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VOTER MODEL AND BIASED VOTER MODEL
IN HETEROGENEOUS ENVIRONMENTS

N. LANCHIER,∗ Université de Rouen

C. NEUHAUSER,∗∗ University of Minnesota

Abstract

With the rapid adoption of transgenic crops, gene flow from transgenic crops to wild
relatives through pollen dispersal is of significant concern and warrants both empirical and
theoretical studies to assess the risk of introduction of transgenes into wild populations.
We propose to use the (biased) voter model in a heterogeneous environment to investigate
the effects of recurrent gene flow from transgenic crop to wild relatives. The model is
defined on the d-dimensional integer lattice that is divided into two parts, � and Z

d \ �.
Individuals carrying the transgene and individuals carrying the wild type gene compete
according to the evolution rules of a (biased) voter model on Z

d \ �, while the process
is conditioned to have only individuals carrying the transgene on �. Our main findings
suggest that unless transgenes confer increased fitness in wild relatives, introgression of
transgenes into populations of wild plants is slow and may even be reversible without
intervention. Our study also addresses the effects of different spatial planting patterns of
transgenic crops on the rate of introgression.

Keywords: Interacting particle systems; voter model interfaces; random walk; transgenic
crops
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1. Introduction

The technology of inserting genes into the genomes of organisms for commercial applications
was developed in the early 1980s. Since then, genetic engineering has become a standard
tool of gene technology for drug and agricultural product design. Genetically modified crop
plants (transgenic crops) are now being developed to resist insect herbivory, herbicides, or viral
pathogens. A well-known example is Bt maize that is engineered to produce a toxin that is
lethal to the larval stage of maize’s main insect pest, the European corn borer Ostrinia nubilalis
(Hübner) (Lepidoptera: Crambidae). Bt maize has been commercially available since the mid-
1990s and its use is widespread. Other widely used genetically engineered crops include cotton
and soybeans, which have both been engineered to be herbicide tolerant.

Environmental safety of transgenic crops is a major concern, particularly the potential of gene
transfer from transgenic crops into natural populations of close relatives through pollination.
That this concern is not just a theoretical possibility was demonstrated by Watrud et al. (2004) in
a recent study of gene flow among the wind-pollinated perennial grass Agrostis stolonifera and
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some of its close relatives. It has been genetically modified to express resistance to glyphosate,
the active ingredient of Roundup herbicide (Monsanto, St. Louis, MO). Experiments by Watrud
et al. (2004) showed that gene flow typically occurs within 2 km, but long-distance dispersal
events of up to 21 km were also observed.

Crop plants are descended from wild plants and have close relatives among them. It is
therefore no surprise that gene flow between crop plants and wild plants has occurred in the
past (Ellstrand et al. (1999)). However, with novel genes being inserted into the genomes
of crop plants to express proteins for specific biological functions, there is increased concern
that these novel genes would escape into the wild and confer increased fitness to some species,
which could then become aggressive invaders.

Few mathematical models have explored the potential of gene flow from genetically engi-
neered crops to wild relatives; see Huxel (1999), Wolf et al. (2001), and Haygood et al. (2003).
They found that even if selection disfavors the transgene, invasion into the wild population is
possible. Their models point to the need for closer monitoring of gene flow from genetically
engineered crops into wild populations.

None of the models mentioned above is spatially explicit. Since gene flow is an inherently
spatial process, the lack of a spatial component is potentially a serious shortcoming. To begin
to understand how the spatial configuration of permanent plots of genetically modified crop
plants affect gene flow and invasion of transgenes into adjacent natural populations of close
relatives, we propose a spatially explicit, stochastic model in a heterogeneous environment. The
environment will reflect the permanent plots of genetically modified organisms embedded in a
matrix of wild plants. Since we think of the genetically modified crop plants as planted, gene
flow will occur only within the wild plants and from the genetically modified plants to the wild
plants. The model is based on the simplest population genetics model, the haploid Wright–
Fisher model with selection. The spatial analog of the Wright–Fisher model is the (biased)
voter model. We will define the voter model in a heterogeneous environment with gene flow in
such a way to address the problem of recurrent gene flow from genetically modified crop plants
to their wild relatives.

