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Introduction

Let K be a field, G a finite group. Let V be an (irreducible) KG-module, where KG
is the group algebra consisting of all formal sums Y*eGa

Bg> ageK, geG. The action of
a. = Yj1gg o n a n element veV obeys the rule vi^£jgsGagg)=YjgeG{agv)g. If H is a subgroup
of G, then, restricting the action of G on V to H, V is also a KH-module. Notation: VH.

Let now N be a normal subgroup of G. The KN-module VN is not irreducible in
general, even when V is irreducible as /CG-module. The well-known theorem of A. H.
Clifford ([3], V.I7.3) tells us precisely what is going on here.

Theorem (A. H. Clifford, 1938). Let V be an irreducible KG-module. Let N<i G. Then
the following properties hold.

(a) / / W is an irreducible KN-submodule of V, then V = YdgeG^S- Every Wg is an
irreducible KN-module and V is a completely reducible KN-module.

(b) Let Wl,...,Wa be representatives of the isomorphism classes of the irreducible KN-
submodules of V. Write

V,= I W (i=l n).

Then Vx is homogeneous, i.e. it is a direct sum of KN-submodules of V, all being
isomorphic to Wh as KN-modules. Moreover V = ©?= i Vv

(c) Let F; be the irreducible representation ofN on Wt. Then Ff, defined by (H>jg)(Ff (n)) =
{WiFj(n))g, wf6 WhgeG is the irreducible representation of N on Wig.

(d) The homogeneous components Vt of the KN-module V are permuted transitively by
elements of G by multiplication on the right.

(e) For every j the equality

{g\geG, Vjg= Vj} = {g\geG,F°} equivalent to F,}

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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154 ROBERT W. VAN DER WAALL

holds. These elements g constitute the subgroup Aj (say) of G. Then Vj is an
irreducible KArmodule. We have Vz Vj (g)KA. KG = Vf ("K is induced by V").

(f) Let D be the representation of G on V. The irreducible constituents of DN are
precisely all the G-conjugates FB of a single irreducible representation F of N. They
occur all with the same multiplicity e.

(g) V X is the trace function of D and if <j> is the trace function of an irreducible
constituent F of DN, then XN = e(£"= 1 <t>9% where the gt are representatives of the
right cosets of the subgroup A = {g\geG, F9 equivalent to F) in G. Notice that
AsN. The positive integer e is called the inertia index [or ramification index) of D
(or V) over N.

Let G, N and A be the groups just mentioned in Clifford's Theorem. Sometimes we
would like to know whether e divides \A/N\. This happens certainly in two well known
cases:

1. K algebraically closed of characteristic zero or of positive characteristic not
dividing the order of G; see [13], page 35.

2. K a finite field of odd characteristic not dividing the order of G and containing
the primitive mth-roots of unity, where m = |G|2', G/N an elementary abelian p-
group; see [10], Theorem 13, due to W. Willems.

It is not true that the divisibility property of the inertia index always holds. As an
example, take R cyclic of order 3, K = ¥2, {1} = N<ZR. Then there exists an irreducible
two-dimensional F2-representation of R with inertia index 2 over N. One of the
purposes of this paper is to show that the behaviour of e can be described if G/N has
prime order, G arbitrary, K a finite field. It is done in Theorem E.

In this paper we also study the situation in which F is a finite field, V a FG-module,
such that the vector space V carries a non-singular alternating bilinear form with values
in F, which is left invariant by G. Such a FG-module is called symplectic. If L is a FG-
module, then L* will denote the dual module. Thus L* = Hom|F(L, F) and the action of G
on L* is defined by v(<xg) = (vg~l)a for cteL*, geG, veL. If L^L* as FG-modules then L
is called self-dual. It is well known that L is self-dual if and only if L carries a non-
singular, G-invariant, bilinear form.

The following situations will be studied.

I. Let F be a finite field and let V be a faithful irreducible symplectic FG-module. Let
NoG, |G/N| = odd prime number. What does the decomposition of VN look like? Or,
what happens with (V(g)fK)N for a suitable field extension K of finite degree over F?
Does an irreducible constituent of V (xV K decompose as a direct sum of irreducible
KN-modules, each being symplectic and standing perpendicular to each other with
respect to the (tensored) symplectic K-form? What about the ramification index el Is it
equal to 1, to \G/N\, or to something else? An answer to these questions will be given in
Theorem A. In a Corollary to Theorem A somewhat more can be said when F has
characteristic 2.

