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Abstract

In this paper we study the functional central limit theorem (CLT) for stationary Markov
chains with a self-adjoint operator and general state space. We investigate the case
when the variance of the partial sum is not asymptotically linear in n, and establish that
conditional convergence in distribution of partial sums implies the functional CLT. The
main tools are maximal inequalities that are further exploited to derive conditions for
tightness and convergence to the Brownian motion.
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1. Introduction

Kipnis and Varadhan (1986) showed that, for an additive functional zero mean Sn of a
stationary reversible Markov chain, the condition var(Sn)/n → σ 2 implies convergence of
S[nt]/

√
n to the Brownian motion (here [nt] denotes the integer part of nt). A considerable

number of papers further extend and apply this result to infinite particle systems, random
walks, processes in random media, and Metropolis–Hastings algorithms. Among others, Kipnis
and Landim (1999) considered interacting particle systems, and Tierney (1994) discussed the
applications to Markov chain Monte Carlo methods. Wu (1999) and Zhao and Woodroofe
(2008) studied the law of the iterated logarithm, and Derriennic and Lin (2001) and Cuny and
Peligrad (2012) investigated the central limit theorem (CLT) started at a point.

Recently, Zhao et al. (2010) addressed the conditional CLT question under the weaker
condition var(Sn) = nh(n), where h is a slowly varying function (i.e. limn→∞ h(nt)/h(n) = 1
for all t > 0). They showed by example the surprising result that the distribution of
S[nt]/

√
var(Sn) needs not converge to the standard normal distribution in this case. They

developed sufficient conditions for convergence to a (possibly nonstandard) normal distribution
imposed to an approximating martingale.
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In this paper we address the issue of the functional CLT for the case considered in Zhao et
al. (2010). Our goal is to establish sufficient conditions imposed on the original sequence. We
also show that, for reversible Markov chains, conditional convergence in distribution of partial
sums properly normalized implies the functional CLT. The main tools to prove this result are
new maximal inequalities based on a triangular forward–backward martingale decomposition
and tightness results.

Our paper is organized as follows. Section 2 contains the definitions, a short background
of the problem, and the results. Section 3 is devoted to the proofs. Section 4 contains a
functional CLT for an additive functional associated to a Metropolis–Hastings algorithm, with
the variance of partial sums behaving asymptotically like nh(n) (where h is a slowly varying
function). Throughout the paper, ‘⇒’ denotes weak convergence, [x] denotes the integer part
of x, and ‘

p−→’denotes convergence in probability. The notation an ∼ bn means that an/bn → 1
as n → ∞, and an = o(bn) means that an/bn → 0 as n → ∞.

2. Definitions, background, and results

We assume that (ξn)n∈Z is a stationary Markov chain defined on a probability space
(�, F , P) with values in a general state space (S, A). The marginal distribution is denoted
by π(A) = P(ξ0 ∈ A). Assume that there is a regular conditional distribution for ξ1 given ξ0
denoted by Q(x, A) = P(ξ1 ∈ A | ξ0 = x). Let Q also denote the Markov operator acting via
(Qf )(x) = ∫

S
f (s)Q(x, ds). Next, let L

2
0(π) be the set of measurable functions on S such

that
∫

f 2 dπ < ∞ and
∫

f dπ = 0. For some function f ∈ L
2
0(π), let

Xi = f (ξi), Sn =
n∑

i=1

Xi, σn = (E S2
n)1/2. (1)

Denote by Fk the σ -field generated by ξi with i ≤ k.
For any integrable random variable X, we define Ek(X) = E(X | Fk). Under this notation,

E0(X1) = (Qf )(ξ0) = E(X1 | ξ0). We denote by ‖X‖p the norm in Lp(�, F , P).
The Markov chain is called reversible if Q = Q∗, where Q∗ is the adjoint operator of Q.

The condition of reversibility is equivalent to requiring that (ξ0, ξ1) and (ξ1, ξ0) have the same
distribution or ∫

A

Q(ω, B)π(dω) =
∫

B

Q(ω, A)π(dω)

for all Borel sets A, B ∈ A.
Kipnis and Varadhan (1986) assumed that

lim
n→∞

σ 2
n

n
= σ 2

f , (2)

and proved that, for any reversible Markov chain defined by (1), this condition implies that

S[nt]√
n

⇒ |σf |W(t),

where W(t) is the standard Brownian motion.
Recently, Zhao et al. (2010) analyzed the case in which

σ 2
n = nh(n) with h a slowly varying function. (3)
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In their Proposition 1, they showed that, without loss of generality, we can assume that h(n) →
∞, since otherwise either (2) holds (and this case is already known) or 2Sn = (1+(−1)n−1)X1
almost surely (a.s.). Then, in their Proposition 2 they showed that representation (3) implies
that

‖E0(Sn)‖2 = o(σn). (4)

On the other hand, it is well known that (4) implies (3); see, for instance, Lemma 1 of Wu and
Woodroofe (2004). Therefore, we can state Proposition 2 of Zhao et al. (2010) as follows.

