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Abstract

The new homotopy theory of exact ∞-categories is introduced and employed to prove
a Theorem of the Heart for algebraic K-theory (in the sense of Waldhausen). This
implies a new compatibility between Waldhausen K-theory and Neeman K-theory.
Additionally, it provides a new proof of the Dévissage and Localization theorems
of Blumberg–Mandell, new models for the G-theory of schemes, and a proof of the
invariance of G-theory under derived nil-thickenings.
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Introduction

In this paper, we prove (Theorem 6.1) that a stable homotopy theory whose triangulated
homotopy category admits a bounded t-structure has the same algebraicK-theory (in the sense of
Waldhausen) as that of its heart. This is the Theorem of the Heart of the title. This result, which
apparently has been expected by some experts for some time, has nevertheless gone unproved.

This theorem does, however, have an important predecessor. For 20 years Amnon Neeman
has advanced the algebraic K-theory of triangulated categories [Nee97a, Nee97b, Nee98a, Nee98b,
Nee99, Nee00a, Nee00b, Nee01, Nee05] as a way of extracting K-theoretic data directly from
the triangulated homotopy category of a stable homotopy theory. As an approximation to
Waldhausen K-theory, this form of K-theory has well-documented limitations: a beautiful
example of Schlichting [Sch02] shows that Waldhausen K-theory can distinguish stable homotopy
theories with equivalent triangulated homotopy categories. Nevertheless, the most impressive
advance in the algebraic K-theory of triangulated categories is Neeman’s Theorem of the
Heart [Nee98b, Nee99, Nee01], which expresses an equivalence between the Neeman K-theory

Received 25 February 2013, accepted in final form 22 October 2014, published online 19 August 2015.
2010 Mathematics Subject Classification 19D99, 55U40 (primary).
Keywords: algebraic K-theory, stable ∞-categories, t-structures.
This journal is c© Foundation Compositio Mathematica 2015.

https://doi.org/10.1112/S0010437X15007447 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X15007447


On exact ∞-categories and the Theorem of the Heart

of a triangulated category T equipped with a bounded t-structure and the Quillen K-theory of

its heart T ♥.

Neeman’s proof of his Theorem of the Heart is lengthy and difficult to read, so much so

that it even generated a small controversy (see Neeman’s discussion in [Nee97a, pp. 347–353]).

The proof of our Theorem of the Heart, by contrast, is mercifully short, conceptually appealing,

and logically independent of Neeman’s. Consequently we regard Theorem 6.1 and its proof as a

conclusive answer to Problem 76 of his survey [Nee05].

To prove our result, we introduce a natural homotopy-theoretic generalization of Quillen’s

notion of an exact category, which we call an exact ∞-category (Definition 3.1). Because this

notion involves a compatibility between certain homotopy limits and certain homotopy colimits,

it is virtually impossible (or at the very least hideously inconvenient) to express in the more

classical language of categories-with-weak-equivalences. Therefore we have to employ concepts

from higher category theory; in particular, the theory of Waldhausen∞-categories, whose theory

we studied in pitiless detail in [Bar13].

The key idea from [Bar13] is that algebraic K-theory is a homology theory for ∞-categories.

In fact, algebraic K-theory is the analogue of stable homotopy theory in this context. The

behavior of these categorified homology theories under duality is the key phenomenon that

makes our proof of the Theorem of the Heart work. More precisely, when algebraic K-theory

is restricted to exact ∞-categories, it enjoys a self-duality (Corollary 5.16.1). This self-duality is

then used in conjunction with our ∞-categorical Fibration theorem [Bar13, Proposition 10.12]

to prove the following theorem.

Theorem Heart. If A is a stable ∞-category equipped with a bounded t-structure, then the

inclusion of the heart A ♥ ⊂ A induces a K-theory weak equivalence

K(A ♥) ' K(A ).

This result is one of the very few general statements in algebraic K-theory that is capable

of providing K-theory equivalences that do not arise from equivalences of the ∞-categories

themselves. (The only other example of such a general result we know of this kind is Quillen’s

Dévissage theorem.)

The full strength of the conceptual apparatus constructed here and in [Bar13] is necessary for

this proof to work. In view of Schlichting’s ‘no-go theorem’ [Sch02, Proposition 2.2], our use of

the Fibration theorem makes it impossible for a proof at all similar to the one presented here to

be adapted to the context of triangulated categories. On the other hand, there are other proposed

versions of algebraic K-theory for ∞-categories (most notably that of Blumberg et al. [BGT13])

that restrict attention to stable ∞-categories or the like. These versions of K-theory just won’t

help for this problem: in fact, it isn’t possible even to express the relevant cases of self-duality

with this or any other form of K-theory that splits arbitrary cofiber sequences.

Let us underscore that this is not a new proof of an old theorem. Schlichting’s example shows

that there is no a priori reason to expect Neeman’s Theorem of the Heart to say anything about

Waldhausen K-theory. Nevertheless, our main result does yield a comparison between Neeman’s

K-theory and Waldhausen K-theory. Indeed, the conjunction of Neeman’s Theorem of the Heart

and Theorem 6.1 implies that the Waldhausen K-theory of a stable ∞-category A agrees with

the Neeman K-theory of its triangulated homotopy category T = hA (the variant denoted

K(wT ) in [Nee05]), whenever the latter admits a bounded t-structure (Corollary 6.4.1). This

verifies a conjecture of Neeman [Nee99, Conjecture A.5] for such stable homotopy theories.
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This paper ends with a discussion of some immediate corollaries of the main theorem, which
we include mostly as proof of concept.

– We give new models for the G-theory of schemes in terms of the perverse coherent sheaves
of Arinkin, Bezrukavnikov, and Deligne (Example 7.1).

– We also give a new, short proof of the Dévissage and Localization theorems of Blumberg
and Mandell [BM08] (Proposition 8.3 and Theorem 8.7), which immediately yields a host
of useful fiber sequences in the algebraic K-theory of ring spectra (Example 8.8). More
interesting examples can be found in our paper with Lawson [BL14].

– Finally, we show that the G-theory of spectral Deligne–Mumford stacks (in the sense of
Lurie) is invariant under derived thickenings (Proposition 9.2).

1. Preliminaries

We use higher categories systematically in this paper. In particular, we are interested in
∞-categories whose i-morphisms for i > 2 are all invertible. These days, it is fashionable to call
these (∞, 1)-categories or even just∞-categories. There are very many models for the homotopy
theory of ∞-categories in this sense, and they are all equivalent in an essentially unique fashion,
up to orientation; see Toën [Toe05] or Lurie [Lur09b] or Barwick and Schommer-Pries [BS11].

In this paper, we employ the homotopy theory of quasicategories developed by Joyal [Joy08a,
Joy08b] and then further by Lurie [Lur09a]. These are simplicial sets C in which any inner horn
x : Λmk −→ C (m > 2 and 1 6 k 6 m− 1) admits a filler x : ∆m −→ C. When we use the phrase
‘∞-categories’ in this text, we will be referring to these.

One point that is perhaps not so obvious is the notion of a subcategory of an ∞-category.

Recollection 1.1 [Lur09a, § 1.2.11]. A subcategory of an ∞-category A is a simplicial subset
A′ ⊂ A such that for some subcategory (hA)′ of the homotopy category hA, the square

A′ �
� //

��

A

��
N(hA)′ �

� // N(hA)

is a pullback diagram of simplicial sets. In particular, note that a subcategory of an ∞-category
is uniquely specified by specifying a subcategory of its homotopy category. Note also that any
inclusion A′ ↪→ A of a subcategory is an inner fibration [Lur09a, Definition 2.0.0.3, Proposition
2.3.1.5].

We will say that A′ ⊂ A is a full subcategory if (hA)′ ⊂ hA is a full subcategory. In this case,
A′ is uniquely determined by the set A′0 of vertices of A′, and we say that A′ is spanned by the
set A′0.

We will say that A′ is stable under equivalences if the subcategory (hA)′ ⊂ hA above can
be chosen to be stable under isomorphisms. Note that any inclusion A′ ↪→ A of a subcategory
that is stable under equivalences is a categorical fibration, i.e., a fibration for the Joyal model
structure [Lur09a, Corollary 2.4.6.5].

The natural inputs for algebraic K-theory are what we call Waldhausen ∞-categories.

Recollection 1.2 [Bar13, Definition 2.7]. A Waldhausen ∞-category (C ,C†) consists of an
∞-category C equipped with a subcategory C† ⊂ C that contains all the equivalences.
A morphism of C† will be said to be ingressive or a cofibration. These data are then required to
satisfy the following conditions.
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(1.2.1) The ∞-category C contains a zero object ; i.e., an object that is both initial and
terminal [Lur09a, Definition 1.2.12.1 and Remark 1.2.12.6].