The heterogeneous voter model is a continuous-time Markov process in which the state at
time t ≥ 0 is {0, 1}Z

d
. In our context, we think of 1s as representing individuals carrying the

transgene and 0s as representing individuals carrying the wild type gene. A site x ∈ Z
d is said

to be occupied by a 1 or 0 if ξ(x) = 1 or 0, respectively. We will also use the notation x ∈ ξt

to indicate that ξt (x) = 1. We let � ⊂ Z
d , and think of � as representing the part of the

habitat that is occupied by transgenic crop plants. The dynamics are defined as follows. The
evolution on � is frozen by pretending that ξt (x) = 1 for any x ∈ � and t ≥ 0. To define the
evolution on Z

d \�, we let p(x, y) be a transition probability on Z
d that is translation invariant,

i.e. p(x, y) = q(y −x) for some probability density function q; symmetric, i.e. q(z) = q(−z),
z ∈ Z

d ; and such that the probability density q(z) has variance σ 2 < ∞. If a site x ∈ Z
d \ �

is occupied by a 1 or 0, then, at rate 1 or β, respectively, it picks a site y ∈ Z
d with probability

p(x, y) and adopts the state of the individual at y. More formally, the state of x ∈ Z
d \ � flips

according to the transition rates

0 → 1 at rate β
∑
y∈Zd

p(x, y)ξ(y),

1 → 0 at rate
∑
y∈Zd

p(x, y)(1 − ξ(y)).
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Except in the homogeneous case in which � = ∅, we will assume from now on that ξ0(x) = 1
if and only if x ∈ �. It follows from the verbal definition of the model that ξt (x) = 1 for all
x ∈ � and t ≥ 0.

1.1. The homogeneous voter model: � = ∅∅∅

In this case and when β = 1, the results of Holley and Liggett (1975) reveal a sharp change
in behavior depending on the spatial dimension.

Theorem 1. (Holley and Liggett (1975).) Assume that the process ξt has as initial distribution
the Bernoulli product measure with density θ . Then, ξt converges in distribution to the measure
µ as t → ∞, where

µ =
{

(1 − θ)δ0 + θδ1 in d ≤ 2,

νθ in d ≥ 3,

where δ0 and δ1 concentrate on the ‘all 0’ and the ‘all 1’ configurations, respectively, whereas
νθ is a nontrivial measure in which νθ (ξ∞(x) = 1) = θ for any x ∈ Z

d .

Note that choosing � �= ∅ can drastically change the limiting behavior of the process.
For instance, in contrast to Theorem 1, if we set � = {0} and d ≤ 2, then the 1, which is
initially located at the origin, will produce a cluster that will invade the whole space. This is a
straightforward consequence of the duality techniques used to prove Theorem 1 in d ≤ 2; see
Holley and Liggett (1975) for further details. When � = ∅ and β > 1, the results of Bramson
and Griffeath (1980), (1981) show that, in any dimension, if we let �∞ = {ξt �= ∅ for all
t ≥ 0}, then starting from a configuration where there is a single 1 at the origin, there is a
convex set A so that conditioned on the event �∞ we have, for any ε > 0, with probability 1,

(1 − ε)tA ∩ Z
d ⊂ ξt ⊂ (1 + ε)tA ∩ Z

d for all sufficiently large t .

Moreover, on the event �c∞ = {ξt = ∅ for some t ≥ 0}, the process converges to the "all 0"
configuration exponentially fast.

We now fix d = 1. Due to assumptions on the transition probability p(x, y), the discussion
above implies that if � �= ∅ then ξt ⇒ δ1. The first question we would like to answer is:
what is the effect of the geometry of � on the speed of convergence to the ‘all 1’ configuration?
The first step is to investigate the process starting from ξ0(x) = 1{y≤0}(x). When � = ∅

and β = 1, the behavior of the process in d = 1 at the interface has been studied by Cox and
Durrett (1995). To introduce their results, we consider the leftmost-zero and the rightmost-one
processes


t = inf{x ∈ Z : ξt (x) = 0} and rt = sup{x ∈ Z : ξt (x) = 1},
respectively. Moreover, we assume, for technical reasons, that

(i) p is irreducible, i.e. it is possible to get from 0 to any x ∈ Z in a finite number of steps
with positive probability, and

(ii) q has finite absolute third moments, i.e.
∑

z∈Z
|z|3q(z) < ∞.

Then {rt − 
t : t ≥ 0} is stochastically compact, that is

for all ε0 > 0 there exists an M < ∞ such that P(rt − 
t ≥ M) ≤ ε0.
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See Cox and Durrett (1995, Section 4). Moreover, if we denote by �(x) the standard normal
distribution function, then

lim
t→∞ P

(
rt

σ
√

t
≤ x

)
= lim

t→∞ P

(

t

σ
√

t
≤ x

)
= �(x), x ∈ R, (1)

under the assumption that β = 1.

1.2. The heterogeneous voter model: � �= ∅∅∅

In the case � = Z
−, where Z

− denotes the set of nonpositive integers, we will first prove
that the family {rt − 
t : t ≥ 0} is still stochastically compact. Equation (1), however, becomes
false since rt and 
t are now forced to live on the right side of 0. More precisely, we will prove
the following theorem.

Theorem 2. Let � = Z
− and β = 1. If x ≥ 0, then

lim
t→∞ P(rt ≥ xσ

√
t) = lim

t→∞ P(
t ≥ xσ
√

t) = 2(1 − �(x)) = P(X ≥ x | X ≥ 0),

where X is Gaussian with mean 0 and variance 1.