Proposition 1. For a stationary reversible Markov chain (Xn)n∈Z defined by (1), relations (3)
and (4) are equivalent.

In their Corollary 2, Zhao et al. (2010) gave sufficient conditions for the validity of the
conditional CLT in terms of conditions imposed on the differences of an approximating
martingale. In addition, they provided an example of a reversible Markov chain satisfying (3),
for which the CLT holds with a different normalization.

Throughout this paper, we will assume that σ 2
n → ∞.

By conditional convergence in distribution, denoted by Yn | F0 ⇒ Y , we understand that,
for any function g which is continuous and bounded,

E0(g(Yn))
p−→ E g(Y ) as n → ∞.

In other words, let Px be the probability associated with the Markov chain started from x and
let Ex be the corresponding expectation. Then, for any ε > 0,

π{x : |Exg(Yn) − E g(Y )| > ε} → 0.

One of our results is the following invariance principle for functionals of stationary reversible
Markov chains. Define

Wn(t) = S[nt]
σn

.

Theorem 1. Assume that (ξn)n∈Z is a stationary reversible Markov chain as defined above.
Define (Xi)i∈Z by (1), and assume that (3) is satisfied and Sn/σn is conditionally convergent
in distribution to L. Then,

Wn(t) ⇒ cW(t), (5)

where W(t) is a standard Brownian motion and c is the standard deviation of L.

Theorem 1 does not require special properties of the Markov chain, such as irreducibility and
aperiodicity. However, if these properties are satisfied, we have the following simplification.

Corollary 1. Assume that (ξn)n∈Z is a stationary, reversible, irreducible, and aperiodic Markov
chain such that (3) is satisfied. Then Sn/σn ⇒ L implies (5).

The proof of Theorem 1 requires the development of several tools. First, we will establish
maximal inequalities that are of interest in themselves. As in the Doob maximal inequalities for
martingales case, we will compare moments and tail distributions of the maximum of partial
sums with those of the corresponding partial sums.

Proposition 2. Let (Xi)i∈Z be defined by (1), and let Q = Q∗. Let p > 1 and q > 1 such that
1/p + 1/q = 1. Then, for all n ≥ 1,∥∥∥ max

1≤i≤n
|Si |

∥∥∥
p

≤
∥∥∥ max

1≤i≤n
|Xi |

∥∥∥
p

+ (4q + 3) max
1≤i≤n

‖Si‖p.
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Remark 1. Let p = 2. Since (Xi)i∈Z is stationary, it is well known that
∥∥∥ max

1≤i≤n
|Xi |

∥∥∥
2

= o(n1/2) as n → ∞.

If we assume in addition that lim infn σ 2
n /n > 0, we deduce that there exists C > 0 such that

∥∥∥ max
1≤i≤n

|Si |
∥∥∥

2
≤ C max

1≤i≤n
‖Si‖2.

For a proof of tightness, it is also convenient to have inequalities for the tail probabilities of
partial sums. We will also establish the following.

Proposition 3. Let (Xi)i∈Z be defined by (1), and let Q = Q∗. Then, for every x > 0 and
n ≥ 1,

P
(

max
1≤i≤n

|Si | > x
)

≤ 2

x

[
18 E |Sn| 1

(
|Sn| >

x

12

)
+ 55 max

1≤i≤n
‖E0(Si)‖1 +

∥∥∥ max
1≤i≤n

|Xi |
∥∥∥

1

]
.

An important step in the proof of Theorem 1 is the use of tightness conditions. We will give
two necessary conditions for tightness that will ensure continuity of every limiting process.

Proposition 4. Assume that Xi is defined by (1), that condition (3) is satisfied, and that one of
the following two conditions holds:

1. (S2
n/σ 2

n )n≥1 is uniformly integrable;

2. Sn/σn is convergent in distribution.

Then Wn(t) is tight in D(0, 1) endowed with uniform topology and any limiting process is
continuous.

Finally, we give sufficient conditions for convergence to the standard Brownian motion.