(1.2.2) For any zero object 0, any morphism 0 −→ X is ingressive.

(1.2.3) Pushouts [Lur09a, § 4.4.2] of cofibrations exist and are cofibrations.

A functor C −→ D between Waldhausen ∞-categories is said to be exact if it carries
cofibrations to cofibrations and preserves both zero objects and pushouts of cofibrations.

The examples one may have in mind here include the nerve of an ordinary exact category in
the sense of Quillen (in which the ingressive morphisms are the admissible monomorphisms), the
nerve of a category with cofibrations in the sense of Waldhausen [Wal85] (in which the ingressive
morphisms are the cofibrations), any ∞-category with a zero object and all finite colimits (in
which any morphism is ingressive).

In a sense, the defining property of algebraic K-theory is that it splits cofiber sequences.
We’ll discuss this point in more detail later. For now, let us explain what cofiber sequences are.

Definition 1.3. In a Waldhausen ∞-category, a cofiber sequence is a pushout square

X ′ // //

��

X

��
0 // // X ′′

in which X ′ � X is ingressive and 0 is a zero object. We call X −→ X ′′ the cofiber of the
cofibration X ′� X.

We also have the dual notion of a coWaldhausen ∞-category.

Recollection 1.4 [Bar13, Definition 2.16]. A coWaldhausen ∞-category (C ,C †) consists of
an ∞-category C equipped with a subcategory C † ⊂ C that contains all the equivalences. A
morphism of C † will be said to be egressive or a fibration. These data are then required to satisfy
the following conditions.

(1.4.1) The ∞-category C contains a zero object.

(1.4.2) For any zero object 0, any morphism X −→ 0 is egressive.

(1.4.3) Pullbacks [Lur09a, § 4.4.2] of fibrations exist and are fibrations.

A functor C −→ D between coWaldhausen ∞-categories is said to be exact if it carries
fibrations to fibrations and preserves both zero objects and pullbacks of fibrations.

In other words, coWaldhausen ∞-categories are precisely the opposites of Waldhausen
∞-categories. In fact, Waldhausen and coWaldhausen ∞-categories and exact functors organize
themselves into ∞-categories Wald∞ and coWald∞, and the formation of the opposite
∞-category restricts to an equivalence of ∞-categories

Wald∞
∼ // coWald∞

[Bar13, Notations 2.13 and 2.17, and Proposition 2.18].

Definition 1.5. In a coWaldhausen ∞-category, a fiber sequence is a pullback square

X ′ //

����

X

����
0 // X ′′
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in which X →→ X ′′ is egressive and 0 is a zero object. We call X ′ −→ X the fiber of the fibration

X →→ X ′′.

2. Additive ∞-categories

In effect, an exact ∞-category will be a Waldhausen ∞-category C that is also a coWaldhausen

∞-category, with two additional properties: first, fiber sequences and cofiber sequences in C
must coincide; and second, C must be additive.

This notion of additivity is similar to the notion of additivity for ordinary categories. Recall

from [Bar13, Definition 4.5] the following.

Recollection 2.1. Suppose C an∞-category. Then C is said to admit finite direct sums if the

following conditions hold.

(2.1.1) The ∞-category C admits a zero object.

(2.1.2) The ∞-category C has all finite products and coproducts.

(2.1.3) For any finite set I and any I-tuple (Xi)i∈I of objects of C, the map∐
XI −→

∏
XI

in hC, given by the maps φij : Xi −→ Xj , where φij is zero unless i = j, in which case it is the

identity, is an isomorphism.

If C admits finite direct sums, then for any finite set I and any I-tuple (Xi)i∈I of objects of

C, we denote by
⊕
XI the product (or, equivalently, the coproduct) of the Xi.

Suppose C an ∞-category that admits direct sums. Then the homotopy category hC is

easily seen to admit direct sums as well. Moreover, the mapping spaces in C admit the natural

structure of a homotopy-commutative H-space: for any morphisms f, g ∈MapC(X,Y ), one may

define f + g ∈ MapC(X,Y ) as the composite

X
∆−→ X ⊕X f⊕g−−→ Y ⊕ Y ∇−→ Y.

Definition 2.2. An∞-category C that admits finite direct sums will be said to be additive if its

homotopy category hC is additive; i.e., if for any two objectsX and Y , the monoid π0MapC(X,Y )

is a group.

Remark 2.3. An ∞-category C with direct sums is additive just in case, for any objects X and

Y , the shear map

MapC(X,Y )×MapC(X,Y ) −→ MapC(X,Y )×MapC(X,Y )

in the homotopy category of Kan simplicial sets that is given informally by the assignment

(f, g) 7−→ (f, f + g) is an isomorphism. Note in particular that additivity is a condition, not

additional structure.

Example 2.4. Clearly the nerve of any ordinary additive category is an additive ∞-category.

Similarly, any stable ∞-category is additive.
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3. Exact ∞-categories

Now we are ready to define exact ∞-categories.

Definition 3.1. Suppose C an∞-category, and suppose C† and C † two subcategories of C . Call
a morphism of C† ingressive or a cofibration, and call a morphism of C † egressive or a fibration.

(3.1.1) A pullback square

X //

��

Y

����
X ′ // // Y ′

is said to be ambigressive if X ′ � Y ′ is ingressive and Y →→ Y ′ is egressive. Dually, a pushout
square

X // //

����

Y

��
X ′ // Y ′

is said to be ambigressive if X � Y is ingressive and X →→ X ′ is egressive.

(3.1.2) The triple (C ,C†,C
†) is said to be an exact ∞-category if it satisfies the following

conditions.

(3.1.2.1) The underlying ∞-category C is additive.

(3.1.2.2) The pair (C ,C†) is a Waldhausen ∞-category.

(3.1.2.3) The pair (C ,C †) is a coWaldhausen ∞-category.

(3.1.2.4) A square in C is an ambigressive pullback if and only if it is an ambigressive
pushout.

(3.1.3) In an exact ∞-category, an exact sequence is a cofiber/fiber sequence as below.

X ′ // //

����

X

����
0 // // X ′′

We will abuse notation by writing

X ′ // // X // // X ′′

for this square.

Remark 3.2. Note that in an exact ∞-category, a morphism of an exact ∞-category is egressive
just in case it appears as the cofiber of an ingressive morphism, and, dually, a morphism of an
exact ∞-category is ingressive just in case it appears as the fiber of an egressive morphism.
Indeed, any cofiber of an ingressive morphism is egressive, and any egressive morphism is
equivalent to the cofiber of its fiber. This proves the first statement; the second is dual.
Consequently, the class of cofibrations in an exact ∞-category specifies the class of fibrations,
and vice versa.

Example 3.3. (3.3.1) The nerve NC of an ordinary category C can be endowed with a triple
structure yielding an exact ∞-category if and only if C is an ordinary exact category, in
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the sense of Quillen, wherein the admissible monomorphisms are exactly the cofibrations, and

the admissible epimorphisms are exactly the fibrations. To prove this, one may observe that the

‘minimal’ axioms of Keller [Kel90, Appendix A] simply are the axioms listed above.

(3.3.2) At the other extreme, any stable ∞-category is an exact ∞-category in which all

morphisms are both egressive and ingressive, and, conversely, any ∞-category that can be

regarded as an exact category with the maximal triple structure (in which any morphism is

both ingressive and egressive) is a stable ∞-category.

Example 3.4. We may interpolate between these two extremes. Suppose A a stable ∞-category

equipped with a t-structure, and suppose a, b ∈ Z.

(3.4.1) The ∞-category A[a,+∞) := A>a admits an exact ∞-category structure, in which

every morphism is ingressive, but a morphism Y −→ Z is egressive just in case the induced

morphism πaX −→ πaY is an epimorphism of A ♥.

(3.4.2) Dually, the ∞-category A(−∞,b] := A6b admits an exact ∞-category structure, in

which every morphism is egressive, but a morphism X −→ Y is ingressive just in case the

induced morphism πbX −→ πbY is a monomorphism of A ♥.

(3.4.3) We may intersect these subcategories to obtain the full subcategory

A[a,b] := A>a ∩A6b ⊂ A ,

and we may intersect the subcategories of ingressive and egressive morphisms described to obtain

the following exact ∞-category structure on A[a,b]. A morphism X −→ Y is ingressive just in

case the induced morphism πbX −→ πbY is a monomorphism of the abelian category A ♥.

A morphism Y −→ Z is egressive just in case the induced morphism πaX −→ πaY is an

epimorphism of A ♥.

