $0 \le j \le i$. All the graphs in S_j have one chordless (k+j)-cycle plus i-j edges. Since G has girth k and $i < \lfloor (k-1)/2 \rfloor$, there is no other such graph which is not in S_j . Therefore the contribution of these graphs to a_{k+i-1} is

$$\xi_j = (-1)^{k+i} \binom{q-k-j}{i-j} N_{\mathcal{Q}_{k+j}}$$

All the graphs in S_{i+1} contain k + i - 1 edges. Since G has girth k and $i < \lfloor (k-1)/2 \rfloor$, the only other graphs with k+i-1 edges which are not in S_{i+1}

406

are unicyclic graphs with one chordless (k + j)-cycle plus i - j - 1 edges, for $j = 0, 1, \dots, i - 1$. Hence the contribution of all the graphs in S_{i+1} to a_{k+i-1} is

$$\xi_{i+1} = (-1)^{k+i-1} \left\{ \binom{q}{k+i-1} - \sum_{j=0}^{i-1} \binom{q-k-j}{i-j-1} N_{Q_{k+j}} \right\}$$

By adding all the contributions ξ_i ($0 \le j \le i+1$) to a_{k+i-1} , and using the binomial identity $\binom{r}{s} + \binom{r}{s-1} = \binom{r+1}{s}$, we get the required result.

COROLLARY 3. If two graphs G and H are chromatically-equivalent, then they have the same girth. Furthermore, if the girth of G is $k \ge 3$, then H and G have the same number of chordless i-cycles for $3 \le i \le k + \lfloor (k-3)/2 \rfloor$.

Our characterization theorems depend on the following lemma.

LEMMA 4. Let G be a connected graph of order p, size q, and with chromatic polynomial given by (3). Then

- (a)
- $p = \sum_{i=1}^{m} (n_i 2)k_i + 2 \text{ and } q = \sum_{i=1}^{m} (n_i 1)k_i + 1;$ G is a 2-connected planar graph with $\sum_{i=1}^{m} k_i$ interior regions. (b)

PROOF. (a) It is easy to see that $(Q(C_{n_i}; \lambda))^{k_i}$ has degree $(n_i - 2)k_i$ and that the coefficient of $\lambda^{(n_i-2)k_i-1}$ is $-(n_i - 1)k_i$. Thus

$$P(G; \lambda) = \lambda(\lambda - 1) \times \prod_{i=1}^{m} (Q(C_{n_i}; \lambda))^{k_i}$$

has degree $h = \sum_{i=1}^{m} (n_i - 2)k_i + 2$ and its coefficient of λ^{h-1} is $-(\sum_{i=1}^{m} (n_i - 2)k_i + 2)k_i + 2$ 1) $k_i + 1$). Hence we conclude that (a) holds.

(b) Let $P(G; \lambda)$ be written as $P(G; \lambda) = (\lambda - 1)T(G; \lambda)$, that is,

$$T(G; \lambda) = \lambda \prod_{i=1}^{m} (Q(C_{n_i}; \lambda))^{k_i}.$$

Then $|T(G; 1)| = |1 \prod_{i=1}^{m} (Q(C_{n_i}; 1))^{k_i}| = 1$, since $|Q(C_{n_i}; 1)| = 1$ for $1 \le 1$ $i \leq m$. By Theorem B(b), G is a 2-connected graph and has no subgraph homeomorphic to K_4 , and hence G is a planar graph (see [1, Lemma 6]).

The well-known theorem of Euler states that the p vertices, q edges, and fregions of a planar graph satisfying p + f = q + 2. Thus for the graph G, we have $\sum_{i=1}^{m} (n_i - 2)k_i + 2 + f = \sum_{i=1}^{m} (n_i - 1)k_i + 1 + 2$, and $f = \sum_{i=1}^{m} k_i + 1$, that is, G has $\sum_{i=1}^{m} k_i$ interior regions.

Y. H. Peng

We are now ready to state and prove our main result.

THEOREM 5. Let $m \ge 2$ and let n_i be integers satisfying $3 \le n_1 < n_2 < \cdots < n_m \le n_1 + \lfloor (n_1 - 3)/2 \rfloor$. Then a graph G is a (n_1, n_2, \ldots, n_m) -gon-tree with k_i chordless n_i -cycles $(1 \le i \le m)$ if and only if

$$P(G; \lambda) = \lambda(\lambda - 1) \prod_{i=1}^{m} (Q(C_{n_i}; \lambda))^{k_i},$$

where $Q(C_{n_i}; \lambda)$ is defined as in (2).

PROOF. The necessity follows from Theorem 1. To prove the sufficiency we proceed as follows. We first claim that G has k_i chordless n_i -cycles for $1 \le i \le m$. Since G is chromatically-equivalent to a (n_1, n_2, \ldots, n_m) -gon-tree with k_i chordless n_i -cycles $(1 \le i \le m)$, the claim follows from the corollary to Theorem 2.