II. If we impose more conditions on the group G, then we can sharpen Theorem A.
The result is Theorem B. The proof of Theorem B is a corollary to Theorem A.
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III. Suppose that the symplectic FG-module V with F a finite field, is a direct sum of
pairwise non-isomorphic, self-dual, irreducible FG-modules. We say that such a FG-
module is monoprimary. Let No G. Suppose that the order of G/N is odd and assume
that every prime divisor of \G/N\ divides |F| — 1. Then VN is monoprimary (Theorem C).
In order to prove that theorem we first consider the special case where V is an
irreducible symplectic FG-mpdule, |G/N| = odd prime number q, q divides |F| — 1. It turns
out that Vn is monoprimary and so the inertia index e is equal to 1 (Theorem D). The
statement of Theorem D resembles that of the analogous statement made in the proof of
Theorem (3.1) of [8]. The method of the proof of Theorem D given here, can be
regarded as a specialization of the proof of Theorem A. For an application of Theorem
D we refer to Theorem (2.3) of [12]. It shows that in Theorem C the word
"monoprimary" can be replaced by the word "anisotropic". As such, (2.3) of [12] is a
generalization of (3.1) of [8]. It then yields one of the main results of [12] stated as
follows.

Theorem ([12], R. W. van der Waall and N. S. Hekster). Suppose that p is an odd
prime, that G is a finite p-solvable group, that N is a normal subgroup of G, and that % is a
monomial irreducible character of N whose degree x(l) is a power of p. Let n be an
irreducible constituent of the induced character %G. Assume that every prime divisor of
\G/N\ divides p(p—1) and that G/N is supersolvable of odd order. Then n is a monomial
character.

The above theorem should be compared with Dade's Theorem (0) in [2]:

Theorem ([2], E. C. Dade). Suppose that p is an odd prime, that G is a finite p-
solvable group, that \f/ is a monomial irreducible character of G whose degree \//(l) is a
power of p, that N is a subnormal subgroup of G, and that an irreducible character x of N
is a constituent of the restriction ipN of \j/. Then x is monomial.

To conclude this Introduction, a few remarks are in order.
All the questions mentioned above about the inertia index e and on the symplectic

Schur-Clifford theory play an essential role in the (complex) representation theory of
finite groups today. The reader is referred to papers of Isaacs, Berger, Dade, Parks and
van der Waall; see notably [1, 2, 6, 7, 8, 9, 10, 11, 12]. In all these papers monomial
characters are focussed as a central theme.

Notations and conventions

Most of the notations are standard and can be found in [3, 4, 5] or are otherwise
clear or self-explanatory. We recall some notions.

(1) Consider a type of operation on isomorphism classes of FG-modules (though
apparently not in any natural way on the modules, themselves). We have in mind the
following. Let a be an automorphism of F. If V is an FG-module, then by a choice of
basis, V determines an F-representation X of G. Application of a to the entries of the
matrices X(G) yields a new F-representation X". This corresponds to some FG-module
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whose isomorphism class is uniquely determined by V and a. We shall write V" to
denote any module in this class. If F is a finite field with b = p" elements, with p=charF,
then Gal (F/Fp) = </?>, where Fp is the prime field of F, and where /? is the Frobenius
automorphism xi-»xp, x e F. We then denote Vp' sometimes by V'.

(2) Definition (3.6) of [8]. Let F g £ be fields and let V be an £G-module. Then V is
weakly self-dual over F if V*^V for some aeGal(£/F).

(3) Lemma (3.4) of [8]. Let N o G with G/N abelian and suppose that F is a splitting
field for G/N with charF not dividing \G/N\. If V and W are irreducible FG-modules
such that VN and WN have a common irreducible constituent, then W^Vfi for some
linear F-character /i of G/N.

(4) Proposition (3.7) of [8]. Let £ 2 F be fields with Gal(£/F) abelian, and let V be an
£G-module which is weakly self-dual over F. If X is an F-character of G of odd
multiplicative order and VX is also weakly self-dual over F, then K s FA.

(5) 02-(G) = product of all normal subgroups M of G with 2JfM\.
F(G) = Fitting subgroup of G.
^i(G) = <g|geG,gp= 1>; here G is a p-group for some prime p.
Op(G) = the maximal normal p-subgroup of G.
F, = finite field consisting of t elements.
E = an algebraic closure of the field E.

): see the definition given in the last lines of page 151 of [5].

The theorems and their proofs

Theorem A. Let G be a finite group. Suppose V is a faithful irreducible non-singular
symplectic FG'-module for a certain finite field F. Let NoG, \G/N\ = q, where q is an odd
prime number. Then there exists a finite field K containing F such that at least one of the
following properties holds.

(1) The KG-module F(X)f K contains a faithful irreducible non-singular symplectic KG-
module W such that WN— Ut ± • • • 1 Uq, where Ut^ Uj as KN-modules if i=/=j, the Ut are
irreducible non-singular symplectic KN-submodules of WN for the symplectic form on W
restricted to l/£.