Proposition 5. Assume that (ξn)n∈Z is a stationary reversible Markov chain. Define (Xi)i∈Z

by (1), and assume that (4) is satisfied. Assume that (S2
n/σ 2

n )n≥1 is uniformly integrable and
that

lim
n→∞

‖E0(S
2
n) − σ 2

n ‖1

σ 2
n

= 0.

Then
Wn(t) ⇒ W(t).

3. Proofs

We start with a preliminary martingale decomposition that combines ideas from Wu and
Woodroofe (2004) with the forward–backward martingale approximation of Meyer and Zheng
(1984) and Lyons and Zheng (1988).

3.1. Forward–backward martingale decomposition

As in Wu and Woodroofe (2004) for fixed n ≥ 1, define the stationary sequences

θn
k = 1

n

n−1∑
i=0

Ek(Xk + · · · + Xk+i ) and Dn
k = θn

k − Ek−1(θ
n
k ).
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Then, (Dn
k )k∈Z is a triangular array of martingale differences adapted to the filtration Fn =

σ(ξi, i ≤ n). Note that

θn
k = Xk + 1

n

n−1∑
i=1

Ek(Sk+i − Sk)

= Xk + Ek(θ
n
k+1) − 1

n
Ek(Sk+n − Sk)

= Xk + θn
k+1 − Dn

k+1 − 1

n
Ek(Sk+n − Sk).

Therefore,

Xk = Dn
k+1 + θn

k − θn
k+1 + 1

n
Ek(Sk+n − Sk). (6)

We now construct a martingale approximation for the reversed process adapted to the filtration
Gn = σ(ξi, i ≥ n). We introduce the notation Ẽ1(X0) = E(X0 | G1) = E(X0 | ξ1) =
(Q∗f )(ξ1).

Let

θ̃ n
k = 1

n

n−1∑
i=0

Ẽk(Xk−i + · · · + Xk).

With this notation,

Xk+1 = D̃n
k + θ̃ n

k+1 − θ̃ n
k + 1

n
Ẽk+1(X−n+k+1 + · · · + Xk), (7)

where the D̃n
k are martingale differences with respect to the filtration Gk = σ(ξi, i ≥ k),

D̃n
k = θ̃ n

k − Ek+1 θ̃ n
k .

If we assume that Q = Q∗, we have Ẽ1(X0) = E(X2 | ξ1) = (Qf )(ξ1). Therefore,
θ̃ n
k = θn

k , θ̃ n
k+1 = θn

k+1, and Ẽk+1(X−n+k+1 + · · · + Xk) = Ek+1(Xk+2 + · · · + Xk+n+1).
Adding relations (6) and (7) leads to

Xk + Xk+1 = Dn
k+1 + D̃n

k + 1

n
Ek(Sn − Sk) + 1

n
Ek+1(Sk+n+1 − Sk+1).

Summing these relations we obtain the representation

k−1∑
i=0

(Xi + Xi+1) =
k∑

i=1

[
(Dn

i + D̃n
i−1) + 1

n
Ei−1(Sn+i−1 − Si−1) + 1

n
Ei (Sn+i − Si)

]
.

So,

2Sk + (X0 − Xk) =
k∑

i=1

(Dn
i + D̃n

i−1) + R̄n
k ,

where

R̄n
k = 1

n

k∑
i=1

[Ei−1(Sn+i−1 − Si−1) + Ei (Sn+i − Si)].

Therefore, in the reversible case, we obtain the forward–backward martingale representation

Sk = 1
2 [(Xk − X0) + (Mn

k + M̃n
k ) + R̄n

k ], (8)

where Mn
k = ∑k

i=1 Dn
i is a forward martingale adapted to the filtration Fk and M̃n

k = ∑k−1
i=0 D̃n

i

is a backward martingale adapted to the filtration Gk .
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Also, it is convenient to point out a related martingale approximation which helps us relate
the partial sums with a martingale adapted to the same filtration. Note that

θn
k = Xk + 1

n

n−1∑
i=1

Ek(Sk+i − Sk) = Xk + θ̄ n
k , where θ̄ n

k = 1

n

n−1∑
i=1

Ek(Sk+i − Sk).

Starting from (6) and using this notation, we obtain

Xk+1 = Dn
k+1 + θ̄ n

k − θ̄ n
k+1 + 1

n
Ek(Sk+n − Sk).

