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Abstract Let F be an algebraically closed field, G be a finite group and H be a subgroup of G. We
answer several questions about the centralizer algebra FGH . Among these, we provide examples to show
that

• the centre Z(FGH) can be larger than the F -algebra generated by Z(FG) and Z(FH),

• FGH can have primitive central idempotents that are not of the form ef , where e and f are
primitive central idempotents of FG and FH respectively,

• it is not always true that the simple FGH -modules are the same as the non-zero FGH -modules
HomFH(S, T ↓ H), where S and T are simple FH and FG-modules, respectively.
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If R is a commutative ring, G is a finite group and H is a subgroup of G, then the
centralizer algebra RGH is the set of all elements of RG that commute with all ele-
ments of H. The algebra RGH is a Hecke algebra in the sense that it is isomorphic to
EndRH×G(RG) = EndRH×G(1∆H ↑H×G), where ∆H = {(h, h) : h ∈ H}. Thus Robin-
son’s methods from [12] and Alperin’s methods form [2] can be applied, replacing their
G by H ×G and their H by ∆H. We have studied the representation theory of centralizer
algebras in several papers [4–7], mainly in cases where G is p-solvable and H is normal,
or when G = Sn and H = Sm for n − 3 � m � n. Part of our original motivation was
to see whether there might be a ‘weight conjecture’ for these algebras—one that would
simultaneously generalize Alperin’s weight conjecture and Brauer’s First Main Theorem
on Blocks. This idea is explained in more detail in [5], [4] and [6]. Also, when H is a
p-subgroup these algebras play an important role in Green’s approach to modular rep-
resentation theory and in Puig’s theory of points. Along the way, several fairly basic
and general questions have come up. This paper mainly consists of counter-examples to
conjectures that one might be led to make based on the evidence in our earlier papers.
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When coefficients belong to an algebraically closed field F of characteristic 0, or of
characteristic p where p � |G|, the representation theory of a centralizer algebra FGH is
easy to understand. (See [5, Lemma 2.1] and [10, Lemma 1.0.1] for proofs.)

(i) The algebra FGH is semisimple.

(ii) If S is a simple FH-module and T is a simple FG-module such that

HomFH(S, T ↓H) �= 0,

then the FGH -module HomFH(S, T ↓H) is simple. (The space of homomorphisms
is an FGH -module via the multiplication (aϕ)(v) = a(ϕ(v)) for all a ∈ FGH ,
ϕ ∈ HomFH(S, T ↓H) and v ∈ S.)

(iii) Every simple FGH -module arises in this way, and appears just once as S and T

run through all possibilities.

(iv) The centre of FGH is generated as an F -algebra by the centres of FG and FH.

(v) Every primitive central idempotent of FGH has the form ef , where e is a primitive
central idempotent of FG and f is a primitive central idempotent of FH.

If the characteristic of the field does divide |G|, then FGH is not semisimple, because
the one-dimensional space spanned by

∑
g∈G g is a nilpotent two-sided ideal. It is natural

to ask whether items (ii)–(v) are still true in the non-semisimple case. As we will see,
none of them is true in general. However, some of the counter-examples were not easy
to find. Asking whether they are true or close to true in particular cases has been a
useful approach. For example, we show in [5] that (ii)–(v) are all true when G = Sn and
H = Sn−1. In the preprint [7], we show that (v) is true when G = Sn and H = Sn−2

or Sn−3.
From now on, F is a field of characteristic p. For any subset A of G, we let A+ =∑
g∈A g ∈ FG. There is a basis for FGH consisting of all elements of the form C+, where

C is an orbit for the conjugation action of H on G.

Question 1. Is FGH a symmetric algebra?

In general, the answer is no. Take H = G, so that FGH = Z(FG). If G has more
p-regular classes than blocks, Z(FG) is not symmetric. The Reynolds ideal, Soc(FG) ∩
Z(FG), has as a basis the p-regular section sums (see [11, (39)]). So Soc(Z(FG)) has
dimension greater than or equal to l(FG), the number of simple modules. On the other
hand, the dimension of Hd(Z(FG)) equals the number of p-blocks.

Question 2. If S is a simple FH-module and T is a simple FG-module such that
HomFH(S, T ↓H) �= 0, is HomFH(S, T ↓H) a simple FGH -module?

In general, the answer is no. To construct a counter-example, we will use the following
proposition.
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Proposition 1. Let P be a normal p-subgroup of G such that CG(P ) ⊆ P . Let V be
the simple FP -module. Let U be a simple FG-module. If HomFP (V, U ↓P ) is a simple
FGP -module, then U has dimension 1 as a vector space over F .