(2) The KG-module V(x)fK contains a faithful irreducible non-singular symplectic KG-
module W such that W is also irreducible when considered as KN-module.

(3) There exists a self-dual absolutely irreducible KG-module T which is also absolutely
irreducible as KN-module and there exists a 2-dimensional irreducible KG-module S such
that N acts trivially on S in such a way that T(^)KS is isomorphic to a faithful irreducible
non-singular symplectic KG-submodule of V(

Proof. There are two cases to be considered. Namely, (A) VN is not homogeneous,
(B) VN is homogeneous.

(A) Let VN be not homogeneous. Then it follows from Clifford's theorem ([3], V.I7.3)
that VN is a direct sum of q pairwise non-isomorphic FN-submodules. Call them
Uu...,Ur Hence

VN = U1+- + U,. (1)
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In fact we see that here any irreducible FN-submodule T of VN is equal to precisely one
of the [/,. With respect to the symplectic form it follows from a well known folklore
theorem that the completely reducible FAf-module VN admits an orthogonal direct sum
decomposition

(2)

where the Ml,...,M? are irreducible non-singular symplectic FN-modules with the form
on V restricted to M,, and where all the Ms+1,...,Mf+t are irreducible totally isotropic
FA^modules; the matrix representation afforded by Mf+; is the inverse-transpose to that
afforded by Ms+i. Following the KruH-Schmidt Theorem applied on (1) and (2) there is
at least one Ul (say) exactly equal to some Af, belonging to the set {M1,...,MS} as this
set is not empty; namely q = s + 2t, again by the Krull-Schmidt Theorem as each of the
Mi,...,M*+t is its own homogeneous component in VN. Write M1 = U1. The
Mtg,geG, are irreducible FN-modules and they are all self-dual by construction of the
action of g on V. Thus Mtg is precisely equal to one of the Ml,...,Ms. Now, if t would
be an integer larger than zero, then we would conclude that G does not act transitively
on all the homogeneous components of VN by multiplication on the right. Clifford's
Theorem, however, implies that {MjgJgeG} is the set of the homogeneous components
of VN. Therefore VN=U1±---±Uq, U^Uj if =j=j. Hence VN is anisotropic in this case,
i.e. VN does not contain isotropic FN-submodules other than (0).

(B) Let b=p' be the number of elements of F, where p = charF. We now assume that
VN is a direct sum of e isomorphic irreducible fN-submodules. Let U be one of them. Set
VN = eU.

(B.I) Let q = p. Then Green's Theorem ([4],VII.9.19) yields e=l, VN = U. Hence case
(2) applies here with IK = F.

(B.2) Let q£ p. Then [5, 9.21] implies that

where a = |Gal(F(x)/F)| and K = \F(x), and where

(3)

(Notice that K = F(xb), any i = 0 , . . . , a - l , by Theorem 9.21.C of [5].) Observe that
Vbi^V^ if i£j and that the F*' are absolutely irreducible KG-modules for any i and
that also

if ij=j. Now, if S ( v ) is the symplectic form governing the FG-module V, with values in
F, then S^- , ) defined by

i(Z(*,- ® a,), E (y =£ S(xh y}) a.bj
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for all £,(*; ® fl;), YAXJ ® &/) in V(x)f K, makes V (X)F K into a non-singular symplectic
KG-module. As K(X)FK is completely reducible as KG-module, it follows again that an
orthogonal direct sum decomposition holds as indicated,

(4)

Apply the Krull-Schmidt Theorem on (3) and (4). Then it follows that in (4) all the
written M's are pairwise non-isomorphic and galois conjugated to each other.

(B.2.a) Assume w = 0, i.e. F(X)F/C = M 1 1 ••• LMa. Here Mt is a faithful non-singular
symplectic absolutely irreducible /CG-submodule of V(g)fK. If a ̂ 2 , then we apply
induction to the dimension of the given irreducible module as vector space over its
ground field and we conclude that the theorem holds. More precisely, replace V by Ml

and F by K in the statement of the theorem and observe that A^^^IK can be
considered as IKG-submodule of (V(x)fK)(^)KK^V(g)KK. Hence assume a = \. Then
K 0 F F s M ! 0 K F is irreducible and so V is an absolutely irreducible FG-module.
Hence

+-+L,,L,5feLJ. if i^; , or

where the Lj are the irreducible constituents of (V(x)f¥)N; here we made use of
Theorem VII.9.18 of [4], applied to the cyclic p'-group G/N of order q. Therefore
certainly e = 1 and we are in case (2) with IK = F.