Example 3.5. Yet more generally, suppose A a stable ∞-category, and suppose C ⊂ A any full

additive subcategory that is closed under extensions. Declare a morphism X −→ Y of C to be

ingressive just in case its cofiber in A lies in C . Dually, declare a morphism Y −→ Z of C to

be egressive just in case its fiber in A lies in C . Then C is exact with this triple structure.

Remark 3.6. Thomason and Trobaugh called a triple (C,C†, C
†) of ordinary categories with

direct sums whose nerves satisfy conditions (3.1.2.2–4) a category with bifibrations [TT90,

Definition 1.2.2]. Include additivity, and this is precisely the notion of an ordinary exact category.

(As an aside, we remark that the theory of exact ∞-categories we delve into here really uses the

additivity condition; without it, one would be unable to ensure that exact ∞-categories form a

full subcategory of Waldhausen ∞-categories.)

When a class of weak equivalences is included, Thomason and Trobaugh used the term

biWaldhausen category [TT90, Definition 1.2.4]. This notion still does not require additivity.

However, suppose A a complicial biWaldhausen category [TT90, Definition 1.2.11] that is closed

under the canonical homotopy pullbacks and canonical homotopy pushouts of [TT90, Definition

1.1.2] in the sense of [TT90, Definition 1.3.5] such that the mapping cylinder and cocylinder

functors of [TT90, Definition 1.3.4] satisfy [TT90, Definition 1.3.1.5] and its dual. Then the

relative nerve [Bar13, Definition 1.5] of (A, wA) is clearly a stable ∞-category. Consequently,

every example of a category with cofibrations and weak equivalences that Thomason and

Trobaugh study [TT90, §§ 2–11] is actually nothing more than a model for some stable ∞-

category.
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4. Exact functors between exact ∞-categories

Definition 4.1. Suppose C and D two exact ∞-categories. A functor F : C −→ D will be said
to be exact if it preserves both cofibrations and fibrations and if F is exact both as a functor of
Waldhausen ∞-categories and as a functor of coWaldhausen ∞-categories.

We denote by FunExact∞(C ,D) the full subcategory of Fun(C ,D) spanned by the exact
functors C −→ D .

This definition, when set against the definition of exact functor of Waldhausen categories
(Recollection 1.2), appears to overburden the phrase ‘exact functor’ and to create the possibility
for some ambiguity; however, in Proposition 4.8 we will see that in fact no ambiguity obtains.

For now, let us construct the ∞-category of exact ∞-categories.

Notation 4.2. Denote by Exact∆
∞ the following simplicial category. The objects of Exact∆

∞ are
small exact ∞-categories; for any two exact ∞-categories C and D , let Exact∆

∞(C ,D) be the
maximal Kan complex ιFunExact∞(C ,D) contained in FunExact∞(C ,D). We write Exact∞ for
the simplicial nerve [Lur09a, Definition 1.1.5.5] of Exact∆

∞.

Remark 4.3. We could have equally well defined Exact∞ as the full subcategory of the pullback

Wald∞ ×Cat∞ coWald∞

spanned by the exact ∞-categories.

We have already remarked that the formation of the opposite of a Waldhausen ∞-category
defines an equivalence

Wald∞
∼ // coWald∞ .

Since exact ∞-categories are defined by fitting together the structure of a Waldhausen ∞-
category and a coWaldhausen∞-category in a self-dual manner, we obtain the following lemma.

Lemma 4.4. The formation of the opposite restricts to an autoequivalence

op : Exact∞
∼ // Exact∞ .

This permits us to dualize virtually any assertion about exact ∞-categories.
We now set about showing that the inclusion Exact∞ ↪→ Wald∞ is fully faithful. For

this, we use in a nontrivial way the additivity condition for exact ∞-categories. In particular,
this additivity actually guarantees a greater compatibility between pullbacks and pushouts and
between fibrations and cofibrations than one might at first expect.

Lemma 4.5. In an exact ∞-category, a pushout square

X // //

��

Y

��
X ′ // Y ′

in which the morphism X � Y is ingressive is also a pullback square. Dually, a pullback square

X //

��

Y

����
X ′ // Y ′

in which the morphism Y →→ Y ′ is egressive is also a pushout square.
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Proof. We prove the first statement; the second is dual. Since X ′ � Y ′ is ingressive, we may
form the cofiber

X ′ // //

����

Y ′

����
0 // // Z ′

which is an ambigressive square. Hence the square

X // //

����

Y

����
0 // // Z ′

is also ambigressive, whence we conclude that

X // //

��

Y

��
X ′ // // Y ′

is a pullback square. 2

The next pair of lemmas give a convenient way to replace pushout squares with exact
sequences.

Lemma 4.6. For any exact sequence

X ′ //
i // X

p // // X ′′

of an exact ∞-category C, the object W formed as the pushout

X ′ // //
��

��

X
��

��
X // //W

is a direct sum X ⊕X ′′. Dually, the object V formed as the pullback

V // //

����

X

����
X // // X ′′

is a direct sum X ′ ⊕X.

Proof. We prove the first assertion; the second is dual. Choose a fibrant simplicial category D
whose nerve is equivalent to C. Now for any object T , the shear map

MapD(X,T )×MapD(X,T )
∼ //MapD(X,T )×MapD(X,T )

induces an equivalence

(MapD(X,T )×MapD(X,T ))×hid×i?,(MapD(X,T )×MapD(X′,T )),id×0 (MapD(X,T )×∆0)

∼
��

(MapD(X,T )×MapD(X,T ))×hi?×i?,(MapD(X′,T )×MapD(X′,T )),∆ MapD(X ′, T )

(4.6.1)

where:

2168
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– i? denotes the map MapD(X,T ) −→ MapD(Z, T ) induced by i : X ′� X;

– 0 denotes a vertex ∆0 −→ MapD(X ′, T ) corresponding to a zero map; and

– ∆ denotes the diagonal map.

The source of (4.6.1) is the product of MapD(X,T ) with the space of squares of the form

X ′ //
i //

��

X

��
0 // T

in C, and the target is equivalent to the space of squares of the form

X ′ //
i //

��
i
��

X

��
X // T

in C. Consequently, the map (4.6.1) specifies an equivalence

MapD(X,T )×MapD(X ′′, T )
∼ //Map(W,T ).

This equivalence is clearly functorial in T , so it specifies an equivalence W
∼ // X ⊕X ′′ . 2

Lemma 4.7. In an exact ∞-category, suppose that

X
i //

p

��

Y

q

��
X ′

i′
// Y ′

is either a pushout square in which X � Y is ingressive or a pullback square in which Y →→ Y ′

is egressive. Then the morphism (−p
i

)
: X � X ′ ⊕ Y

is ingressive, the morphism
(i′ q) : X ′ ⊕ Y →→ Y ′

is egressive, and these maps fit into an exact sequence

X // // X ′ ⊕ Y // // Y ′.

Proof. We prove the assertion for pushout squares; the other assertion is dual. We form a diagram

X //
��

��

X ′ // //
��

��

0
��

��
V //

����

V ′ // //

����

Y ′

����
Y // Y ′ // // Z

in which every square is a pullback square. By the previous lemma, V ′ is a direct sum X ′ ⊕ Y ′,
and V is a direct sum X ⊕ Y ′. The desired exact sequence is the top rectangle. 2
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Proposition 4.8. The following are equivalent for a functor ψ : C −→ D between two ∞-
categories with exact ∞-category structures.

(4.8.1) The functor ψ carries cofibrations to cofibrations, it carries fibrations to fibrations,
and as a functor of exact ∞-categories, ψ is exact.

(4.8.2) The functor ψ carries cofibrations to cofibrations, and as a functor of Waldhausen
∞-categories, ψ is exact.

(4.8.3) The functor ψ carries fibrations to fibrations, and as a functor of coWaldhausen
∞-categories, ψ is exact.

Proof. It is clear that the first condition implies the other two. We shall show that the second
implies the first; the proof that the third condition implies the first is dual. So suppose ψ
preserves cofibrations and is exact as a functor of Waldhausen∞-categories. Because a morphism
is egressive just in case it can be exhibited as a cofiber, ψ preserves fibrations as well. A pullback
square

X
i //

p
����

Y

q
����

X ′
i′
// Y ′

in which p : X →→ X ′ and q : Y →→ Y ′ are egressive can be factored as

X //
(−pi )

//

p
����

X ′ ⊕ Y pr2 //

id⊕q
����

Y

q
����

X ′ //
(−id
i′ )
// X ′ ⊕ Y ′ pr2

// // Y ′

in which all three rectangles are pullbacks. By the previous lemma, the left-hand square is an
ambigressive pullback/pushout, so when we apply ψ, we obtain a diagram

ψX //
(−ψpψi )

//

ψp
����

ψX ′ ⊕ ψY pr2 // //

id⊕ψq
����

ψY

ψq
����

ψX ′ //
(−id
ψi′)
// ψX ′ ⊕ ψY ′ pr2

// // ψY ′

in which the right-hand square is easily seen to be a pullback, and the left-hand square, being
an ambigressive pushout, is also an ambigressive pullback. 2

Corollary 4.8.1. The forgetful functors

Exact∞ −→ Wald∞ and Exact∞ −→ coWald∞

are fully faithful.