Proof. Since V is the unique simple FP -module, it follows from Clifford’s Theorem
that P acts trivially on U . Pick a non-zero element v of V . It is easily checked that the
map φ �→ φ(v) gives an isomorphism HomFP (V, U) ∼= U ↓FGP as modules over FGP .
Hence U ↓FGP is simple.

Next, we show that U ↓FCG(P ) is simple. Let W be an FCG(P )-submodule of U . We
claim that W is also an FGP -submodule of U ↓FGP . To see this, let C be an orbit of the
conjugation action of P on G. Since P acts trivially on U , every element of C acts the
same way on U . Because |C| is a power of p, it follows that C+ acts as 0 on U unless
C = {x} for some x ∈ CG(P ).

Since CG(P ) ⊆ P , and U ↓FCG(P ) is simple, it follows that U has dimension 1 as a
vector space over F . �

It is now easy to construct a counter-example. Let P be an elementary abelian p-group
of order p2. Let K = SL(2, p), acting on P by ordinary matrix multiplication. Let G be
the semidirect product of K and P . We have CG(P ) ⊆ P ; it therefore follows from
Proposition 1 that for any simple FG-module U with dimF (U) > 1, HomFP (V, U ↓P ) is
not simple as an FGP -module. In [1], Alperin lists all simple FK-modules. They have
dimensions 1, 2, . . . , p. Any one of these inflated by the projection G → K is a simple
FG-module.

It can, however, easily happen that for a particular pair G, H, the answer to Question 2
is affirmative, even when FGH is not semisimple. For example, Kleshchev’s branching
rule shows that if G = Sn and H = Sn−1, then the answer to Question 2 is affirmative.

Question 3. Is every simple FGH -module isomorphic to HomFH(S, T ↓H) for some
simple FH-module S and simple FG-module T?

In general, the answer is no. The following counter-example was communicated to us
by Burkhard Külshammer.

An affirmative answer would imply that l(FGH), the number of simple FGH -modules,
is less than or equal to the product l(G)l(H). In order to construct a counter-example to
this inequality, let us take H to be a p-subgroup of G, so that l(H) equals 1. Then l(FGH)
is at least as big as l(CG(H)); this follows from the fact that the Brauer homomorphism
with respect to H maps FGH onto FCG(H). So a positive answer to Question 3 would
imply that l(G) � l(CG(H)).

As a counter-example, take G to be the dihedral group of order 80, H to be a subgroup
of G of order 5, and F to have characteristic 5. The subgroup H is a normal 5-subgroup
of G, and G/H is a dihedral group of order 16. Hence FG has seven simple modules in
characteristic 5, four of dimension 1 and three of dimension 2. On the other hand, CG(H)
is a cyclic group of order 40 and so FCG(H) has eight simple modules in characteristic 5.

As a weak form of Question 3, we ask the following.
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Question 4. Is every simple FGH -module a composition factor of a module of the
form HomFH(S, T ↓H), where S is a simple FH-module and T is a simple FG-module?

The answer is affirmative, as we now show. This line of argument was suggested by
Boltje, Külshammer, Linckelmann and Scott (personal communication).

First, we point out that the map ϕ �→ ϕ(1) gives an isomorphism of FGH -modules

HomFH(FH, FG) ∼= FG.

The affirmative answer to Question 4 now follows from the next proposition.

Proposition 2. Let M be an FG-module, and let N be an FH-module. If D is a
composition factor of the FGH -module HomFH(N, M), then there are a composition
factor S of N and a composition factor T of M such that D is a composition factor
of HomFH(S, T ).

Proof. Let
0 → M1 → M → M2 → 0

be a short exact sequence of FG-modules. Left exactness of the functor Hom(N, ·) gives
an exact sequence

0 → HomFH(N, M1) → HomFH(N, M) → HomFH(N, M2),

where the last map is not necessarily surjective. It is easily checked that the maps are
FGH -module homomorphisms. Hence, each composition factor D of HomFH(N, M) is
also a composition factor of HomFH(N, T ) for some composition factor T of M .

Similarly, left exactness of the functor Hom(·, T ) tells us that if

0 → N1 → N → N2 → 0

is a short exact sequence of FH-modules, then there is an exact sequence

0 → HomFH(N2, T ) → HomFH(N, T ) → HomFH(N1, T ).