(B.2.0) Let u ^ l . Since (V^f^V^)* for any i and since M,^M* if te{l, . . . ,a}, it
cannot happen that a ^ l . Indeed, let V1 = Ml. Then for some j , V^ = Ma+1

{VX)*^{Vit)bi^VX, with contradiction. Therefore we have

Now M\^M\ for some r — l/ with /e{l,...,2u— 1}. Consider a matrix representation
corresponding to the action of G on Mx. Let co1,...,cos.be the eigenvalues (counted with
multiplicities, i.e. the representation is s-dimensional) of a matrix corresponding to a
particular element g=/=l of G. Then oiil,...,co~l are the eigenvalues for the inverse-
transpose matrix corresponding to the element g. Therefore

and,also (u~(i'=coj, i= l , . . . , s for some a contained in the symmetric group
leads to

This

.E .E E
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Since K = ¥{j), it follows that £*= x co( £ K n Fr2 c F. This holds for all such traces and so
K<=Fr2. Moreover M\2^MU but M ' ^ M f ^ M j . Certainly r2 e {b2u, b*u, b6u,...}. As
now r = bf^b2u'l<b2u, we see that r=bf = bu and so K = Fr2.

Thus we have K(xVFr = L1+ ... -i- Lu, L^Lj if i =/=./, a nd the L( are irreducible FrG-
modules. It is clear that a numbering of the Lt,...,Lu can be chosen such that

^ Mi-i-Mf, i=l , . . . ,u. Because of (L,(g)Fr /C)*s(M, + Mf)*^
^ [4, VII.8.4] and [5, 9.7] imply that any L.'is self-dual. By [4,

VII.8.10.b] and the theorem of Krull-Schmidt we conclude that any L, is a non-singular
faithful irreducible symplectic FrG-submodule of ^(X^F,. for the symplectic form on
V(£)f¥r. Hence K(X)FFr = L1 _L • •• -LLU; here it is also used that F(X)fFr is completely
reducible as FrG-module.

Now, if u> l , then we can apply induction just as we did it in the case (B.2.a).
Therefore, assume from now on that « = 1. Hence V(x)fK = M1 + M1[. Thus K = Fr2 = F,,2
and the Mx and MJ are non-isomorphic absolutely irreducible Ffc2G-modules. It follows
from Corollary 9.7 of [5] that the irreducible FG-modules Mj(g)xF and Mf (g)KF are
not isomorphic. As G/N is cyclic of prime order q not equal to p, we see that either
(Ml(^)K¥)N is an irreducible FN-module (whence (Mf (X^F)^ is irreducible as well), or

if

where the Tt are irreducible FN-modules (whence (M? (X)K f)N decomposes in an
analogous way), see Theorem VII.9.18 of [4]. In the very last case it follows that
Tp^M1(X)KF^MJt(X)KFs(M1(2)J£F)*s(Tp)*s(rf)G, whence all irreducible FN-
modules contained in both (M1^K¥)N and (M? (X)K F)^ are pairwise non-isomorphic
by the theorem of Frobenius-Nakayama. In that case we find

T(+£ 7?)
(=1 /

The Krull-Schmidt Theorem implies now that e= 1, and so case (2) has been arrived at.
Therefore we can assume that (Mt

modules. This leads to
: f)N and (Mf (X)K ¥)N remain irreducible as ¥N-

Applying the Krull-Schmidt Theorem we conclude that e = 1 or e = 2. Henceforth we are
in case (2), or, as we will assume from now on, e=2. Write M instead of Mt.

Under that assumption it is clear from the above, that U is an absolutely irreducible
FN-module. Hence U (X)F K is an absolutely irreducible KN-module. We have also

= ̂  ® F ^- ^ e w ' " show now that there exists an absolutely irreducible FG-
module T such that TN^U. Namely, if follows from Theorem VII.9.13 of [4] that any
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irreducible KG-module L having U(^)fK in its restriction to N (i.e. LN = Ul + ••• for a
certain KTV-submodule Ux of L with { /^ ( / (X^JQ is of the form M(X)KA, where A is
a one-dimensional KG-module such that N acts trivially on A. Call k the corresponding
one-dimensional representation of G. Let (gN}.= G/N. As M w sM*| w sC/(X) F K, it
therefore holds that M* ^ M (X)K A, where A(gVi) = co', any n E N, with w a certain
primitive qth-root of unity of K. Notice that q\r2 — 1 but qj(r— 1, whence q | r + l .
(Indeed, as MgM*, some element a=gjneG\N has TrD(a)=^0, where Tr means the
trace function of the (matrix) representation D which corresponds to the KG-module M;
likewise we denote D* with respect to M*. The fact that there must be such an element
a in G\N is just forced by M * s M ( g ) x A and M ? s M * | w . So TrD*(a)=(TrD(a))r =
(Tf D(a))ay, whence TrD(a) = (TrD(a))<- =(TrD(a))rayr=(TrD(a))ajJ<1+r)

) so that o> 1 + r =l .
Thus if q\r— 1, then o)2 = l=cu*, whence co = l, a contradiction.)