By Lemma 4 and the above claim, $P(G; \lambda) = \lambda(\lambda - 1) \prod_{i=1}^{m} (Q(C_{n_i}; \lambda))^{k_i}$ implies that G is a 2-connected planar graph with $\sum_{i=1}^{m} (n_i - 2)k_i + 2$ vertices, $\sum_{i=1}^{m} (n_i - 1)k_i + 1$ edges, $k = \sum_{i=1}^{m} k_i$ interior regions, and k_i chordless n_i -cycles $(1 \le i \le m)$. We now proceed by induction on k to show that G is indeed a (n_1, n_2, \ldots, n_m) -gon-tree with k_i chordless n_i -cycles $(1 \le i \le m)$. For k = 1, that is, $k_i = 0$ for all $i, 1 \le i \le m$ except $k_r = 1$ for some r, $1 \le r \le m$, it is clear that G is a (n_r) -gon-tree with one chordless n_r -cycle. Assume that the conclusion holds for $k - 1 = \sum_{i=1, i \ne t}^{m} k_i + (k_t - 1)$, for some $t, 1 \le t \le m$ ($k \ge 3$). That is, if G* is a 2-connected planar graph with $\sum_{i=1}^{m} (n_i - 2)k_i + 2 - (n_t - 2)$ vertices, $\sum_{i=1}^{m} (n_i - 1)k_i + 1 - (n_t - 1)$ edges, k - 1 interior regions, and k_i chordless n_i -cycles $(1 \le i \le m, i \ne t)$ and $k_t - 1$ chordless n_t -cycles, $(1 \le i \le m, i \ne t)$ and $k_t - 1$ chordless n_t -cycles.

We now consider k. Suppose that G is not a (n_1, n_2, \ldots, n_m) -gon-tree with k_i chordless n_i -cycles $(1 \le i \le m)$. If G contains h $(h \ge 2)$ chordless cycles C_{r_j} $(1 \le j \le h)$ which share exactly one common edge e, then G - e is a 2-connected planar graph with k - 1 interior regions, $\sum_{i=1}^{m} (n_i - 2)k_i + 2$ vertices, $\sum_{i=1}^{m} (n_i - 1)k_i$ edges, and k_i chordless n_i -cycles $(1 \le i \le m, i \ne r_j$ for $1 \le j \le h$, $k_{r_j} - 1$ chordless n_{r_j} -cycles, and one chordless $n_{r_1+r_j-2}$ -cycle for each $2 \le j \le h$. But G - e is not a $(n_1, n_2, \ldots, n_m, n_{r_1+r_2-2}, n_{r_1+r_3-2}, \ldots, n_{r_1+r_h-2})$ -gon-tree with k_i chordless n_i -cycles $(1 \le i \le m, i \ne r_j \text{ for } 1 \le j \le h)$, $k_{r_j} - 1$ chordless n_i -cycles, and one chordless $n_{r_1+r_j-2}$ -cycle for $2 \le j \le h$, contradicting our induction hypothesis. So any two chordless cycles of G

have either no or at least two edges in common. But then, since G is a 2connected planar graph with $\sum_{i=1}^{m} k_i$ interior regions and k_i chordless n_i -cycles $(1 \le i \le m)$, it is not difficult to see that G has no more than $\sum_{i=1}^{m} (n_i - 2)k_i + 2$ edges, which is strictly less than $\sum_{i=1}^{m} (n_i - 1)k_i + 1$, again a contradiction.

3. Special Cases

We shall in this section characterize two other trees of polygons which are not established in Theorem 5. Firstly we need the following two results.

LEMMA 6. If a graph G is chromatically-equivalent to a (3, 4)-gon-tree with k_1 triangles and k_2 chordless 4-cycles, then G has the same number of triangles and chordless 4-cycles.

PROOF. This follows from Theorem C.

LEMMA 7. If a graph G is chromatically-equivalent to a (4, 6)-gon-tree with k_1 chordless 4-cycles and k_2 chordless 6-cycles, then G has the same number of chordless 4 and 6-cycles.

PROOF. This follows from the corollary to Theorem 2 and Lemma D.

We are now ready to give the characterizations of (3,4)-gon-trees and (4,6)-gon-trees which can easily be proved using Lemmas 6 and 7, and similar arguments to those used in establishing Theorem 5.

THEOREM 8. A graph G is a (3, 4)-gon-tree with k_1 triangles and k_2 chordless 4-cycles, where $k_1 + k_2 \ge 1$, if and only if

$$P(G;\lambda) = \lambda(\lambda-1)(\lambda-2)^{k_1}(\lambda^2-3\lambda+3)^{k_2}.$$

THEOREM 9. A graph G is a (4, 6)-gon-tree with k_1 chordless 4-cycles and k_2 chordless 6-cycles, where $k_1 + k_2 \ge 1$, if and only if

$$P(G; \lambda) = \lambda(\lambda - 1)(\lambda^2 - 3\lambda + 3)^{k_1}(\lambda^4 - 5\lambda^3 + 10\lambda^2 - 10\lambda + 5)^{k_2}.$$

In concluding this paper, we note that the converse of Theorem 1 holds if the following conjecture is true.

CONJECTURE. If a graph G is chromatically equivalent to a $(n_1, n_2, ..., n_m)$ gon-tree with k_i chordless n_i -cycles $(1 \le i \le m)$, then G has k_i chordless n_i -cycles for i = 1, 2, ..., m.

Acknowledgement

The author is grateful to the referee for his comments and suggestions.

References

- [1] C. Y. Chao and N. Z. Li, 'On trees of polygons', Arch. Math. 45 (1985), 180–185.
- [2] C. Y. Chao and E. G. Whitehead Jr., 'On the chromatic equivalent of graphs', in: *Theory and applications of graphs*, Lecture Notes in Math. **642** (Springer, Berlin, 1978) pp. 121–131.
- [3] C. Y. Chao and L. C. Zhao, 'Chromatic polynomials of connected graphs', Arch. Math. 43 (1984), 187–192.
- [4] E. J. Farrell, 'On chromatic coefficients', Discrete Math. 29 (1980), 257-264.
- [5] Y. H. Peng, 'On the chromatic coefficients of a bipartite graph', submitted.
- [6] E. G. Whitehead Jr., 'Chromatic polynomials of generalized trees', *Discrete Math.* 72 (1988), 391–393.
- [7] H. Whitney, 'The colouring of graphs', Ann. of Math. 33 (1932), 688-718.

Department of Mathematics Universiti Pertanian Malaysia 43400 Serdang Malaysia