So, summing these relations, defining, as above, Mn
k = ∑k

i=1 Dn
i , we obtain, for every station-

ary sequence, not necessarily reversible, and any n and m,

Sm = Mn
m + Rn

m, where Rn
m = θ̄ n

0 − θ̄ n
m + 1

n

m−1∑
k=0

Ek(Sk+n − Sk). (9)

3.2. Proof of Proposition 2

We start from (8) and take the maximum on both sides. We easily obtain

max
1≤i≤n

|Si | ≤ 1

2

(
|X0| + max

1≤i≤n
|Xi | + max

1≤i≤n
|Mn

i + M̃n
i | + max

1≤i≤n
|R̄n

i |
)
. (10)

Note that

max
1≤i≤n

|R̄n
i | ≤ 1

n

n∑
i=1

(|Ei−1(Sn+i−1 − Si−1)| + |Ei (Sn+i − Si)|),

whence, by Minkowski’s inequality and stationarity, for any p ≥ 1,

∥∥∥ max
1≤i≤n

|R̄n
i |

∥∥∥
p

≤ 2

n

n∑
i=1

‖Ei (Sn+i − Si)‖p = 2‖E0(Sn)‖p. (11)

Taking into account the fact that max1≤k≤n |M̃n
k | ≤ |M̃n

n | + max1≤k≤n |M̃n
n − M̃n

k |, we easily
deduce that∥∥∥ max

1≤k≤n
|Mn

k + M̃n
k |

∥∥∥
p

≤
∥∥∥ max

1≤k≤n
|Mn

k |
∥∥∥

p
+

∥∥∥ max
1≤k≤n

|M̃n
n − M̃n

k |
∥∥∥

p
+ ‖M̃n

n‖p,

whence, by applying Doob’s maximal inequality twice, stationarity, and reversibility,∥∥∥ max
1≤k≤n

|Mn
k + M̃n

k |
∥∥∥

p
≤ q‖Mn

n‖p + (q + 1)‖M̃n
n‖p = (2q + 1)‖Mn

n‖p

(where q is the conjugate of p).
From (9) we have Mn

n = Sn − Rn
n , and from Minkowski’s inequality we deduce that

‖Mn
n‖p ≤ ‖Sn‖p + 2

n

n−1∑
i=0

‖E0(Si)‖p + ‖E0(Sn)‖p,

whence
‖Mn

n‖p ≤ ‖Sn‖p + 3 max
1≤i≤n

‖E0(Si)‖p. (12)
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From (10), (11), and (12), we deduce the following extension of Doob’s maximal inequality
for reversible processes:

∥∥∥ max
1≤i≤n

|Si |
∥∥∥

p
≤ 1

2

(
‖X0‖p +

∥∥∥ max
1≤i≤n

|Xi |
∥∥∥

p
+ (2q + 1)

[
‖Sn‖p + 3 max

1≤i≤n
‖E0(Si)‖p

]

+ 2‖E0(Sn)‖p

)
.

Taking into account the fact that ‖E0(Si)‖p ≤ ‖Si‖p completes the proof of Proposition 2.

3.3. Proof of Proposition 3

For the proof of this proposition, we will use the following claim that can be easily obtained
by truncation.

Claim 1. Let X and Y be two positive random variables. Then, for all x ≥ 0,

E X 1(Y > x) ≤ E X 1
(

X >
x

2

)
+ x

2
P(Y > x).

For every x ≥ 0, using (10), we obtain

P
(

max
1≤i≤n

|Si | > x
)

≤ P
(

max
1≤i≤n

|Mn
i + M̃n

i | > x
)

+ P
(
|X0| + max

1≤i≤n
|Xi | + max

1≤i≤n
|R̄n

i | > x
)
.

(13)
Applying the Markov inequality, then the triangle inequality followed by (11) with p = 1, we
obtain

P
(
|X0| + max

1≤i≤n
|Xi | + max

1≤i≤n
|R̄n

i | > x
)

≤ 2

x

(∥∥∥ max
1≤i≤n

|Xi |
∥∥∥

1
+ ‖E0(Sn)‖1

)
. (14)

By the triangle inequality and reversibility,

P
(

max
1≤i≤n

|Mn
i + M̃n

i | > x
)

≤ P

(
max

1≤i≤n
|Mn

i | >
x

3

)
+ P

(
max

1≤i≤n

∣∣∣∣
n∑

k=i

D̃n
i

∣∣∣∣ >
x

3

)

+ P

(
|M̃n

n | >
x

3

)

≤ 3 P

(
max

1≤i≤n
|Mn

i | >
x

3

)
.