In words, particles diffuse to the right revealing a very slow invasion. In view of Theorem 2,
our guess is that the more � is scattered, the faster the transgene invades the wild population.
To make this argument precise, we consider the process on the torus εZ/Z, where ε > 0 is
close to 0. Moreover, we speed up time by ε−2 and introduce the transition probability

pε(x, y) = q(ε−1(y − x)) for all x, y ∈ εZ/Z,

to formulate the dynamics. We let L > 0 and K = L−1 such that both K and Lε−1 are integers,
with K even. For any z ∈ {0, 1, . . . , K − 1}, we define the subsets

Dz = [zL, (z + 1)L) ∩ εZ and � =
⋃

z even

Dz. (2)

The reader will note that since we start the process with ξ0(x) = 1 if and only if x ∈ �, for
any choice of L, half of the sites are initially occupied, and half of the sites are initially vacant.
Finally, we denote by Tinv the stopping time, given by Tinv = inf{t ≥ 0 : ξt ≡ 1}. We refer to
Tinv as the time to complete invasion.

Theorem 3. Consider the process ξt on the torus. Let � be given by (2) and set β = 1. If q

has compact support, i.e. there exists R > 0 such that p(x, y) = 0 whenever |x −y| > R, then

lim
ε→0

P(Tinv ≤ t) = (1 − (P(−L ≤ Y ≤ L))2)1/2L, (3)

where Y is Gaussian with mean 0 and variance 2σ 2t .

Given z ∈ {0, 1, . . . , K − 1} even, (P(−L ≤ Y ≤ L))2 is the probability that the transgene
has not totally invaded the interval Dz at time t . This can be proved by using the duality between
the voter model and coalescing random walks. The right-hand side of (3) then follows from the
additional fact that the times to invasion of D0, D2, . . . , DK−2 are independent if ε > 0 is small
enough. Theorem 3 gives insights into the effects of the geometry of � on the time to complete
invasion. Numerical investigations suggest that, for fixed t ≥ 0, the limit limε→0 P(Tinv ≥ t)
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Figure 1: limε→0 P(Tinv > t) as a function of L and t (σ 2 = 1).

is an increasing function of the parameter L. See Figure 1 for an example. This implies that
the time to complete invasion will be slowest in the extreme case in which L = 1

2 , and faster
as the number of components Dz of � increases.

Unfortunately, we do not know how to extend Theorem 3 to higher dimensions. To be
convinced, however, that the analogous result holds in d = 2, we simulated the process on a
200×200 lattice with periodic boundary conditions and simplest nearest neighbor interactions,
tiled into 20 × 20 squares Di,j , i, j = 1, 2, . . . , 10. Figure 2 shows the time to complete
invasion in three different environments. In the chessboard model, � is the set of Di,j with
i + j even. In the striped model, � is the set of Di,j with i even. Finally, in the four-patch
model, � is the set of Di,j with i, j = 1, 2, . . . , 5 or i, j = 6, 7, . . . , 10. As suggested by
Figure 2, the simulations reveal that Tinv is a decreasing function of the number of components
Dz of �.
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Figure 2: Evolution to resistance.
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(a) (b)

Figure 3: Voter model with � = Z
− in the interval [−20, 380] from time 0 at the top to

time 20 000 at the bottom. (a) The range of the interactions is 2 and the number of returns
to 0 is 91. (b) The range of the interactions is 4 and the number of returns to 0 is 6.

We now consider the process on Z, where the particles give birth according to the transition
probability p(x, y). Let � = Z

− and start the process with ξ0(x) = 1 if and only if x ∈ �.
Moreover, we assume that q has compact support. The next step is to investigate the properties
of the rightmost-one process, rt , depending on the birth rate β. The limiting behavior of rt
when β = 1 follows from Theorem 2. By working a little bit more, we can prove that the
process comes back to its initial configuration infinitely often (i.o.). See Figure 3 for a picture.

Theorem 4. Assume that q has compact support, i.e. there exists R > 0 such that p(x, y) = 0
whenever |x − y| > R. If � = Z

− and β = 1 then P(rt = 0 i.o.) = 1.

To investigate the case in which β �= 1, we consider the process with the simplest nearest
neighbor interactions, i.e. we let p(x, y) = 1

2 if |x − y| = 1 and 0 otherwise. If β < 1,
Theorem 4 accompanied by a coupling argument implies that rt = 0 i.o.; the process, however,
does not exhibit the behavior described in Theorem 2.

Theorem 5. Assume nearest neighbor dispersal, that is, p(x, y) = 1
2 when |x − y| = 1 and 0

otherwise. If � = Z
− and β < 1 then P(rt ≥ x) ≤ βx at any time t ≥ 0.