The maps are easily checked to be FGH -homomorphisms.
Thus, if D is a composition factor of HomFH(N, T ), then there exists a composition

factor S of N such that D is a composition factor of HomFH(S, T ). �

Question 5. Is the centre of FGH generated as an algebra by Z(FG) and Z(FH)?

The answer is no, in general. We will exhibit a counter-example.
If R is a suitable local ring of characteristic 0 with residue field F of charac-

teristic p, we get an algebra epimorphism RGH → FGH that maps Z(RGH) into
Z(FGH). Let Z(RGH) be the image of this map. Since 〈Z(RG), Z(RH)〉 ⊆ Z(RGH),
and 〈Z(RG), Z(RH)〉 maps onto 〈Z(FG), Z(FH)〉, we have

〈Z(FG), Z(FH)〉 ⊆ Z(RGH) ⊆ Z(FGH).
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If it were true that 〈Z(FG), Z(FH)〉 = Z(FGH), then it would also be true that
Z(RGH) = Z(FGH). Thus, in order to produce a counter-example to the conjecture
Z(FGH) = 〈Z(FG), Z(FH)〉, it is enough to exhibit an element of Z(FGH) that is not
in the image of the map coming from Z(RGH).

For a counter-example, let G = S4, let H be the normal Klein 4-group containing the
products of disjoint 2-cycles, and let F have characteristic 2.

The conjugation action of H on G has 12 orbits. The four elements of H lie in singleton
orbits. The two containing (1, 2, 3) and (1, 3, 2) have size 4. In addition, there are six orbits
of size 2, with representatives (1, 2), (1, 3), (1, 4), (1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3). Denote
the orbit of g by Og, and the orbit sum in RGH by O+

g , for each representative g.
We claim that O+

(1,2,3) is not in Z(RGH) but its image is in Z(FGH).
To see this, note first that O+

(1,2,3) commutes with O+
(1,2,3) and O+

(1,3,2) and all elements
of H, as it is a class sum of A4. Next,

O+
(1,2,3)O

+
(1,2) = 2(O+

(1,4) + O+
(1,3,4,2)),

but
O+

(1,2)O
+
(1,2,3) = 2(O+

(1,3) + O+
(1,2,3,4)).

Conjugating by (1, 2, 3) and (1, 3, 2), we get similar equations for the terms

O+
(1,2,3)O

+
(1,3), O+

(1,3)O
+
(1,2,3), O+

(1,2,3)O
+
(1,4) and O+

(1,4)O
+
(1,2,3).

Nevertheless, there are also quite a few examples for which the answer to Question 5
is affirmative. The paper [6] shows that the answer is affirmative when G = Sn and
H = Sn−1. Computer calculations done by the first author using Magma [3] and GAP [8]
have shown that the answer is affirmative when G = Sn and H = Sm for all cases with
m � n � 8. Some of these calculations used a fairly recent theorem of Alperin [2].
Alperin’s theorem provides us with a way to compute the order of the finite abelian
group Z(ZGH)/〈Z(ZG), Z(ZH)〉, where as usual Z denotes the integers; this group has
order equal to the product of the elementary divisors of a certain matrix called the
reduced class–coset table for the groups ∆H and H × G. (See [2] for the definition.)

As a weak form of Question 5, one can ask the following.

Question 6. Is Z(FGH) = 〈Z(FG), Z(FH)〉 + J(Z(FGH))?
Or equivalently, is every block idempotent of FGH of the form ef , where e is a block

idempotent of FG and f is a block idempotent of FH?

The answer is no, in general, although there are many examples in which the answer is
affirmative. The following is a counter-example, originally found by the first author using
Magma [3]. The counter-example for Question 5 is not a counter-example for Question 6,
as Proposition 3 below shows.

Example. If G = S6, H = A4 and F is a splitting field of characteristic 5, then
〈Z(FG), Z(FH)〉 does not contain all primitive idempotents of Z(FGH). In particular,
there are block idempotents e for FG and f for FH such that ef is not central primitive
in FGH . The algebra efFGH is not indecomposable as an F -algebra.
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Proof. We take e to be the principal 5-block idempotent of FG and f to be the
principal 5-block idempotent of FH. Since FH is semisimple, fFH ∼= F . Note that f is
a primitive idempotent in fFH (and not just a centrally primitive idempotent).

Think of fFG and fFGe as right FG-modules. The first two paragraphs of the proof
of Proposition 2.6 of [5] show that there is a natural injective F -algebra map efFGH →
EndFG(fFGe); the map sends efx ∈ efFGH to multiplication on the left by efx.
(Proposition 2.6 in [5] applies just to G = Sn and H = Sn−1, but the relevant part of
the proof only uses the fact that f has p-defect 0 and f is primitive in fFH.) In our
case, the map happens to be an isomorphism. We can see this by comparing dimensions
of domain and range—looking at ordinary character multiplicities we see that both are
four dimensional. Thus efFGH ∼= EndFG(fFGe).