Then, by Doob’s maximal inequality and Claim 1 applied to X = |Mn
n | and Y = max1≤i≤n |Mn

i |,
we obtain

P

(
max

1≤i≤n
|Mn

i | >
x

3

)
≤ 3

x
E |Mn

n | 1
(

max
1≤i≤n

|Mn
i | >

x

3

)

≤ 3

x
E |Mn

n | 1
(

|Mn
n | >

x

6

)
+ 1

2
P

(
max

1≤i≤n
|Mn

i | >
x

3

)
,

implying that

P

(
max

1≤i≤n
|Mn

i | >
x

3

)
≤ 6

x
E |Mn

n | 1
(

|Mn
n | >

x

6

)
.
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We now express the right-hand side in terms of Sn. By (9) we have Mn
n = Sn − Rn

n , and
using the fact that, for all positive real numbers x, y, and a, we have (x + y) 1(x + y > a) ≤
2x 1(x > a/2) + 2y 1(y > a/2) ≤ 2x 1(x > a/2) + 2y, we obtain

E |Mn
n | 1

(
|Mn

n | >
x

6

)
≤ 2 E |Sn| 1

(
|Sn| >

x

12

)
+ 2‖Rn

n‖1

≤ 2 E |Sn| 1
(

|Sn| >
x

12

)
+ 6 max

1≤i≤n
‖E0(Si)‖1.

Therefore,

P

(
max

1≤i≤n
|Mn

i | >
x

3

)
≤ 6

x

[
2 E |Sn| 1

(
|Sn| >

x

12

)
+ 6 max

1≤i≤n
‖E0(Si)‖1

]
,

and so

P
(

max
1≤k≤n

|Mn
k + M̃n

k | > x
)

≤ 18

x

[
2 E |Sn| 1

(
|Sn| >

x

12

)
+ 6 max

1≤i≤n
‖E0(Si)‖1

]
. (15)

Thus, (13), (14), and (15) lead to

P
(

max
1≤i≤n

|Si | > x
)

≤ 2

x

[
18 E |Sn| 1

(
|Sn| >

x

12

)
+ 55 max

1≤i≤n
‖E0(Si)‖1 +

∥∥∥ max
1≤i≤n

|Xi |
∥∥∥

1

]
.

3.4. Proof of Proposition 4

We first prove the conclusion of the proposition under the assumption that (S2
n/σ 2

n )n≥1 is
uniformly integrable.

By stationarity and Theorem 8.3 of Billingsley (1968, p. 137) formulated for random
elements of D, we have to show that, for all ε > 0,

lim
δ→0+ lim sup

n→∞
1

δ
P
(

max
1≤k≤[nδ] |Sk| > εσn

)
= 0. (16)

By Proposition 3,

P
(

max
1≤k≤[nδ] |Sk| > εσn

)

≤ 2

εσn

[
18 E |S[nδ]| 1

(
|S[nδ]| >

εσn

12

)
+ 55 max

1≤i≤[nδ] E |E0(Si)| + E max
1≤i≤n

|Xi |
]
. (17)

We will analyze each term on the right-hand side of inequality (17) separately.
By the fact that limn→∞ σ 2[nδ]/δσ 2

n = 1, taking into account the uniform integrability of
(S2

n/σ 2
n )n≥1 leads to

lim
δ→0+ lim sup

n→∞
1

δσn

E |S[nδ]| 1
(

|S[nδ]| >
εσn

12

)

≤ lim
δ→0+ lim sup

n→∞
24

εσ 2
n

E S2
n 1

( |Sn|
σn

>
ε

24δ1/2

)

= 0.
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By stationarity and the fact that lim infn σ 2
n /n > 0, we have

1

σ 2
n

(
E max

1≤i≤n
|Xi |

)2 ≤ 1

σ 2
n

E max
1≤i≤n

|Xi |2 → 0 as n → ∞. (18)

Then, by condition (4) and Proposition 1,

1

σ 2
n

max
1≤i≤[nδ](E |E0(Si)|)2 ≤ 1

σ 2
n

max
1≤i≤[nδ] E[E0(Si)]2 → 0 as n → ∞. (19)

Combining the last three convergence results with inequality (17) leads to (16).
To prove the second part of this proposition, assume now that Sn/σn ⇒ L. By Theorem 5.3

of Billingsley (1968), we note that the limit has finite second moment, namely,

E L2 ≤ lim inf
n→∞

‖Sn‖2
2

σ 2
n

= 1. (20)

Furthermore, since (|Sn|/σn)n≥1 is uniformly integrable (because E S2
n/σ 2

n = 1), by (4) and
Theorem 5.4 of Billingsley (1968), it follows that

lim sup
n→∞

1

σn

E |S[nδ]| 1
(

|S[nδ]| >
εσn

12

)
≤ 1√

δ
lim

n→∞
1

σ[nδ]
E |S[nδ]| 1

( |S[nδ]|
σ[nδ]

>
ε

24
√

δ

)

= 1√
δ

E |L| 1
(

|L| >
ε

24
√

δ

)
. (21)

By passing to the limit in relation (17) and using (18), (19), and (21), we obtain

lim sup
n→∞

1

δ
P
(

max
1≤k≤[nδ] |Sk| > εσn

)
≤ 36

εδ1/2 E |L| 1
(

|L| >
ε

24
√

δ

)
.