In particular, we may say that a Waldhausen ∞-category C ‘is’ an exact ∞-category if
it lies in the essential image of the forgetful functor Exact∞ −→ Wald∞, and we will treat
this forgetful functor as if it were an inclusion. Since this functor is fully faithful, this is not a
significant abuse of terminology. We make sense of the assertion that a coWaldhausen∞-category
‘is’ an exact ∞-category in a dual manner.
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4.9. The essential image of the forgetful functor Exact∞ −→ Wald∞ is spanned by those
Waldhausen ∞-categories that satisfy the following three criteria.

(4.9.1) The underlying ∞-category is additive.

(4.9.2) The class of morphisms that can be exhibited as the cofiber of some cofibration is
closed under pullback.

(4.9.3) Every cofibration is the fiber of its cofiber.

The essential image of the forgetful functor Exact∞ −→ coWald∞ is described in a dual
manner.

5. Theories and duality

Algebraic K-theory is a particular example of what we called an additive theory in [Bar13].
In effect, additive theories are the natural homology theories for Waldhausen ∞-categories. To
tell this story, it is necessary to recall some pleasant facts about the ∞-categories Wald∞ and
coWald∞.

Recollection 5.1. In particular, the ∞-category Wald∞ (and hence also the ∞-category
coWald∞) enjoys a number of excellent formal properties. We showed in [Bar13, Proposition
4.6] that it admits direct sums, and we also showed in [Bar13, Proposition 4.7] that it is compactly
generated [Lur09a, Definition 5.5.7.1] in the sense that every Waldhausen ∞-category is in fact
the filtered union of its finitely presented Waldhausen subcategories (that is, of Waldhausen
subcategories that are compact as objects of Wald∞).

Furthermore, suppose X : Λ −→ Wald∞ a diagram of Waldhausen ∞-categories. The limit
lim X is computed by forming the limit in Cat∞ [Lur09a, Corollary 3.3.3.2] and then declaring
a morphism to be ingressive if its image in each Xα is so [Bar13, Proposition 4.3]. Similarly, if
Λ is filtered, then the colimit colim X is computed by forming the colimit in Cat∞ [Lur09a,
Corollary 3.3.4.3] and then declaring (colim X )† to be the union of the images of the∞-categories
Xα,† [Bar13, Proposition 4.4].

Since the ∞-categories Wald∞ and coWald∞ are equivalent, it is clear that all these
properties are enjoyed by the latter as well as the former. We will denote by Waldω∞ (respectively,
by coWaldω∞) the full subcategory of Wald∞ (respectively, coWald∞) spanned by the
finitely presented Waldhausen ∞-categories (respectively, the finitely presented coWaldhausen
∞-categories).

These formal properties can be regarded as analogues of a few of the formal properties enjoyed
by the ordinary category V(k) of vector spaces: vector spaces are of course additive, and any
vector space is the union of its finite-dimensional subspaces. Furthermore, the underlying set of
a limit or filtered colimit of vector spaces is the limit or filtered colimit of the underlying sets.

We will only be interested in functors on Wald∞ or coWald∞ that are (1) trivial on the
zero Waldhausen∞-category, and (2) completely determined by their values on finitely presented
Waldhausen ∞-categories.

Recollection 5.2 [Bar13, Definition 7.1]. A theory φ : Wald∞ −→ Kan is a functor that
preserves terminal objects and filtered colimits.

Similarly, a theory φ : coWald∞ −→ Kan is a functor that preserves terminal objects and
filtered colimits.

Notation 5.3. Denote by Thy (respectively, Thy∨) the full subcategory of the ∞-category
Fun(coWald∞,Kan) spanned by the theories.

2171

https://doi.org/10.1112/S0010437X15007447 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007447


C. Barwick

Example 5.4. The most important example of a theory (in either sense) is the moduli space of
objects functor C 7−→ ιC . Here ιC denotes the largest Kan complex contained in C [Lur09a,
Proposition 1.2.5.3].

Of course there is a canonical equivalence between theories on Waldhausen∞-categories and
theories on coWaldhausen ∞-categories.

Definition 5.5. For any theory φ : Wald∞ −→ Kan, the dual theory φ∨ is the composite
φ ◦ op : coWald∞ −→ Kan. This construction clearly yields an equivalence of ∞-categories

Thy
∼ // Thy∨ .

Now we are prepared to define the key notion of an exact duality on a theory φ.

Definition 5.6. An exact duality on a theory φ is an equivalence

η : φ|Exact∞
∼ // φ∨|Exact∞

of the ∞-category Fun(Exact∞,E ).

Example 5.7. Suppose ρ : Cat∗∞ −→ Kan a functor from the ∞-category Cat∗∞ of pointed
∞-categories to Kan that preserves the terminal object and filtered colimits. Then an equivalence

ρ
∼ // ρ ◦ op induces an exact duality on the composite

Wald∞ −→ Cat∗∞ −→ Kan.

For instance, the functor ι : Cat∗∞ −→ Kan admits an equivalence ι
∼ // ι ◦ op ; consequently,

the theory ι : Wald∞ −→ Kan admits an exact duality.

A general theory does not reflect much about the (co)Waldhausen structure. Additive theories
are much more sensitive. To talk about them, we have to recall our construction of F and S .

Recollection 5.8. In [Bar13, § 5] we defined, for any Waldhausen ∞-category C , an ∞-
category F (C ) and a full subcategory S (C ) ⊂ F (C ). An object of F (C ) is a pair (m,X)
consisting of a natural number m and a sequence

X0
// // · · · // // Xm

of cofibrations of C ; a morphism (m,X) −→ (n, Y ) of F (C ) consists of a morphism η : n −→ m
of ∆ and a commutative diagram

Xη(0)
// //

��

· · · // // Xη(n)

��
Y0
// // · · · // // Yn

of C . The full subcategory S (C ) ⊂ F (C ) is the one spanned by those pairs (m,X) such that
X0 is a zero object of C .

The assignment (m,X) 7−→ m defines functors

pC : F (C ) −→ N∆op and qC : S (C ) −→ N∆op.

Let us write Fm(C ) := p−1
C (m) and Sm(C ) := q−1

C (m).
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The first basic fact to understand about these functors is that they are cocartesian
fibrations [Lur09a, Definition 2.4.2.1]; that is, there are functors

F∗(C ) : N∆op −→ Cat∞ and S∗(C ) : N∆op −→ Cat∞

(the functors that classify pC and qC , [Lur09a, Definition 3.3.2.2]) and equivalences Fm(C ) '
Fm(C ) and Sm(C ) ' Sm(C ) such that for any morphism η : n −→ m of ∆, the space of
morphisms (m,X) −→ (n, Y ) of F (C ) (respectively, of S (C )) that cover η is equivalent to the
space of morphisms η!X −→ Y , where η! is shorthand notation for the image of η under F∗(C )
(respectively, S∗(C )). In particular, for any object X of p−1

C (m) (respectively, q−1
C (m)), there

exists a special edge, called a cocartesian edge, from X to η!X.
The functor F∗(C ) is easy to describe: it carries m to the full subcategory of Fun(∆m,C )

spanned by those functors X : ∆m −→ C such that each morphism Xi −→ Xi+1 is ingressive;
the functoriality in m is obvious here. The functor S∗(C ) is a tad trickier to describe: morally,
it carries m to the full subcategory of Fm(C ) spanned by those objects X such that X0 is a zero
object, and a map η : n −→ m of ∆ induces a functor Sm(C ) −→ Sn(C ) that carries an object
X to the object

0 // // Xη(1)/Xη(0)
// // · · · // // Xη(n)/Xη(0).

One can opt to make compatible choices of these quotients to rectify this into an actual functor
of ∞-categories, or, alternately, one can forget about S∗(C ) and stick with the cocartesian
fibration S (C ) −→ N∆op. In [Wal85], Waldhausen opted for the former; in [Bar13], we opted
for the latter. Which approach one chooses to take is largely a matter of taste or convenience;
conceptually, there is no difference.