Finally, if β > 1, the process behaves like the corresponding biased voter model in a
homogeneous environment, namely the process grows linearly in time with a wave speed of
order β − 1. See Figure 4 for a picture.

Theorem 6. Assume nearest neighbor dispersal. If � = Z
− and β > 1, there exist C < ∞

and γ > 0 such that, for any t > 0 and any ε > 0,

P(|rt − (β − 1)t | ≥ εt) ≤ Ce−γ ε2t .
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(a) (b)

Figure 4: Range 2 voter model with � = Z
− in the interval [−20, 380] from time 0

at the top to time 4000 at the bottom and (a) β = 0.95, (b) β = 1.05.

In conclusion, Theorems 2 and 5–6 imply that

1. if β ≥ 1 then, for any x ≥ 0 and ε > 0, there exists a time t0 ≥ 0 such that

P(rt ≥ x) ≥ 1 − ε for all t ≥ t0,

2. if β < 1, then P(rt ≥ x) ≤ βx for any t ≥ 0.

Moreover, Theorems 4–6 exhibit the 0-1 law:

P(rt = 0 i.o.) =
{

0 if β > 1,

1 if β ≤ 1.

In particular, if β = 1 and q has compact support, the rightmost-one process rt converges in
probability to ∞ as t → ∞, but not almost surely.

Our results confirm the need to monitor recurrent gene flow from genetically modified crops
to their wild relatives, but our results differ in an important way from the results of nonspatial
models analyzed by other researchers (Huxel (1999), Wolf et al. (2001), and Haygood et
al. (2003)) who consistently found that the transgene would eventually go to fixation over a
wide range of parameters even if not favored by selection. Both selection and the spatially
explicit structure of our model greatly affect the rate and extent of invasion of transgenes into
wild populations. If the transgene is favored by selection, it will completely take over a wild
population. In the neutral case, the transgene can penetrate a wild population arbitrarily far,
which can result in fixation when the wild population is only of limited spatial extent, but
the invasion is slow. If the transgene is not favored, it will continue to be present in the wild
population and the extent to which it can penetrate into the the wild population depends strongly
on the strength of selection. Simulations strongly indicate that the dispersal distance is a key
factor in how quickly and to what extent transgenes can invade natural populations. Considering
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that pollen can disperse over very large spatial distances, genetic pollution of wild population
remains a serious concern, even if the transgene is not favored by selection.

Modeling at this conceptual level can only point out the various factors that affect transgene
introgression. It does by no means replace necessary field work and system specific simulation
models that are parameterized by field data. However, our work clearly shows that spatially
explicit and stochastic models can contribute to a deeper understanding of the problem of
recurrent gene flow by identifying key parameters that need to be measured to assess risk.

The paper is organized as follows. Section 2 provides some preliminary results. Section 3 is
devoted to the proofs of Theorems 2 and 3, Section 4 to the proof of Theorem 4, and Section 5
to the proofs of Theorems 5 and 6. Figures 3 and 4 provide some visualizations of the effects
of dispersal range and selection strength.

2. Duality: preliminary results

We start by constructing the process ξt , as defined in Section 1, from a collection of Poisson
processes in the case in which β ≥ 1. For each x ∈ Z

d \�, we let {Sx
n : n ≥ 1} and {T x

n : n ≥ 1}
be the arrival times of independent Poisson processes with rate 1 and β − 1, respectively, and
we let {Ux

n : n ≥ 1} and {V x
n : n ≥ 1} be independent and identically distributed sequences

with P(Ux
n = y) = P(V x

n = y) = p(x, y). At times Sx
n we draw an arrow from Ux

n to x

and put a δ at x, while at times T x
n we just draw an arrow from V x

n to x. Then the process is
obtained from the graphical representation as follows. At time Sx

n , the site x imitates the site
Ux

n , i.e. becomes occupied by a 1 or 0 if Ux
n is occupied by a 1 or 0, respectively. At time T x

n ,
the site x becomes occupied by a 1 if V x

n is occupied by a 1. An idea of Harris (1972) implies
that such a graphical representation can be used to construct the process starting from any initial
configuration ξ0 : Z

d −→ {0, 1}. See Figure 5(a) for an illustration. After constructing the
graphical representation, we can now define the dual process. We say that there is a path from
(z, 0) to (x, t) if there is a sequence of times s0 = 0 < s1 < · · · < sn+1 = t and spatial
locations x0 = z, x1, . . . , xn = x such that the following two conditions hold.

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si .