Thus we have Tr D*(g'«) = (Tr D(g'n)Y = a)'(Tr D(gln)). Let A* be the one-dimensional
KG-module corresponding to the representation A* defined by Xk(g'n)=co"1 for all neN.
Hence kh(gin)=-(X{gin))\ Consider the irreducible KG-module M(X)KA(«+1)/2. Then
M(X)K A(*+ l ) / 2 is a self-dual KG-module, as we will show using the trace function.
Indeed,

Tr((D ® /l<«+ 1)/2)*(g''n)) = a)"i("+1)/2(TrD*(g'n)) = co~1(«+1)/2co'(Tr

= a)'<«+1)/2(Tr D(g'«))=Tr((D

Even more, as cor = co~1 by ^|r+ 1,

(Tr((D (g) A(«+1)/2)(g'n)))r = coir(«+1)/2(TrDfe1n))r

= co"''(«+1)/2(Tr £)*(g'n)) = OJ"I(«+1)/2oj'(Tr

Therefore, Theorem VII. 1.17 of [4] yields that M(x)KA(«+I)/2 can be realized over F.
This M(X)K A(*+1)/2 is now the desired FG-module T in case (3) as we will see.

The map / , defined by

( " ^ ) ' f o r a l l " e N '

is a representation of G to SL(2, F) with Kerf=N. The representation / is irreducible as
F-representation; namely the eigenvalues of

(0 - 1

are co"(*~1)/2 and co(q~l)l2, both contained in K, but not in F.
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Let S be the FG-module corresponding to / . Consider the FG-module T(X)f S. Then

Tr((D <g> A<«+1)/2 ® /)(g'«)) = Tr (D(g'7j) <g> A«+ ^ ( g

= (Tr D^n))©'**+1)/2(co

=(TrD(gin))<o«1 +«>=(T

Hence we see that the irreducible FG-module F (or rather the KG-module V(x)fK =
M + M*) and the FG-module T(X)FS afford the same trace function and that they have
the same F-dimension. Then Corollary 9.22 of [5] gives the result that V and T(X)FS
are isomorphic as FG-modules. Now, as

as KG-modules, it follows from the Deuring-Noether Theorem 9.7 of [5], that T*^T
as FG-modules. Hence we are in case (3). •

In the characteristic 2 case of Theorem A, we can say a bit more.

Corollary to Theorem A. Let G be a finite group. Assume that N*oG with \G/N\ = odd
prime q, and there is no B^_G with BN = G and Br\N = {l}. Suppose there exists a
faithful irreducible non-singular symplectic ¥G-module V where F is a finite field of
characteristic 2. Then there exists a finite field L 2 F and a faithful irreducible non-singular
symplectic LG-module M such that
either
MN=U1±--- LUq, where U^Uj as LN-modules if ij=], the Ut are irreducible non-
singular symplectic LN-submodules of MN,
or
MN is a faithful irreducible non-singular symplectic LN-module.

Proof. By assumption, N^={1}. Without loss of generality we may assume that we
are in case (3) of Theorem A. Using the notation of that theorem, it follows that TN is
not an irreducible IKN-module for the trivial representation of N. Hence T is not the
trivial IKG-module. Then, using charlK = 2, a theorem of Fong([4],VII.8.13) implies that
there exists a non-singular G-invariant symplectic form on T. As N is trivially
represented on S and as T(x)KS is a faithful IKG-module, it follows from case (3) of
Theorem A that TN is faithful. Now, if T would not be faithful as a IKG-module, we
should have the existence of { 1 } = £ B < I G with BnJV = {l}, whence BN = G. This is
contrary to our assumption. Hence T is a faithful IKG-module. Certainly
dim K Tg£dim F K So we have an induction machine with respect to the dimensions of
the appropriate modules over their ground fields. The corollary now follows. •
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Theorem B. Let G and V satisfy the hypotheses of Theorem A. Assume that O2(F(N)) ±
{1} and that N/F(N) is of odd order. Then case (3) of Theorem A never occurs.

Proof. In the course of the proof of Theorem A we used an induction argument
without specifying, at that time, what in fact the induction step was! Therefore it is
enough to show that we have a contradiction as soon as we have reached the point in
the proof of Theorem A, where we made the assumption that e = 2. We proceed then as
follows.