Then, clearly,

lim sup
n→∞

1

δ
P
(

max
1≤k≤[nδ] |Sk| > εσn

)
≤ 36 × 24

ε
E L2 1

(
|L| >

ε

24
√

δ

)
.

Finally, taking into account (20), the conclusion follows by letting δ → 0+.

3.5. Proof of Theorem 1

Because conditional convergence in distribution implies weak convergence, it follows that
Sn/σn ⇒ L. Then, by the second part of Proposition 4, Wn(t) is tight in C(0, 1) endowed with
the uniform topology with all possible limits in C(0, 1). Now, let us consider a convergent
subsequence, say Wn′(t) ⇒ X(t). Then X(t) is continuous and since Sn/σn is conditionally
convergent in distribution, X(t) has independent increments (by Lemma 1 below applied on
subsequences). It is well known (see, for instance, Doob (1953, Chapter VIII)) that the process
X(t) has the representation X(t) = at + bW(t) for some constants a and b, where W(t) is
the standard Brownian motion. Without restricting the generality, by symmetry we can assume
that b > 0. To identify the constants, we use the convergence of moments in the limit theorem,
namely Theorem 5.4 of Billingsley (1968). Note that (Sn/σn)n≥1 is uniformly integrable in L1
since it is bounded in L2. We use this remark to obtain

E L = lim
n→∞

E Sn

σn

= 0 = lim
n′→∞

E Wn′(1) = E X(1) = a + b E W(1) = a,
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so a = 0. Finally, by the same argument, it follows that

lim
n→∞

E |Sn|
σn

= E |L| = lim
n′→∞

E |Wn′(1)| = E |X(1)| = b E |W(1)| = b

√
2

π
,

and so b = E |L|√π/2. It follows that X(t) = (E |L|√π/2)W(t). In particular, it follows that
L has normal distribution and, therefore, E |L|√π/2 is the standard deviation of L.

Lemma 1. Under the assumptions of Theorem 1, if Wn(t) ⇒ X(t) then X(t) has independent
increments.

Proof. Without loss of generality, for simplicity, we consider only two increments. For any
0 ≤ s < t ≤ 1, we will show that

(Wn(s), Wn(t) − Wn(s)) ⇒ (X(s), X(t) − X(s)),

where X(s) and X(t) − X(s) are independent. By the Cramér–Wold device, it is enough to
show that, for any two real numbers a and b,

A = E exp[iaWn(s) + ib(Wn(t) − Wn(s))] − E exp[iaX(s)] E exp[ib(X(t) − X(s))] → 0.

To see this, note that

E exp[iaWn(s) + ib(Wn(t) − Wn(s))] = E exp[iaWn(s)] E[ns] exp[ib(Wn(t) − Wn(s))].
By adding and subtracting E exp[iaWn(s)] E exp[ib(X(t) − X(s))] to A, we easily obtain

|A| ≤ E |E[ns] exp[ib(Wn(t) − Wn(s)] − E exp[ib(X(t) − X(s))]|
+ |E exp[iaWn(s)] − E exp[iaX(s)]|

= I + II.

Since we assume that Wn(s) ⇒ X(s), it follows that II → 0. Furthermore, by (3), X(s) and
s1/2L are identically distributed.

To treat the term I , note that, by stationarity and the definition of Wn(t), we have

I = E

∣∣∣∣E0 exp

[
ib

(
S[nt]−[ns]

σn

)]
− E exp[ib(X(t) − X(s))]

∣∣∣∣. (22)

Because we assume that σn → ∞ we have

1

σn

E |S[nt]−[ns] − S[n(t−s)]| → 0, (23)

which easily implies that, for all b,

E

∣∣∣∣E0 exp

[
ib

(
S[nt]−[ns]

σn

)]
− E0 exp

[
ib

(
S[n(t−s)]

σn

)]∣∣∣∣ → 0. (24)

Now, since S[n(t−s)]/σn ⇒ X(t −s) and S[nt] −S[ns]/σn → X(t)−X(s), we deduce from (23)
and stationarity that X(t − s) and X(t)−X(s) have the same distribution. Furthermore, by (3),
we deduce that S[n(t−s)]/σn is also conditionally convergent in distribution; so, in addition,
X(t − s) is distributed as (t − s)1/2L. By taking into account (22) and (24) as well, it follows
that

lim sup
n→∞

I = lim sup
n→∞

E

∣∣∣∣E0 exp

[
ib

(
S[n(t−s)]

σn

)]
− E exp[ib(X(t − s))]

∣∣∣∣ = 0,

leading to the conclusion.
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3.6. Proof of Corollary 1

The proof of this corollary follows the lines of Theorem 1 with the exception that we replace
Lemma 1 by the following lemma.