2. For i = 0, 1, . . . , n, the vertical segment {xi} × (si, si+1) does not contain any δs.

We say that there exists a dual path from (x, t) to (z, t − s), 0 ≤ s ≤ t , if there is a path
from (z, t − s) to (x, t), and we define the dual process starting at (x, t) by setting

ξ̂ (x,t)
s = {z ∈ Z

d : there is a dual path from (x, t) to (z, t − s)}
for any 0 ≤ s ≤ t . See Figure 5(b) for an illustration. The dual process is naturally defined
only for 0 ≤ s ≤ t , but it is convenient to assume that the Poisson processes involved in the
graphical representation are defined for negative times so that the dual process can be defined
for all s ≥ 0. The dual process allows us to deduce the state of site x at time t from the
configuration at earlier times. Recall that x ∈ ξt if and only if ξt (x) = 1. Then,

x ∈ ξt ⇐⇒ ξ̂ (x,t)
s ∩ ξt−s �= ∅.

See, e.g. Durrett (1988, Chapter 3). In the homogeneous case, � = ∅, the dual process is
a well-known object. If β = 1, the process ξ̂

(x,t)
s performs a continuous-time random walk

on Z
d run at rate 1. Starting the dual process from two sites x and y amounts to running two

individual dual processes ξ̂
(x,t)
s and ξ̂

(y,t)
s independently until their Z

d coordinates are identical,
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Figure 5: (a) Construction of the process from Harris’ graphical representation. Black sites refer to
sites occupied by a type 1 particle. (b) Construction of the dual process starting from {1, 3} in thick
lines. Dual paths are constructed from Harris’ graphical representation by going backwards in time

and reversing the direction of the arrows. Note that, in our example, an inversion occurs.

at which point they coalesce, i.e. ξ̂
(x,t)
s − ξ̂

(y,t)
s has 0 as an absorbing state. After coalescing,

the two dual processes move together according to the rules of the dual process of a single
random walk. This implies a duality between the voter model and coalescing random walks
when β = 1. If β > 1, the dual process branches when it encounters the tip of a single arrow.
More precisely, we start with a single particle at x at time s = 0. If a particle in ξ̂

(x,t)
s meets a

δ at some time s = t − Sz
n then this particle moves to Uz

n . If a particle in ξ̂
(x,t)
s meets the tip of

a single arrow at time s = t − T z
n then this particle gives birth to a new particle which is then

sent to V z
n . In conclusion, for β > 1, there is a duality between the biased voter model and

coalescing branching random walks.
In the heterogeneous case, � �= ∅, we observe that if z ∈ � then no arrows point at z.

If β = 1, the process ξ̂
(x,t)
s then evolves like a continuous-time random walk until the first

time it visits �, where it becomes frozen. It is convenient to construct the dual process in the
heterogeneous environment from that in a homogeneous environment. If we denote by ζt the
process constructed from the graphical representation in a homogeneous environment, then ξt

can be constructed from the graphical representation obtained by removing all the arrows that
point at a site z ∈ �. Since both processes have the same graphical representation on Z

d \ �,
ξ̂

(x,t)
s and ζ̂

(x,t)
s move together until they hit � when ξ̂

(x,t)
s is frozen. In the same way, if β > 1,

the particles in each dual move and give birth together as long as they belong to Z
d \�. When a

particle in ξ̂
(x,t)
s hits the set � it is frozen, whereas the corresponding particle in ζ̂

(x,t)
s continues

to move and give birth.
The rest of this section is devoted to the proof of a preliminary result, which is the main

ingredient in establishing Theorems 2–4. From now on, we set d = 1, let � = Z
− be the
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set of nonpositive integers and assume that ξ0(x) = 1 if and only if x ∈ �. We define the
leftmost-zero and the rightmost-one processes by


t = inf{x ∈ Z : ξt (x) = 0} and rt = sup{x ∈ Z : ξt (x) = 1},
respectively.

Proposition 1. Let � = Z
− and β = 1. Then the family {rt − 
t : t ≥ 0} is stochastically

compact. That is, for any ε0 > 0 there is M > 0 so that P(rt − 
t ≥ M) ≤ ε0 at any time
t ≥ 0.

In the case in which � = ∅, Proposition 1 was proved by Cox and Durrett (1995, Section 4).
Their proof relied on a strong analysis of the dual process and random walks estimates. They
introduced the following concept, which is key to proving Proposition 1. The event that there
are x, y ∈ Z such that x < y and ξ̂

(y,t)
t ≤ 0 < ξ̂

(x,t)
t will be called an inversion by time t . See

Figure 5(b) for an example of an inversion event. If we let Bt be the number of inversions that
occur by time t , then Cox and Durrett (1995) showed that

−1 ≤ rt − 
t ≤ Bt .