Hence it is clear that U is an absolutely irreducible FTV-module. Moreover, as
^(X)FF=£/* (X)FF, see above, it follows that the inverse-transpose representation A* of
TV corresponding to (£/(X)FF)* is F-equivalent to the representation A of TV on C/(X) IF.
Consider a representing matrix A(n) with n e TV. Then, if co e F is an eigenvalue of A(ri),
the above conclusion implies that co'1 is also an eigenvalue of A{n). As G is represented
irreducibly and faithfully on ^ a module of characteristic p, it follows that OP(G) is
contained in the (trivial) kernel of the representation of G on V, whence OP(G) = {1}, see
[3, V.5.17]. Therefore {1}=/= B^fi^O^zjOj^TV))))) for a certain odd prime t unequal
to p, by the hypothesis O2-(F(N))^={1}. Hence B is a non-trivial elementary abelian t-
group with B<a G, and B is not contained in the trivial kernel of the representation of G
on V. Using an obvious notation, we have AB = d(C1 + ••• +£*)', where deN and the £,•
are pairwise non-isomorphic one-dimensional representations of B over F. Therefore, if
co is an eigenvalue of A(g), geB, with co^l, then a>~1 occurs with multiplicity d in A(g)
as well. Let Ci(g) = co^ 1. 1. Define £~ via £~(b) = (£1(b))~1, any beB. Since B is abelian
of odd order, £~ is a one-dimensional representation of B over Fwith (~ ^( i - Now AB{b) =
AB(b~x) for all beB. Thus by applying an orthogonality relation it follows that (~
occurs in AB, say C~=£2- Now observe that x = |TV: (inertia group of (, in TV)| divides
\N/F{N)\, as (inertia group of £,- in N)sF(N). As \N/F(N)\ is odd by assumption, this
means that at least one (; is the trivial character of B over F, say C,,= 1B. Then
immediately it holds that B is trivially represented on V for we know from Clifford's
Theorem that all the £'s are TV-conjugated to each other. However, as VN = 2U, U is
faithful as FTV-module and we have a contradiction. •

For the convenience of the reader we repeat the definition of a monoprimary module.

Definition. Let K be a finite field. Let V be a non-singular symplectic KG-module
for the finite group G. Then V is called monoprimary if it is a direct sum of pairwise
non-isomorphic, self-dual, irreducible XG-modules.

There are places in the literature, such as [2, 7, 8, 9, 11], where the property of being
a monoprimary module yields results in the theory of M-groups. As a tool for
applications one would like to know a theorem like "If TV .̂G, V a monoprimary KG-
module, then VN is a monoprimary K/V-module". This is certainly not true in its full
generality. In this respect we can prove such a theorem in a particular case.

Theorem C. Let G be a finite group, TV"? G, G/TV solvable of odd order. Suppose that
every prime divisor of \G/N\ divides |F| — 1 with F a finite field. Let V be a monoprimary
fG-module. Then V is also monoprimary as ¥N-module.
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Proof. In order to prove the theorem, we can clearly restrict outselves to the case
\G/N\ = q, q odd prime. Next we argue that it suffices to assume that V is an irreducible
FG:module. Namely, let V=All---±A,, A^Aj as FG-modules when i±j, the /1's non-
singular symplectic irreducible FG-modules. Since F is a splitting field for G/N with
(charF)^|G/A/|, it is possible to apply Lemma (3.4) of [8]. In that lemma it is proved
that if At\N and Aj\N have a common irreducible constituent in the Clifford sense,
A^Ajk for some one-dimensional F-character X of G/N. Now At and Aj are both self-
dual. Then, since X is a F-character of G of odd multiplicative order, Proposition (3.7) of
[8] implies that AJX^AJ, whence i = j . Thus from now on, we assume that V is an
irreducible non-singular symplectic FG-module. The proof of the theorem follows now
from a variation of Theorem A, to be called Theorem D. •

The proof of the following Theorem D can be regarded as a specialization of the
proof of Theorem A, but there are some subtleties in it. As mentioned in the
Introduction, the statement of Theorem D resembles that of the analogous statement
made in the proof of Theorem (3.1) of [8].

Theorem D. Let G be a finite group. Suppose G admits an irreducible non-singular
symplectic ¥G-module V for a certain finite field F. Let N<iG, \G/N\ = q, q odd prime.
Assume q divides |F| — 1. Then precisely one of the following statements holds.

(1) K N = ( / 1 l - - ' l l / , , UigUj ifij=j, the U, are irreducible non-singular symplectic
FN-submodules of VN.

(2) VN is an irreducible (whence non-singular symplectic) fN-module.