In [Bar13, Corollary 5.20.1], we show that the left adjoints Fm(C ) −→ Sm(C ) to the
inclusions Sm(C ) ↪→ FmC fit together over N∆op to make a natural transformation F∗(C ) −→
S∗(C ).

The next significant thing to understand about F (C ) −→ N∆op and S (C ) −→ N∆op is
that they are what we have called Waldhausen cocartesian fibrations [Bar13, Definition 3.20].
That is, there are subcategories

F (C )† ⊂ F (C ) and S (C )† ⊂ S (C )

such that for any m > 0, the pairs

(Fm(C ),Fm(C ) ∩F (C )†) and (Sm(C ),Sm(C ) ∩S (C )†)

are Waldhausen ∞-categories, and for any morphism η : n −→ m of ∆, the functors

η! : Fm(C ) ' Fm(C ) −→ Fn(C ) ' Fn(C ) and η! : Sm(C ) ' Sm(C ) −→ Sn(C ) ' Sn(C )

are exact functors of Waldhausen∞-categories. In effect, a morphism (m,X) −→ (n, Y ) of either
F (C ) or S (C ) will be declared ingressive just in case the morphism n −→ m is an isomorphism
and the diagram

X0
// //

��

· · · // // Xm

��
Y0
// // · · · // // Ym

has the property that for any integer 0 6 i 6 j 6 m, the natural morphism Yi ∪Xi Xj −→
Yj (whose source is the pushout in the ∞-categorical sense, of course) is ingressive. We show
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that F (C ) −→ N∆op and S (C ) −→ N∆op are Waldhausen cocartesian fibrations in [Bar13,
Proposition 5.11 and Theorem 5.20]. Consequently, the functors that classify these fibrations can
be lifted to simplicial Waldhausen ∞-categories

F∗(C ) : N∆op −→ Wald∞ and S∗(C ) : N∆op −→ Wald∞.

Dually, for any coWaldhausen ∞-category D , we obtain coWaldhausen cartesian fibrations

F∨(D) := F (Dop)op −→ N∆ and S ∨(D) := S (Dop)op −→ N∆.

The functors that classify these fibrations are simplicial coWaldhausen ∞-categories

F∨∗ (D) : N∆op −→ coWald∞ and S∨∗ (D) : N∆op −→ coWald∞.

Definition 5.9 [Bar13, Definition 7.5]. A theory φ : Wald∞ −→ Kan will be said to be additive
if for any Waldhausen ∞-category C , the simplicial space

φ ◦ S∗(C ) : N∆op −→ Kan

is a group object in the sense of [Lur09a, Definition 7.2.2.1]. That is, for any m > 0, the map

φ ◦ Sm(C ) −→
m∏
i=1

φ ◦ S{i−1,i}(C )

is an equivalence, and the monoid π0(φ ◦ S1(C )) is a group. Write Add for the full subcategory
of Thy spanned by the additive theories.

Dually, a theory φ : coWald∞ −→ Kan will be said to be additive just in case it is the
dual theory of an additive theory Wald∞ −→ Kan. That is, φ is additive just in case, for any
coWaldhausen ∞-category C , the simplicial space

φ ◦ S∨∗ (C ) : N∆op −→ Kan

is a group object. Write Add∨ for the full subcategory of Thy∨ spanned by the additive theories.

Recollection 5.10. The main theorems of [Bar13] are (1) that there exist what we call the
fissile derived ∞-category Dadd(Wald∞) and a functor

Wald∞ −→ Dadd(Wald∞)

an equivalence
Exc(Dadd(Wald∞),Kan) ' Add,

where Exc denotes the ∞-category of reduced excisive functors that preserve sifted colimits
[Bar13, Theorems 7.4 and 7.6], and (2) that the suspension in Dadd(Wald∞) of a Waldhausen
∞-category C is given by a formal colimit colimS∗(C ) [Bar13, Corollary 6.9.1]. As a consequence,
we deduced one may use the Goodwillie differential to find the best additive approximation to a
theory φ:

D(φ)(C ) ' colim
m→∞

Ωm|φ ◦ S∗ · · ·S∗(C )|(N∆op)m ,

where | · |(N∆op)m denotes the colimit of an m-simplicial space [Bar13, Theorem 7.8]. The functor
D then defines a left adjoint to the inclusion Thy ↪→ Add.

Dually, the inclusion Add∨ ↪→ Thy∨ admits a left adjoint D∨, given by the formula

D∨(φ)(C ) ' colim
m→∞

Ωm|φ ◦ S∨∗ · · ·S∨∗ (C )|(N∆op)m .
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The purpose of the remainder of this section is to describe a circumstance in which an exact
duality on a theory φ descends to an exact duality on Dφ, and to show that these conditions
obtain when φ = ι, giving a functorial equivalence K(C ) ' K(C op) for exact ∞-categories C .

So suppose φ a theory with an exact duality. Note that (D(φ))∨ is by construction equivalent
to D∨(φ∨), so such a result can be thought of as giving an equivalence D(φ) ' D∨(φ∨) on exact
∞-categories.

Consequently, for an exact ∞-category C , we aim to produce a kind of duality between the
Waldhausen cocartesian fibration S (C ) −→ N∆op and the coWaldhausen cartesian fibration
S ∨(C ) −→ N∆.

More precisely, we will construct a functor S̃∗(C ) : N∆op −→ Cat∞ such that on the one
hand, S̃∗ classifies the cocartesian fibration S (C ) −→ N∆op, and on the other, the composite
of S̃∗ with the functor op : N∆op −→ N∆op given by [n] 7−→ [n]op is a straightening of the
cartesian fibration S ∨(C ) −→ N∆.

In order to do this, we introduce thickened versions S̃ , S̃ ∨ of the constructions S , S ∨.

Notation 5.11. Let M̃ be the following ordinary category. The objects are triples (m, i, j)
consisting of integers 0 6 i 6 j 6 m, and a morphism (n, k, `) −→ (m, i, j) is a morphism
φ : [m] −→ [n] of ∆ such that k 6 φ(i) and ` 6 φ(j).

We declare an edge (n, k, `) −→ (m, i, j) of NM̃ to be ingressive if the underlying edge
m −→ n of ∆ is an isomorphism and if ` = j. Dually, we declare an edge (n, k, `) −→ (m, i, j)
of NM̃ to be egressive if the underlying edge m −→ n of ∆ is an isomorphism and if i = k.
We write NM̃† for the subcategory of NM̃ consisting of the ingressive morphisms, and we write

NM̃† for the subcategory of NM̃ consisting of the egressive morphisms.
The fiber of the functor NM̃ −→ N∆op over a vertex n ∈ N∆op is the arrow ∞-category

O(∆n) := Fun(∆1,∆n).
Now the functor NM̃ −→ N∆op is a cartesian fibration, and so its opposite NM̃op −→ N∆

is a cocartesian fibration. Furthermore, one verifies easily that for any morphism η : n −→ m,
the induced functor

η! : O(∆n) −→ O(∆m)

is the obvious one, and it preserves both ingressive and egressive morphisms.

Construction 5.12. If C is a Waldhausen ∞-category, write F̃ (C ) for the simplicial set over
N∆op satisfying the following universal property, which follows the general pattern set in [Lur09a,
Corollary 3.2.2.13]. We require, for any simplicial set K and any map σ : K −→N∆op, a bijection

Mor/(N∆op)(K, F̃ (C )) ∼= MorsSet(2)((K ×N∆op NM̃,K ×N∆op (NM̃)†), (C ,C†)),

functorial in σ. Here, the category sSet(2) is the ordinary category of pairs (X,A) of simplicial
sets X equipped with a simplicial subset A ⊂ X. (Note that since the functor of K on the

right-hand side carries colimits to limits, the simplicial set F̃ (C ) does indeed exist.) By [Bar13,

Proposition 3.18], the map F̃ (C ) −→ N∆op is a cocartesian fibration.

Dually, if C is a coWaldhausen ∞-category, write F̃∨(C ) for the simplicial set over N∆
satisfying the following universal property. We require, for any simplicial set K and any map
σ : K −→ N∆, a bijection

Mor/N∆(K, F̃∨(C )) ∼= MorsSet(2)((K ×N∆ NM̃op,K ×N∆ (NM̃†)op), (C ,C †)),

functorial in σ. By the dual of [Bar13, Proposition 3.18], the map F̃∨(C ) −→ N∆ is a cartesian
fibration, and it is clear that

F̃∨(C ) ∼= F̃ (C op)op.
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The objects of the ∞-category F̃ (C ) may be described as pairs (m,X) consisting of a
nonnegative integer m and a functor X : O(∆m) −→ C that carries ingressive morphisms to

ingressive morphisms. Dually, the objects of the ∞-category F̃∨(C ) may be described as pairs
(m,X) consisting of a nonnegative integer m and a functor X : O(∆m)op −→ C that carries
egressive morphisms to egressive morphisms.