The proof of Proposition 1 can then be reduced to an analysis of the dual process. See Cox
and Durrett (1995, Section 4). To deduce Proposition 1 from the result in the homogeneous
case, we will prove that there exists a constant C < ∞ such that E(Bt ) ≤ C E(B ′

t ), where
B ′

t denotes the number of inversions by time t for the process ζt defined above. To compare
the dual processes, we introduce the following notation. For any x, y ∈ Z, we consider the
stopping times

σx,y = inf{s ≥ 0 : ξ̂ (x,t)
s = ξ̂

(y,t)
s or ξ̂ (x,t)

s , ξ̂
(y,t)
s ≤ 0},

τx,y = inf{s ≥ 0 : ζ̂ (x,t)
s = ζ̂

(y,t)
s },

and sx = inf{s ≥ 0 : ξ̂ (x,t)
s ≤ 0}.

Moreover, we let �x,y = min(σx,y, τx,y) and sx,y = min(sx, sy). Note that the law of
the stopping times we have just defined does not depend on the starting time t . We will
prove Proposition 1 with the help of the forthcoming lemmas. For a better understanding of
Lemmas 1–4, we refer the reader to Figure 6, which gives a picture of the stopping times we
have just introduced. Finally, we would like to remind the reader that our construction implies
that ξ̂

(x,t)
s and ζ̂

(x,t)
s move together as long as their position is to the right of 0.

Lemma 1. For any z ∈ Z
− and w ∈ Z, P(σz,w > 2t) ≤ P(τz,w > t).

Proof. If w ≤ 0, the inequality is trivial since in this case ξ̂
(w,t)
0 = w ≤ 0 and so σz,w = 0.

To deal with the case in which w > 0, we let

Xs = ξ̂ (w,t)
s − ξ̂ (z,t)

s and Ys = ζ̂ (w,t)
s − ζ̂ (z,t)

s .

Since z ≤ 0 we have ξ̂
(z,t)
s = z at any time s ≥ 0 by construction. This implies that Xs performs

a rate-one random walk starting at w − z until time σz,w when Xs is stopped. Conversely, the
process Ys performs a rate-two random walk starting at w − z until time τz,w when Ys hits its
absorbing state 0. In particular, since z ≤ 0,

P(Xs > −z for all s ≤ 2t) = P(Ys > −z for all s ≤ t) ≤ P(Ys �= 0 for all s ≤ t).
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0

sx,y

τ
x,y = �x,y

0

τx,y

sx,y

�x,y

0

sx,y

τx,y = �x,y

∆ ∆ ∆

(a) (b) (c)

x x xy y y

Figure 6: Pictures of the dual processes. The solid lines refer to the path of the dual
processes moving together. The dotted lines refer to the path of ζ̂

(·,t)
s after ξ̂

(·,t)
s has been

frozen.

By observing that

{σz,w > 2t} = {Xs > −z for all s ≤ 2t} and {τz,w > t} = {Ys �= 0 for all s ≤ t}

the lemma follows.

Lemma 2. For any x, y ∈ Z, P(σx,y > 2t; sx,y < �x,y) ≤ P(τx,y > t; sx,y < �x,y).

Proof. We first observe that

P(σx,y > t; sx,y < �x,y) = P(σx,y > t; sx,y < �x,y; sx < sy)

+ P(σx,y > t; sx,y < �x,y; sx > sy).

We will prove the assertion for sx,y = sx . (See Figures 6(b) and (c) for an illustration.) By the
Markov property

P(σx,y > 2t; sx < �x,y; sx < sy)

=
∫ ∞

0
P(σx,y > 2t; �x,y > s; sy > s) Px(sx ∈ ds)

=
∑
z≤0

∑
w>0

∫ ∞

0
P(σx,y > 2t; �x,y > s; sy > s; ξ̂ (x,t)

s = z; ξ̂
(y,t)
s = w) Px(sx ∈ ds)

=
∑
z≤0

∑
w>0

∫ ∞

0
P(σz,w > 2t − s)

× P( �x,y > s; sy > s; ξ̂ (x,t)
s = z; ξ̂

(y,t)
s = w) Px(sx ∈ ds).
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Similarly,

P(τx,y > t; sx < �x,y; sx < sy)

=
∑
z≤0

∑
w>0

∫ ∞

0
P(τz,w > t − s)

× P(�x,y > s; sy > s; ζ̂ (x,t)
s = z; ζ̂

(y,t)
s = w) Px(sx ∈ ds).

Now, since ξ̂
(x,t)
s = ζ̂

(x,t)
s and ξ̂

(y,t)
s = ζ̂

(y,t)
s until time s = sx,y it follows that

P(�x,y > s; sy > s; ξ̂ (x,t)
s = z; ξ̂

(y,t)
s = w; sx = s)

= P(�x,y > s; sy > s; ζ̂ (x,t)
s = z; ζ̂

(y,t)
s = w; sx = s).

Furthermore, Lemma 1 implies that, for z ≤ 0,

P(σz,w > 2t − s) ≤ P(σz,w > 2(t − s)) ≤ P(τz,w > t − s).

This completes the proof.

Lemma 3. For any x, y ∈ Z, P(σx,y > 2t) ≤ P(τx,y > t).