Proof. It is clear that we can assume that

VN is homogeneous, say VN = eU; (a)

just follow part (A) of the proof of Theorem A. Let K be the field defined in the
beginning of part (B) of the proof of Theorem A. Again we have

In this equality (/?) all the written M's and M*'s are all pairwise non-isomorphic and
they are all galois conjugated to each other. Next we split up.

Assume u = 0, i.e. V(§Q K = Mll. • •• LMa. Hence K(X)r/C is monoprimary. Now
(V(x)fK)N is monoprimary as soon as we have proved that each Mt\N is monoprimary.
Indeed, |F| — 1 divides \K\ — 1, so q divides \K\ — 1 and we can use Lemma (3.4) and
Proposition (3.7) of [8] again. Observe however that M,|N satisfies either statement of
Theorem D. It holds because Mt is an absolutely irreducible KG-module, being also
non-singular symplectic, following Theorem VII.9.18 of [4]. Hence, as (V(£)fK)N=
VN(X)rK=(eU)(g)rK^e{U(><)rK), the Krull-Schmidt Theorem immediately gives e=l.

Let u ^ l . Just as it is done in part (B.2./?) of the proof of Theorem A, we have
K(g)f /C=(Mi - i -M*) l - l (M u + MJ). Again there is here a field tower F£FrcF,2=X
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such that K(X)FFr = L 1 ± - - l L l i , that is, V(g)f¥r is monoprimary. As |F| — 1 divides
|F r | - l , it holds that q\ | F r | - l . By Lemma (3.4) and Proposition (3.7) of [8], (V0ffr)N

is monoprimary as soon as each Lt\N is monoprimary. Having achieved that result, the
Krull-Schmidt Theorem gives e = 1 in the relation .

X)Frse U ®Fr s (L ,
f V F /

We now pick such a FrG-module L,, we call it L. Thus L is a non-singular symplectic
irreducible FrG-module with L(X)Ff/C = M-i-M* and these /CG-modules M and M* are
dual to each other. Besides that, they are absolutely irreducible non-isomorphic
isotropic XG-modules.

Next assume that MN and M*\N have a common irreducible constituent in the
Clifford sense. Then M*^Mfi for some one-dimensional K-character n of G/N. As
q||Fr| — 1 and (|Fr| —1)|(|/C| —1), we see that n is in fact a one-dimensional Fr-character
of G/N of odd order. Since M*^M" for some a e Gal (X/Fr) with a2 = l, M is a so-
called weakly self-dual module over Fr, see Definition (3.6) of [8]. As both M and
Mfi^M* are weakly self-dual over Fr, Proposition (3.7) of [8] yields Mfi^M. Thus we
have a contradiction and so MN and M*\N do not have common irreducible
constituents.

Hence, applying the Krull-Schmidt Theorem and the fact that M and M* are
absolutely irreducible KG-modules, (L(g)fK)N decomposes into a direct sum of
pairwise non-isomorphic irreducible XAf-modules. Then LN must also decompose in a
direct sum of pairwise non-isomorphic irreducible FriV-modules. Now, go to the written
text in the proof of Theorem A in case (A) for the non-singular symplectic FrG-module
L instead of the FG-module V written there. It follows then, that LN is monoprimary.

Therefore (V^)f¥r)N is monoprimary as we have seen. Hence the Krull-Schmidt
Theorem applied to (V (X)F Fr)w ̂  e( U (X)F Fr) yields e = 1. •

In the next theorem we show that the value of the ramification index e is restricted in
the case that we work with modules over a finite field.

Theorem E. Let G be a finite group, Af<G, \G/N\ = q, q some prime integer. Assume V
is an irreducible ¥G-module for a certain finite field F. Suppose that VN = eU, that is, if V
is considered as FN-module, it is a direct sum of e isomorphic copies of the irreducible FJV-
submodule U of VN. Then e=\ or e = q or e divides q — \.

Proof. Let charF=p. We can assume that q=j=p for otherwise Green's Theorem
VII.9.19 of [4] gives e=l. Hence let qj=p. By Theorem VII.2.6 of [4] there exists a finite
field K containing F such that K is a splitting field for G, for N and for G/N all
together. Consider K(X)FX. Then, for suitable integers u and s, we have the following
decompositions into irreducible KG-modules Rj and irreducible KN-modules 7}:

eiT.+ '+T,).
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Since Schur indices for modules over finite fields are all equal to one ([4], VII.1.16.e), it
follows that the R( are pairwise non-isomorphic absolutely irreducible KG-modules
affording characters which are galois conjugated to each other, see [5, 9.21]. The same
statement holds for the KN-modules Tf.