Lemma 2. Under the assumptions of Corollary 1, if Wn(t) ⇒ X(t) then X(t) has independent
increments.

Proof. Note that, as the Markov chain is stationary, irreducible, and aperiodic, it follows
that it is absolutely regular (see Theorems 21.5 and Corollary 21.7 of Bradley (2007b)). It is
well known that an absolutely regular sequence is strong mixing (see the chart on page 186 of
Bradley (2007a)). This means that αn ↘ 0, where

αn = sup P(A ∩ B) − P(A) P(B);
here the supremum is taken over all A ∈ σ(ξi, i ≤ 0) and B ∈ σ(ξi, i ≥ n). Because we know
from the proof of Theorem 1 that the process X(t) is continuous, it is enough to show that, for
all k and 0 < s1 < t1 < s2 < t2 < · · · < sk < tk < 1, the increments (X(ti) − X(si))1≤i≤k are
independent. Now, using the definitions of αn and Wn(t), we obtain, by recurrence,

∣∣∣∣P
( k⋂

i=1

(Wn(ti − si) ∈ Ai)

)
−

k∏
i=1

P(Wn(ti − si) ∈ Ai)

∣∣∣∣ ≤ min
1≤i≤k−1

α[n(si+1−ti )]

→ 0 as n → ∞
for any Borelians A1, . . . , Ak . The conclusion follows by passing to the limit with n.

3.7. Proof of Proposition 5

By Proposition (1) we know that σ 2
n = nh(n) with h a function slowly varying at ∞. Then,

by the first part of Proposition 4, Wn(t) is tight in D(0, 1). It remains to apply Theorem 19.4
of Billingsley (1968).

4. Application to a Metropolis–Hastings algorithm

In this section we analyze a standardized example of a stationary irreducible and aperiodic
Metropolis–Hastings algorithm with uniform marginal distribution. This type of Markov chain
is interesting since it can easily be transformed into Markov chains with different marginal
distributions. We point out a CLT under a normalization other than the variance of partial sums.
Markov chains of this type are often studied in the literature from different points of view; see
Doukhan et al. (1994), Rio (2000), (2009), and Merlevède and Peligrad (2012). The idea of
considering the Metropolis–Hastings algorithm in this context comes from Zhao et al. (2010).

Let E = [−1, 1]. We now define the transition probabilities of a Markov chain by

Q(x, A) = (1 − |x|)δx(A) + |x|υ(A),

where δx denotes the Dirac measure and υ on [−1, 1] satisfies

υ(dx) = |x| dx.

Then there exists a unique invariant measure, with uniform distribution on [−1, 1],
π(dx) = 1

2 dx,
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and the stationary Markov chain (ξi)i with values in E and transition probability Q(x, A) is
reversible and positively recurrent. Moreover, for any odd function f , we have

Qk(f )(ξ0) = E(f (ξk) | ξ0) = (1 − |ξ0|)kf (ξ0) a.s.

For the odd function f (x) = sgn x, define Xi = sgn ξi . In this context we will show the
following result.

Result 1. Let (Xj )j≥1 be as defined above. Then σ 2
n /(2n log n) → 1 and

1

σn

[nt]∑
j=1

Xj ⇒ 1

21/2 W(t),

where W(t) is the standard Brownian motion.

Proof. For any m ≥ 0, we have

E(X0Xm) = E(f (ξ0)Q
m(f )(ξ0)) =

∫
E

(1 − |x|)mπ(dx) = 1

m + 1
.

Therefore, by simple computations we obtain

σ 2
n ∼ 2n log n as n → ∞.

To find the limiting distribution of Sn properly normalized, we study the regeneration process.
Let

T0 = inf{i > 0 : ξi �= ξ0}
and

Tk+1 = inf{i > Tk : ξi �= ξi−1}, τk = Tk+1 − Tk.