Proof. We observe that if sx,y ≥ �x,y then σx,y = τx,y since ξ̂
(x,t)
s = ζ̂

(x,t)
s and ξ̂

(y,t)
s =

ζ̂
(y,t)
s until time sx,y . (See Figure 6(a) for an illustration.) In particular,

P(σx,y > 2t; sx,y ≥ �x,y) ≤ P(σx,y > t; sx,y ≥ �x,y) = P(τx,y > t; sx,y ≥ �x,y).

The conclusion then follows from Lemma 2.

Lemma 4. For any integer y > 0,∑
x

P(ξ̂
(x+y,t)
t ≤ 0 < ξ̂

(x,t)
t | σx,x+y > t) ≤

∑
x

P(ζ̂
(x+y,t)
t ≤ 0 < ζ̂

(x,t)
t | τx,x+y > t).

Proof. We first observe that P(ζ̂
(x+y,t)
t ≤ 0 < ζ̂

(x,t)
t ) = P(ζ̂

(−x,t)
t ≤ 0 < ζ̂

(−x−y,t)
t ), so that

∑
x>0

P(ζ̂
(x+y,t)
t ≤ 0 < ζ̂

(x,t)
t ) ≤ 1

2

∑
x

P(ζ̂
(x+y,t)
t ≤ 0 < ζ̂

(x,t)
t ).

Since P(ξ̂
(x,t)
t > 0) = 0 for any x ≤ 0, it suffices to prove that

P(ξ̂
(x+y,t)
t ≤ 0 < ξ̂

(x,t)
t | σx,x+y > t) ≤ 2 P(ζ̂

(x+y,t)
t ≤ 0 < ζ̂

(x,t)
t | τx,x+y > t)

for any x > 0 and y > 0. Now, if an inversion occurs before time t then sx+y ≤ t , and hence

P(ξ̂
(x+y,t)
t ≤ 0 < ξ̂

(x,t)
t | σx,x+y > t)

≤ P(ξ̂
(x,t)
t > 0; sx+y ≤ t | σx,x+y > t)

=
∫ t

0
P(ξ̂

(x,t)
t > 0; sx+y = s | σx,x+y > t) Px+y(sx+y ∈ ds)
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≤
∫ t

0
P(ζ̂

(x,t)
t > 0; sx+y = s; ζ̂

(x+y,t)
t ≥ 0 | τx,x+y > t) Px+y(sx+y ∈ ds)

+
∫ t

0
P(ζ̂

(x,t)
t > 0; sx+y = s; ζ̂

(x+y,t)
t ≤ 0 | τx,x+y > t) Px+y(sx+y ∈ ds)

= 2 P(ζ̂
(x+y,t)
t ≤ 0 < ζ̂

(x,t)
t | τx,x+y > t).

The last step follows from the fact that if ξ̂
(x+y,t)
s becomes frozen, ζ̂

(x+y,t)
s can be thought of

as starting from a site to the left of 0 and running until time t . This together with the fact that
the dispersal probability kernel is symmetric then implies the result. This completes the proof.

By Cox and Durrett (1995, Section 3), there exists a constant α that depends only on y − x

such that P(τx,y > t) ∼ α/
√

t as t → ∞. Lemma 3 then implies that there exists a C < ∞
such that, for sufficiently large t , P(σx,y > t) ≤ C P(τx,y > t). This together with Lemma 4
leads to

E(Bt ) =
∑
y>0

∑
x

P(ξ̂
(x+y,t)
t ≤ 0 < ξ̂

(x,t)
t )

=
∑
y>0

∑
x

P(ξ̂
(x+y,t)
t ≤ 0 < ξ̂

(x,t)
t | σx,x+y > t) P(σx,x+y > t)

≤ C
∑
y>0

∑
x

P(ζ̂
(x+y,t)
t ≤ 0 < ζ̂

(x,t)
t | τx,x+y > t) P(τx,x+y > t)

= C E(B ′
t ).

Proposition 1 then follows from Proposition 1 of Cox and Durrett (1995).

3. Proofs of Theorems 2 and 3

Proof of Theorem 2. By symmetry, we only need to prove the result for rt . Let �·� denote
the integer part. Since the condition ξt (�xσ

√
t�) = 1 implies that rt ≥ xσ

√
t , it follows, from

the duality properties introduced in Section 2, that

P(rt ≥ xσ
√

t) ≥ P(ξt (�xσ
√

t�) = 1) = P(s�xσ
√

t� ≤ t).

Donsker’s Theorem implies that ζ
(�xσ

√
t�,t)

s /σ
√

t converges in distribution to Wx
s , a standard

Brownian motion starting at x. We denote by τ0 the first time Wx
s hits 0. Then

lim
t→∞ P(rt ≥ xσ

√
t) ≥ lim

t→∞ P(sxσ
√

t ≤ t) = P(τ0 ≤ 1) = 2(1 − �(x)).