Now if C is a Waldhausen ∞-category, we let S̃ (C ) ⊂ F̃ (C ) denote the full subcategory
spanned by those pairs (m,X) such that for any integer 0 6 i 6 m, the object X(i, i) is a zero
object of C , and for any integers 0 6 i 6 k 6 j 6 ` 6 m, the square

X(i, j) // //

��

X(i, `)

��
X(k, j) // // X(k, `)

is a pushout. Dually, if C is a coWaldhausen ∞-category, let S̃ ∨(C ) ⊂ F̃∨(C ) denote the full
subcategory spanned by those pairs (m,X) such that for any integer 0 6 i 6 m, the object
X(i, i) is a zero object of C , and for any integers 0 6 i 6 k 6 j 6 ` 6 m, the square

X(k, `) //

����

X(k, j)

����
X(i, `) // X(i, j)

is a pullback. Since ambigressive pullbacks and ambigressive pushouts coincide, we deduce that

S̃ ∨(C ) ∼= S̃ (C op)op.

Notation 5.13. As in [Bar13], the constructions above yield functors

S̃ : Wald∞ −→ Cat∞,/N∆op and S̃ ∨ : coWald∞ −→ Cat∞,/N∆.

The functor M −→ M̃ given by the assignment (m, i) 7−→ (m, 0, i) induces a natural

transformation S̃ −→ S over N∆op and a natural transformation S̃ ∨ −→ S ∨ over N∆.
Furthermore, we can pass to the functors that classify these fibrations to obtain functors

S̃∗ : Wald∞ −→ Fun(N∆op,Cat∞) and S̃∨∗ : coWald∞ −→ Fun(N∆op,Cat∞).

For any Waldhausen∞-category (respectively, any coWaldhausen∞-category) C , the simplicial
category S̃∗(C ) : N∆op −→ Cat∞ (respectively, S̃∨∗ (C ) : N∆op −→ Cat∞) carries an object m
to the full subcategory

S̃m(C ) ⊂ Fun(O(∆m),C ) (respectively, S̃∨m(C ) ⊂ Fun(O(∆m)op,C ))

spanned by those diagrams X such that for any integer 0 6 i 6 m, the object X(i, i) is a zero
object of C , and for any integers 0 6 i 6 k 6 j 6 ` 6 m, the square

X(i, j) // //

��

X(i, `)

��
X(k, j) // // X(k, `)
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is an ambigressive pushout (respectively, for any integers 0 6 i 6 k 6 j 6 ` 6 m, the square

X(k, `) //

����

X(k, j)

����
X(i, `) // X(i, j)

is an ambigressive pullback).

In light of the uniqueness of limits and colimits in∞-categories [Lur09a, Proposition 1.2.12.9],
one readily has the following proposition.

Proposition 5.14. Suppose C a Waldhausen ∞-category. Then the functor

S̃ (C ) −→ N∆op

is a cocartesian fibration, and the map S̃ (C ) −→ S (C ) defined above is a fiberwise equivalence
over N∆op. Dually, if C is a coWaldhausen ∞-category, then the functor

S̃ ∨(C ) −→ N∆

is a cartesian fibration, and the map S̃ ∨(C ) −→ S ∨(C ) defined above is a fiberwise equivalence
over N∆.

5.15. In particular, we can use the equivalence of the previous proposition to endow, for any
Waldhausen∞-category (respectively, any coWaldhausen∞-category) C , the∞-category S̃ (C )

(respectively, S̃ ∨(C )) with the structure of a Waldhausen ∞-category. That is, let us declare

a morphism X −→ Y of S̃ (C ) (respectively, of S̃ ∨(C )) ingressive (respectively, egressive) just
in case its image in S (C ) (respectively, in S ∨(C )) is so. Observe that under this definition,
X −→ Y is ingressive (respectively, egressive) just in case each of the morphisms X(i, j) −→
Y (i, j) of C is so.

Consequently, the constructions S̃ and S̃∨ yield functors

S̃ : Wald∞ −→ Fun(N∆op,Wald∞) and S̃∨ : coWald∞ −→ Fun(N∆op, coWald).

Now suppose C an exact∞-category. Since ambigressive pushouts and ambigressive pullbacks
coincide in C , it follows that there is a canonical equivalence

(S̃∗ ◦ op)|Exact∞ ' (S̃∨∗ )|Exact∞ ,

where op : N∆op ∼ // N∆op is the opposite automorphism of N∆op. We therefore deduce the
following theorem.

Theorem 5.16. Suppose E an∞-topos. For any pointed functor ρ : Cat∗∞ −→ E∗ that preserves

filtered colimits, an equivalence ρ
∼ // ρ ◦ op induces a canonical exact duality on the Goodwillie

additivization Dρ.

Proof. The equivalence ρ
∼ // ρ ◦ op , combined with the equivalence S̃∗ ◦ op ' S̃∨∗ , yields an

equivalence

|ρ ◦ S̃∗| ' |ρ ◦ S̃∗ ◦ op| ∼ // |ρ ◦ op ◦ S̃∗ ◦ op| ' |ρ∨ ◦ S̃∨∗ | . 2

Applying this result to the functor ι yields the following corollary.

Corollary 5.16.1. Algebraic K-theory admits an exact duality.
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6. Theorem of the Heart

In this section, we show that the Waldhausen K-theory of a stable ∞-category with a bounded
t-structure agrees with the K-theory of its heart. Amnon Neeman has provided an analogous
result for his K-theory of triangulated categories [Sch02]; given Neeman’s result, our result
here may be alternatively summarized as saying that the Waldhausen K-theory of a stable
∞-category A with a bounded t-structure agrees with Neeman’s K-theory of the triangulated
homotopy category T = hA (denoted K(wT ) in [Nee05]); this verifies a conjecture posed by
Neeman [Nee99, Appendix A] for such stable homotopy theories.

In this section, suppose E a small stable ∞-category equipped with a bounded t-structure
(E6−1, E>0). Our objective is to prove the following

Theorem 6.1 (Heart). The inclusions E♥ ↪→ E>0 and E>0 ↪→ E induce equivalences

K(E♥)
∼ // K(E>0) and K(E>0)

∼ // K(E) .

The fact that the inclusions induce isomorphisms K0(E♥) ∼= K0(E>0) ∼= K0(E) is well known
and trivial. Consequently, appealing to the Cofinality theorem of [Bar13, Theorem 10.11] (which
states that idempotent completions induce equivalences on the connected cover of K-theory), we
may therefore assume that E is idempotent complete. We now set about proving that the higher
K-groups of E♥ and E agree.

Our proof is quite straightforward. The first main tool is the following.

Theorem 6.2 (Special Fibration theorem, [Bar13, Proposition 10.12]). Suppose C a compactly
generated ∞-category containing a zero object, suppose L : C −→ D an accessible localization,
and suppose the inclusion D ↪→ C preserves filtered colimits. Assume also that the class of all
L-equivalences of C is generated (as a strongly saturated class) by the L-equivalences between
compact objects. Then L induces a pullback square of spaces

K(Eω) //

��

K(Cω)

��
∗ // K(Dω)

where Cω and Dω are equipped with the maximal pair structure, and Eω ⊂ Cω is the full
subcategory spanned by those objects X such that LX ' 0.

As a consequence of [Lur09a, Corollary 5.5.7.4, Proposition 5.5.7.8], we proved in [Bar13,
Corollary 10.12.2] that the functor τ6−1 induces a pullback square

K(E>0) //

��

K(E)

��
∗ // K(Emax

6−1)

of spaces, where the ∞-categories that appear are equipped with their maximal Waldhausen
structure; i.e., the one in which every morphism is ingressive. (Note that for E>0 and E, the
Waldhausen structure described in Example 3.4 is the maximal Waldhausen structure, but this
is very much not the case for E6−1.)
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We now claim that the K-theory of the maximal Waldhausen ∞-category Emax
6−1 vanishes.

Indeed, we may apply [Bar13, Corollary 8.2.1] to the∞-category E6−1; this will ensure that the

functor

Σ∞E6−1
: Emax
6−1 −→ S̃p(E6−1)max

induces an equivalence on K-theory. Note that the suspension functor on E6−1 is the composite

τ6−1 ◦ ΣE . Since the t-structure is bounded, it therefore follows that Σ∞E6−1
is equivalent to the

constant functor at 0.