(1) Let R^H be not homogeneous. Let W be an irreducible constituent of the KN-
module RX\N. Then Clifford's Theorem yields R^ W(£)KNKG, that is, Rj is induced by
W. Moreover, RX\N is the direct sum of q pairwise non-isomorphic G-conjugated KN-
submodules. All these XN-modules are absolutely irreducible. From the Krull-Schmidt
Theorem we see that some 7} is isomorphic to W as KJV-modules. Since all the 7] have
the same K-dimension, it follows that, after an eventual renumbering, qu = s, e=l,
Rt= 7j(x)KJVKG. Notice that it is implicitly used here that if some Ri\N happens to be
homogeneous that R(\N is irreducible as KN-module, by [4, VII.9.19 and VII.9.18], just
by the splitting field property of K. Thus in fact all Rt\N are here not homogeneous.

(2) Suppose now that all Rt\N are homogeneous. Then [4, VII.9.18] implies that all the
Ri\N are absolutely irreducible KAf-modules. Let D = {Rlt...,Ru}. Let Y be an F(#)-
submodule of ^(X)FF(x), where x is the trace function of Rt (the field F(^) does not
depend on the index i, by [5, 9.21.c]). Then Y(g)fix)K is an absolutely irreducible KG-
module isomorphic as /CG-module to a member of D. See [5, 9.21.e]. So we have

where, say, Rt^St^)r(x)K, and where, by the Deuring-Noether Theorem [5, 9.7], S^Sj
if i ̂ =;, as F(x)G-modules. Observe that any S, is an absolutely irreducible F(/)G-module.
Consider an irreducible constituent Z of S(\N. By the Krull-Schmidt Theorem it is
isomorphic as F(x)N-module to some irreducible constituent of U (g)fHx)- Then some
irreducible constituent of Z(^)fU)K is, by Krull-Schmidt again, isomorphic to some
irreducible constituent of l /0FKi(( /(X) rF(x))0p ( ; t )X. That last constituent must be
isomorphic to one of the Rt\N. By comparison of dimensions it now holds that Sf|w is
an absolutely irreducible F(x)N-module for any i. Notice now that w = [F(x):F] =
|Gal (F(x)/F)| and that Gal(F(^)/F) is cyclic, generated by the Frobenius automorphism
xi—*xb, where 2> = |F|, any xe¥(x)- We have et = u, where t is just the number of all the
isomorphy types of the irreducible F(x)N-submodules of U (X)r F(x). Such a module is
isomorphic to some S;|N. Suppose from now on that e^2 and let D = {Sl,...,Su}. Hence
there are A,BeD with A=/=B with AN^BN = Si\N, say. Observe that 5 =
{/4f|T6Gal(F(z)/F)}. Let n = {<76Gal(F(z)/F)|/lff|J¥sS1|N}. So n ^ { l } . Hence, if <7eII,
there exists by [4, VII.9.13], a unique one-dimensional F(^)G-representation \a, depend-
ing o n a e l l and with N acting trivially on \a, such that A"^ A ®rMAa. Therefore if

fix)

So, if a,/Jell then a/fell. Hence IT is a subgroup of the cyclic group Gal(F(x)/F).
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Let n = <>>> and let F^J be the invariant field of <y>. Notice that l=(b,q). It follows
that E: = {A,Ay,...AyM~i~\ is precisely the subset of D consisting of those members
which are isomorphic to St\N when they are realized as F(x)N-modules. Notice |£| = |y|.
Let 0eGal(F(;f)/F) be arbitrary. Then A^eD and.each member of D is of this form. It
follows that (with A = Ay), (Ay' = (AyY s (A (g)F(z)A

/)* s A* (g)f(z) (A1)*, where

y

/-times
with

Hence (/4</>)/|,v=M<''|w, i = l , . . . , | y | — 1 . Therefore we see that \y\t = u. So e = |y|. It follows
that A^Ay'^A (X)F(X)A* with

Now, by [4, VII.9.12.c], Ah = /, the trivial one-dimensional F(z)G-module. As A has
order q, we have q\h. If now q divides

for some ae{l,...,e—l}, then yl7"^/! and so |£|<^a<e = |£|, a contradiction. Hence
does not divide

if ae{l,...,e— 1}. Next, if <j does not divide fr' — 1, then it follows that e is precisely
equal to the order of b> modulo q. By Fermat's Theorem (bs)q~1 = l(mod q), whence
e\q— 1. Therefore assume now that q|&'— 1. This means that

v2 ( r\ V
V F<*) /

Ay'^Ai

fiX) F<Z)

Hence

i-times

Therefore \y\ = q, and then e = |y| = q. This finishes the proof of the theorem. •
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