Now we analyse fFGe as a right FG-module. The FG-module fFG is isomorphic to
the induced module (fFH) ↑G∼= FH ↑G. However, consider the chain of groups H �
N � G, where N = S4. Then

FH ↑N= FN ⊕ sgnN and FH ↑G= FN ↑G ⊕ sgnN ↑G,

where FN is the trivial module and sgnN is the sign module.
We need some information from [9] about the principal 5-block eFG of S6. There

are four simple eFG-modules, labelled by the 5-regular partitions [6], [4, 2], [3, 2, 1] and
[22, 12]. Denote the corresponding simple modules by D([6]), D([4, 2]), etc., and their
projective covers by P ([6]), P ([4, 2]), etc. With respect to these labellings, the Cartan
matrix is ⎡

⎢⎢⎢⎣

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

⎤
⎥⎥⎥⎦ .

In particular, the principal indecomposable modules P ([6]) and P ([22, 12]) have no com-
position factor in common.

Now we return to the isomorphism

fFG ∼= FH ↑G= FN ↑G ⊕ sgnN ↑G .

It is easy to see that

FN ↑G e = P ([6]) and sgnN ↑G e = sgnG ⊗FN ↑G e = P ([22, 12]).

Since P ([6]) and P ([22, 12]) have no composition factor in common, it follows that

EndFG(fFGe) = EndFG(P ([6]) ⊕ P ([22, 12]))

= EndFG(P ([6])) ⊕ EndFG(P ([22, 12])).

Thus efFGH , which is isomorphic to EndFG(fFGe), decomposes into a direct product of
two non-zero F -algebras (each two dimensional and commutative with a one-dimensional
Jacobson radical). �
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Note. From the ordinary character multiplicities we see that efFGH is commuta-
tive (even though FGH is certainly not commutative). Now, with N = S4, it is clear
that Z(FN) ⊆ FGH (for very general reasons). Thus efZ(FN) ⊆ Z(efFGH), because
efFGH is commutative. What is happening then is that ef = aef + bef (a non-trivial
orthogonal decomposition in the centre of the algebra), where a is the block idempotent
of the 5-block of N containing FN and b is the block idempotent of the 5-block of N

containing sgnN .
Some positive results along the lines of Question 6 are possible. For example, the

answer is affirmative when G = Sn and H = Sm for m = n − 1, n − 2 or n − 3. The
following proposition gives another situation in which the answer is affirmative.

Proposition 3. Assume that P is a normal p-subgroup of G. Then every central
idempotent of FGP is in Z(FG).

Proof. Let e be a primitive central idempotent of FGP . The Brauer map BrP :
FGP → FCG(P ) is a surjective homomorphism. Its kernel is a nilpotent ideal. (To see
this, note that if C is an orbit of the conjugation action of P on G\CG(P ), then C+

acts as 0 on each simple FG-module, so C+ is in J(FG) ∩ FGP .) Let f = BrP (e). Then
f = e + j, with j ∈ J(FGP ). Pick an n such that jpn

= 0. Then

f = fpn

= (e + j)pn

= epn

+ jpn

= e.

Thus e ∈ FCG(P ). Since e must be central in FCG(P ), it follows that e is a linear
combination of elements of CG(P ) of order prime to p.

Assume, for a contradiction, that e is not in the centre of FG. Let g ∈ G such that
g−1eg �= e. Then g−1ege = 0 since g−1eg is another primitive central idempotent. Let
C be the orbit of g under the conjugation action of P . Since P is normal, C ⊆ gP . Let
x1, x2, . . . , xs be elements of P such that C = {gx1, gx2, . . . , gxs}. Let a = x1 +x2 + · · ·+
xs. Then C+ = ga. Since e is a central idempotent of FGP , it follows that gae = ega.
Since a ∈ FP , ae = ea, so gea = ega, and hence ea = g−1ega. Multiplying from the left
by e, we obtain ea = eea = eg−1ega = 0a = 0.

However, e is a linear combination of p′-elements of CG(P ), so for each i, exi is a linear
combination of elements with p-part xi. Therefore, the elements of the set {ex1, . . . , exs}
have disjoint support. It follows that the sum ea = ex1 + ex2 + · · · + exs cannot be 0.
This contradiction completes the proof. �
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