It is well known that (ξτk
, τk)k≥1 are independent and identically distributed (i.i.d.) random

variables with ξτk
having the distribution υ. Furthermore,

P(τ1 > n | ξτ1 = x) = (1 − |x|)n.
Then it follows that

E(τ1 | ξτ1 = x) = 1

|x| and E(τ1) = 2.

So, by the law of large numbers, Tn/n → 2 a.s.
Let us study the tail distribution of τ1. Since

P(τ1|Xτ1 | > y | ξτ1 = x) = P(τ1 > y | ξτ1 = x) = (1 − |x|)y,
by integration we obtain

P(τ1 > y) =
∫ 1

−1
(1 − |x|)y |x| dx = 2

∫ 1

0
(1 − x)yx dx ∼ 2y−2 as y → ∞.

Moreover, E(τkXτk
) = 0 by symmetry. Also,

H(y) = E(τ 2
1 1(τ1 ≤ y)) ∼ 4 ln y.
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Define a normalization satisfying b2
n ∼ nH(bn). In our case, b2

n ∼ 4n ln bn, implying that
b2
n ∼ 2n ln n.

For each n, let mn be such that Tmn ≤ n < Tmn+1.
We have the representation

n∑
k=1

Xk −
[n/2]∑
k=1

Yk = (T0 − 1)X0 +
( mn∑

k=1

τkXτk
−

[n/2]∑
k=1

τkXτk

)
+

n∑
k=Tmn+1

Xk, (25)

where Yk = τkXτk
is a centered i.i.d. sequence in the domain of attraction of a normal law.

By the limit theorem for i.i.d. variables in the domain of attraction of a stable law (see Feller
(1971)) we obtain ∑[n/2]

k=1 Yk

b[n/2]
⇒ N(0, 1). (26)

By Theorem 4.1 of Billingsley (1968), the CLT for (
∑n

k=1 Xk)/b[n/2] will follow from (25) and
(26) provided we show that the normalized quantity on the right-hand side of (25) converges in
probability to 0. Clearly, because b[n/2] → ∞ we have

(T0 − 1)X0

b[n/2]
⇒ 0.

Also,

E
| ∑n

k=Tmn+1
Xk|

b[n/2]
≤ E |τmn+1|

b[n/2]
= 2

b[n/2]
→ 0.

Therefore, it remains to study the middle term. Let δ > 0. Then

P

(∣∣∣∣
mn∑
k=1

Yk −
[n/2]∑
k=1

Yk

∣∣∣∣ > εb[n/2]
)

≤ P

(∣∣∣∣mn

n
− 1

2

∣∣∣∣ ≥ δ

)

+ P

(
max

n/2−δn<l<n/2+δn

∣∣∣∣
l∑

k=1

Yk −
[n/2]∑
k=1

Yk

∣∣∣∣ > εb[n/2]
)

= I + II.

By the definition of mn and the law of large numbers for the i.i.d. sequence (τi)i≥1, we know
that mn/n → 1/ E(τ1) = 1

2 a.s. Therefore, the first term converges to 0 for every fixed δ as
n → ∞. As for the second term, by stationarity and the fact that the Yk are i.i.d.,

II ≤ 2 P

(
max

1≤l≤[δn]+1

∣∣∣∣
l∑

k=1

Yk

∣∣∣∣ >
εb[n/2]

2

)
,

and by Theorem 1.1.5 of De la Peña and Giné (1999),

II ≤ 2 P

(
max

1≤l≤[δn]+1

∣∣∣∣
l∑

k=1

Yk

∣∣∣∣ >
εb[n/2]

2

)
≤ 18 P

(∣∣∣∣
[δn]+1∑
k=1

Yk

∣∣∣∣ >
εb[n/2]

60

)
.
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Then, by the CLT in (26) and the fact that b2
n ∼ 2n ln n, we have

lim sup
n→∞

P

(∣∣∣∣
[δn]+1∑
k=1

Yk

∣∣∣∣ >
εb[n/2]

60

)
= lim sup

n→∞
P

( | ∑[δn]+1
k=1 Yk|
b[δn]

>
εb[n/2]
60b[δn]

)

≤ P

(
N(0, 1) >

εδ−1/2

120

)
,

which converges to 0 as δ → 0.
It follows that

Sn

b[n/2]
⇒ N(0, 1).

We recall that σ 2
n = 2n log n = b2

n, implying that

Sn

σn

⇒ N

(
0,

1

2

)
.

Consequently, because the chain is irreducible and aperiodic, by Corollary 1,

Wn(t) ⇒ 2−1/2W(t).

For a different example having this type of asymptotic behavior, we cite Zhao et al. (2010).
Our Corollary 1 will also provide a functional CLT for their example.
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