Warning 6.3. Note that this argument applies only to the maximal Waldhausen ∞-category

Emax
6−1. The K-theory of the Waldhausen structure on E6−1 of Example 3.4, in which a morphism

is ingressive just in case it induces a monomorphism on π−1, will turn out to agree with the

K-theory of E.

Consequently, the inclusion E>0 ↪→ E induces an equivalence

K(E>0)
∼ // K(E) ,

and we are left with showing that the map K(E♥) −→ K(E>0) is an equivalence.

For this, we take opposites. The opposite ∞-category Eop is endowed with the dual

t-structure, with (Eop)6−n = (E>n)op. Consider the functor

τ6−1 = (τ>1)op : (E>0)op = (Eop)60 −→ (Eop)6−1 = (E>1)op.

Our claim is that it induces a pullback square

K((Eop)♥) //

��

K((Eop)60)

��
0 // K((Eop)max

6−1)

(∗)

where the ∞-categories that appear are equipped with the Waldhausen structure in which a

morphism is ingressive just in case it induces a monomorphism (in Eop) on π0 (and in particular,

the Waldhausen structure on (Eop)6−1 is maximal).

Of course K((Eop)max
6−1) vanishes just as K(Emax

6−1) vanishes. Consequently, if we verify that

(∗) is a pullback, we will deduce that the map K((Eop)♥) −→ K((Eop)60) is an equivalence,

and in light of Corollary 5.16.1, which allows us to pass between a Waldhausen ∞-category and

its opposite under K-theory, the proof of Theorem 6.1 will be complete.

To prove that (∗) is a pullback, we cannot simply appeal to the Special Fibration theorem,

because the Waldhausen∞-categories that appear have non-maximal pair structures. Instead, we

must appeal to what we have called the Generic Fibration theorem II; this is the ∞-categorical

variant of Waldhausen’s celebrated Fibration theorem. Unfortunately, this means that we will

have to check some technical hypotheses, but there is no escape.

Theorem 6.4 (Generic Fibration theorem II, [Bar13, Theorem 9.24]). Suppose C a Waldhausen

∞-category, and suppose that wC is a subcategory of C that satisfies the following conditions.

(6.4.1) Every equivalence of C lies in wC.
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(6.4.2) The morphisms of wC satisfy (the ∞-categorical analogue of) Waldhausen’s gluing
axiom. That is, for any cofibrations U � V and X � Y and any cube

U // //

zz

��

V

~~

��

U ′

��

V ′

X

zz

// // Y

~~
X ′ // // Y ′

in which the top and bottom faces are pushout squares, if U −→ X, V −→ Y and U ′ −→ X ′ all
lie in wC, then so does V ′ −→ Y ′.

(6.4.3) There are enough cofibrations in the following sense. The three functors

wC ∩ C† ↪→ wC, wFun(∆1, C) ∩ Fun(∆1, C)† ↪→ wFun(∆1, C),

and

wF1(C) ∩ F1(C)† ↪→ wF1(C)

are all weak homotopy equivalences, where cofibrations of Fun(∆1, C) are defined objectwise,
and wFun(∆1, C) and wF1(C) are also defined objectwise.

Now denote by Cw ⊂ C the full subcategory spanned by those objects X such that the
cofibration 0 −→ X lies in wC, and declare a morphism therein to be ingressive just in case it
is so in C. Denote by B∗(C,wC) the simplicial ∞-category whose ∞-category of m-simplices is
the full subcategory Bm(C,wC) ⊂ Fun(∆m, C) spanned by those sequences of edges

X0
// X1

// · · · // Xm

with the property that each Xi −→ Xj lies in wC; declare a morphism of Bm(C,wC) to be a
cofibration just in case it is so objectwise. Then Cw is a Waldhausen∞-category, and B∗(C,wC)
is a simplicial Waldhausen∞-category, and the obvious functors induce a fiber sequence of spaces.

K(Cw) //

��

K(C)

��
∗ // |K(B∗(C,wC))|

Here of course | · | denotes the geometric realization.

We apply this theorem where C is the Waldhausen ∞-category (Eop)60, and wC is the
subcategory w((Eop)60) consisting of those morphisms X −→ Y such that the induced morphism
τ6−1X −→ τ6−1Y is an equivalence. It is an easy matter to check the gluing axiom in this setting.
To show that we have enough cofibrations, let us employ the following construction: factor any
morphism f : X −→ Y of wC as

X // Xf
// // Y,

where Xf is the fiber of the natural map Y −→ τ60(Y/X), where Y/X is the cofiber of f .
This construction defines a deformation retraction Fun(∆1, wC) −→ Fun(∆1, wC ∩ C†) of the
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inclusion Fun(∆1, wC ∩ C†) ↪→ Fun(∆1, wC). It follows from the functoriality of this construction
that it also defines a deformation retraction of the inclusions

Fun(∆1, wFun(∆1, C) ∩ Fun(∆1, C)†) ↪→ Fun(∆1, wFun(∆1, C)),

and
Fun(∆1, wF1(C) ∩ F1(C)†) ↪→ Fun(∆1, wF1(C)).

Consequently, these maps are all homotopy equivalences.
So Theorem 6.4 now ensures that we have a pullback square

K((Eop)♥) //

��

K((Eop)60)

��
0 // |K(B∗((E

op)60, w(Eop)60))|

and it remains only to identify the cofiber term. Now it follows from [Bar13, Proposition 10.10]
that, in the situation of Theorem 6.4, the geometric realization |K(B∗(C,wC))| can be identified
with Ω|wS∗(C)|, where wSm(C) ⊂ Sm(C) is the subcategory whose morphisms are objectwise
in wC. In our case, recall, these are morphisms that induce equivalences after applying τ6−1.
Consequently, to identify K((Eop)max

6−1) with the geometric realization

|K(B∗((E
op)60, w(Eop)60))|,

it is enough to show that the functor

p : wSm((Eop)60) −→ ιSm((Eop)max
6−1)

induced by τ6−1 is a weak homotopy equivalence. Let us show that the inclusion

i : ιSm((Eop)max
6−1) ↪→ ιSm((Eop)60) ⊂ wSm((Eop)60)

defines a homotopy inverse. Since τ6−1 is a localization functor, we obtain for every m > 0 a
natural equivalence p ◦ i ' id. In the other direction, the natural transformation id −→ τ6−1

induces a natural transformation id −→ i ◦ p (which of course induces an equivalence after
applying τ6−1 and thus is an objectwise morphism of w((Eop)60)). Hence i and p are homotopy
inverse. 2

Amnon Neeman’s Theorem of the Heart now implies the following, which verifies some cases
of his conjecture [Nee99, Conjecture A.5].

Corollary 6.4.1. For any idempotent-complete stable ∞-category A , if the triangulated
homotopy category T = hA admits a bounded t-structure, then we have canonical equivalences

K(A ) ' K(T ♥) ' K(wT ).

7. Application: Abelian models for the algebraic G-theory of schemes

A trivial application of the Theorem of the Heart applies to show that the K-theory of an
abelian category A agrees with the K-theory of its bounded derived ∞-category Db(A) [TT90,
1.11.7]. However, tilting theory provides other bounded t-structures on the ∞-category Db(A).
The K-theory of the heart of any of these t-structures will agree with the K-theory of A. Let us
explore one class of examples now.
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Example 7.1. Suppose X a noetherian scheme equipped with a dualizing complex ωX ∈
Db(Coh(X)). Then Arinkin and Bezrukavnikov [AB10], following Deligne, construct a family
of t-structures on Db(Coh(X)) in the following manner. (Here we use cohomological grading
conventions, to maintain compatibility with [AB10].) Write Xtop for the underlying topological
space ofX, and define dim :Xtop −→ Z a map such that i!xωX is concentrated in degree−dim(x).
Suppose p : Xtop −→ Z a function, called a perversity, such that for any points z, x ∈ Xtop such
that z ∈ {x}, one has

p(x) 6 p(z) 6 p(x) + dim(x)− dim(z).

Let Dp>0 ⊂ Db(Coh(X)) be the full subcategory spanned by those complexes F such that
for any point x ∈ Xtop, one has i!xF ∈ D>p(x)(OX,x); dually, let Dp60 ⊂ Db(Coh(X)) be the
full subcategory spanned by those complexes F such that for any point x ∈ Xtop, one has
ix,?F ∈ D6p(x)(OX,x). Then (Dp>0,Dp60) define a bounded t-structure on Db(Coh(X)) [AB10,
Theorem 3.10].

The algebraic K-theory of the heart Dp,♥ of this t-structure now coincides with the G-theory
of X. Let us list two special cases of this.

(7.1.1) Suppose S a set of prime numbers. Let ES be the full subcategory of Db(Coh(Z))
generated under extensions by the objects

Z, {Z/p | p ∈ S}, {Z/p[1] | p /∈ S}.

Then ES is an abelian category whose K-theory coincides with the K-theory of Z.

(7.1.2) For any noetherian scheme with a dualizing complex ωX ∈ Db(Coh(X)), the K-theory
of the abelian category of Cohen–Macaulay complexes (i.e., those complexes F ∈ Db(Coh(X))
such that the complex

DF := RMorOX (F, ωX)

is concentrated in degree 0, [YZ06, § 6]) agrees with the G-theory of X.

8. Application: a theorem of Blumberg–Mandell

In this section, we give a new proof of the theorem of Blumberg and Mandell [BM08] that
establishes a localization sequence

K(π0E) −→ K(e) −→ K(E)

for any suitable even periodic E1 ring spectrum E with π0E regular noetherian, where e denotes
the connective cover of E. In light of [Bar13, Proposition 13.16], the key point is the identification
of the fiber term; this is the subject of this section.

Recall [Lur12, Proposition 8.2.5.16] that a connective E1 ring Λ is said to be left coherent if
π0Λ is left coherent as an ordinary ring, and if for any n > 1, the left π0Λ-module πnΛ is finitely
presented.

A left module M over a left coherent E1 ring Λ is almost perfect just in case πmM = 0
for m � 0 and for any n, the left π0Λ-module πnM is finitely presented [Lur12, Proposition
8.2.5.17].

Definition 8.1. Suppose Λ a left coherent E1 ring, and suppose M a left Λ-module. We say
that M is truncated if πmM = 0 for m � 0. We say that M is coherent if it is almost perfect
and truncated. Write Coh`Λ ⊂Mod`Λ for the full subcategory spanned by the coherent modules,
and write G(Λ) for K(Coh`Λ).
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Warning 8.2. In general, it is not the case that a perfect Λ-module is coherent; consequently,
the usual Poincaré duality map K −→ G for discrete rings does not have an obvious analogue
for E1 rings.

It turns out that G-theory is not a new invariant of E1 rings, since we have the following
new proof of the Dévissage theorem of Blumberg and Mandell [BM08].

Proposition 8.3. For any coherent E1 ring Λ, the inclusion NMod`,fpπ0Λ ↪→ Coh`Λ of the nerve
of the category of finitely presented π0Λ-modules induces an equivalence

G(π0Λ)
∼ // G(Λ).

Proof. We note that Coh`Λ is the full subcategory of the∞-category of almost perfect Λ-modules
spanned by those that are bounded for the t-structure given by [Lur12, Proposition 8.2.5.18].
Furthermore, [Lur12, Proposition 8.2.5.11(2)] applies to ensure that Coh`Λ is idempotent
complete. Consequently, the Theorem of the Heart applies, and the proof is complete once one
observes that the heart Coh`,♥Λ can be identified with NMod`,fpπ0Λ [Lur12, Remark 8.2.5.19]. 2

Consequently, from the point of view of ‘brave new algebra’, G-theory is a relatively coarse
invariant.

Now we hope to compare the G-theory of an E1 ring to the K-theory of the ∞-category of
truncated perfect modules. This requires a weak regularity hypothesis, which we formulate now.

Definition 8.4. Let us say that a coherent E1 ring Λ is almost regular if any truncated, almost
perfect Λ-module has finite Tor-dimension.

Example 8.5. If the graded ring π∗Λ has finite Tor-dimension (e.g., if π∗Λ is a regular noetherian
ring), then the Tor spectral sequence ensures that Λ is almost regular.

The following result is now an immediate consequence of [Lur12, Proposition 8.2.5.23(4)].

Proposition 8.6. Suppose Λ a coherent E1 ring that is almost regular. Then the ∞-category
Perf `,bΛ of perfect truncated left Λ-modules coincides with the∞-category Coh`Λ of coherent left
Λ-modules.

Assembling all this, we obtain the following formulation of the Localization theorem
of [BM08].

Theorem 8.7. Suppose Λ a coherent E1 ring spectrum that is almost regular, and suppose
L : Mod`(Λ) −→ Mod`(Λ) smashing Bousfield localization with the property that a left Λ-
module M is L-acyclic just in case it is truncated. (Note that in this case, L is automatically a
finite localization functor.) Then there is a fiber sequence of spaces

G(π0Λ) −→ K(Λ) −→ K(L(Λ)).

Of course when π0Λ is regular, the fiber term can be identified with K(π0Λ).

Example 8.8. Here are some examples of fiber sequences resulting from this theorem.

(8.8.1) Consider the Adams summand L with its canonical E∞ structure; its connective cover
` admits a canonical E∞ as well [BR08]. The fiber sequence above becomes

K(Z) −→ K(`) −→ K(L).
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(8.8.2) Similarly, one can use the E∞ structure on complex K-theory KU and on its
connective cover to obtain

K(Z) −→ K(ku) −→ K(KU).

(8.8.3) For any perfect field k of characteristic p > 0 and any formal group Γ of height
n over k, consider the Lubin–Tate spectrum E(k,Γ) with its canonical E∞ structure and its
connective cover e(k,Γ) with its induced E∞ structure [BR08]. In this case, the fiber sequence
above becomes

K(W(k)[[u1, . . . , un−1]]) −→ K(e(k,Γ)) −→ K(E(k,Γ)).

(8.8.4) Given any E1 structure on Morava K-theory K(n) and a compatible one on its
connective cover k(n), one has a fiber sequence

K(Fp) −→ K(k(n)) −→ K(K(n)).

9. Application: G-theory of spectral Deligne–Mumford stacks

The purpose of this final very brief section is simply to note that the G-theory of locally
noetherian spectral Deligne–Mumford stacks is insensitive to derived structure.

Definition 9.1. For any spectral Deligne–Mumford stack X , we write Coh(X ) for the stable
∞-category of coherent sheaves on X [Lur11, Definition 2.6.20], i.e., those quasicoherent sheaves
that are almost perfect and locally truncated. Write G(X ) for the algebraic K-theory of
Coh(X ).

Now the Theorem of the Heart, combined with [Lur11, Remark 2.3.20], instantly yields the
following proposition.

Proposition 9.2. For any locally noetherian spectral Deligne–Mumford stack X with
underlying ordinary Deligne–Mumford stack X0, the embedding

NCoh(X0) ↪→ Coh(X )

induces an equivalence

G(X0)
∼ // G(X ).

Roughly speaking, just as G-theory is invariant under ordinary nilpotent thickenings, it turns
out that G-theory is invariant under derived nilpotent thickenings as well.

Acknowledgements
I thank Andrew Blumberg and Mike Mandell for very helpful conversations about this paper.
I also thank Dustin Clausen for helpful remarks about a previous version of this paper. I am
very grateful to Benjamin Antieau for noticing that overzealous revision botched the proof of
the main theorem in a earlier version of this paper. Finally, I thank the anonymous referee for a
genuinely helpful report.

References

AB10 D. Arinkin and R. Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J. 10 (2010), 3–29;
271; MR 2668828 (2011g:14040).

BR08 A. Baker and B. Richter, Uniqueness of E∞ structures for connective covers, Proc. Amer. Math.
Soc. 136 (2008), 707–714; MR 2358512 (2008m:55017).

2184

https://doi.org/10.1112/S0010437X15007447 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2668828
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
http://www.ams.org/mathscinet-getitem?mr=2358512
https://doi.org/10.1112/S0010437X15007447


On exact ∞-categories and the Theorem of the Heart

Bar13 C. Barwick, On the algebraic K-theory of higher categories, J. Topol., to appear,
arXiv:1204.3607.

BL14 C. Barwick and T. Lawson, Regularity of structured ring spectra and localization in K-theory,
Preprint (2014), arXiv:1402.6038.

BS11 C. Barwick and C. Schommer-Pries, On the unicity of the homotopy theory of higher categories,
Preprint (2011), arXiv:1112.0040.

BGT13 A. J. Blumberg, D. Gepner and G. Tabuada, A universal characterization of higher algebraic
K-theory, Geom. Topol. 17 (2013), 733–838, doi:10.2140/gt.2013.17.733.

BM08 A. J. Blumberg and M. A. Mandell, The localization sequence for the algebraic K-theory of
topological K-theory, Acta Math. 200 (2008), 155–179; MR 2413133 (2009f:19003).

Joy08a A. Joyal, Notes on quasi-categories, Preprint (2008).

Joy08b A. Joyal, The theory of quasi-categories and its applications, Advanced Course on Simplicial
Methods in Higher Categories, Vol. 2, Quaderns, vol. 45 (Centre de Recerca Matemàtica,
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