For a proof of the last equality, see Karlin and Taylor (1975, Section 7.3). To get the opposite
inequality, let ε0 > 0 and refer to Proposition 1 to choose an M > 0 such that

P(rt − 
t ≥ M) ≤ ε0.

Since ξt (�xσ
√

t − M�) = 0 and rt ≥ xσ
√

t imply that rt − 
t ≥ M , we obtain

P(rt ≥ xσ
√

t) ≤ P(ξt (�xσ
√

t − M�) = 1) + ε0.

Since limt→∞ P(ξt (�xσ
√

t�) = 1) = limt→∞ P(ξt (�xσ
√

t − M�) = 1), the result follows.
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Proof of Theorem 3. For any z ∈ {0, 1, . . . , K − 1}, define the stopping time, Tz, as

Tz = inf{t ≥ 0 : ξt ≡ 1 on Dz},
where Dz is given by (2). First of all, we observe that if z is even then Dz ⊂ �, which
implies that Tz = 0. Furthermore, if x ∈ Dz and y ∈ Dz+2 then, since q has compact support,
pε(x, y) = 0 for ε > 0 sufficiently small. It follows that for small enough ε the stopping times
Tz and Tz+2 are independent. For the rest of the proof we assume that ε is sufficiently small so
that the above assertion holds. To estimate Tz for odd z, we now consider the following edge
processes:


t (z) = inf{x ∈ Dz : ξ̂
(x,t)
t ∈ Dz},

rt (z + 1) = sup{x ∈ Dz : ξ̂
(x,t)
t ∈ Dz}.

Since ξt �≡ 1 on Dz if and only if 
t (z) < rt (z + 1) + ε, we obtain

P(Tz > t) = P(
t (z) − rt (z + 1) < ε).

Unfortunately, in view of the properties of the dual process, 
t (z) and rt (z + 1) are not a priori
independent. To deal with this problem, we set

rt (z) = sup{x ∈ Dz : ξ̂
(x,t)
t ∈ Dz−1},


t (z + 1) = inf{x ∈ Dz : ξ̂
(x,t)
t ∈ Dz+1},

and observe that rt (z) and 
t (z+1) move independently as long as rt (z) < 
t (z+1). Moreover,
Proposition 1 implies that, for any z ∈ {0, 1, . . . , K − 1},

lim
ε→0

P(
t (z) ≥ x) = lim
ε→0

P(rt (z) ≥ x).

Hence, for odd z,
lim
ε→0

P(Tz > t) = lim
ε→0

P(rt (z) − 
t (z + 1) ≤ 0).

To investigate the process rt (z)−
t (z+1), we first observe that rt (z)−zL and (z+1)L−
t (z+1)

are identically distributed. Furthermore, by Theorem 2,

lim
ε→0

P(rt (z) − zL ≥ x) =
√

2

π

∫ ∞

x/σ
√

t

exp

(
−y2

2

)
dy.

In particular, rt (z) − zL and (z + 1)L − 
t (z + 1) have the density

�t(x) = − ∂

∂x

√
2

π

∫ ∞

x/σ
√

t

exp

(
−y2

2

)
dy =

√
2

π

1

σ
√

t
exp

(
− 1

2t

x2

σ 2

)
.

It follows that, for odd z,

lim
ε→0

P(Tz > t) = lim
ε→0

P(rt (z) − 
t (z + 1) ≤ 0)

= lim
ε→0

P(rt (z) − zL + (z + 1)L − 
t (z + 1) ≤ L)

=
∫ L

0
(�t ∗ �t)(x) dx.
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By setting 2z = 2y − x and then u = 2z, we obtain

(�t ∗ �t)(x) =
∫ x

0
�t(y)�t (x − y) dy

= 2

π

1

σ 2t

∫ +x/2

−x/2
exp

(
− (2z + x)2

8σ 2t

)
exp

(
− (2z − x)2

8σ 2t

)
dz

= 2

π

1

σ 2t
exp

(
− x2

4σ 2t

) ∫ x

0
exp

(
− u2

4σ 2t

)
du

= 8ft (x)(Ft (x) − Ft(0)),

where ft and Ft are the density and the distribution functions of the Gaussian law Y , respectively,
with mean 0 and variance 2σ 2t . Since ft (x) = F ′

t (x), we have

∫ L

0
(�t ∗ �t)(x) dx = 8

∫ L

0
ft (x)(Ft (x) − Ft(0)) dx

= 8
∫ L

0
(Ft (x) − Ft(0))′(Ft (x) − Ft(0)) dx

= 4(Ft (L) − Ft(0))2

= (Ft (L) − Ft(−L))2.

Finally, by using the fact that the stopping times Tz are indepedent for sufficiently small ε > 0,
we can conclude that

lim
ε→0

P(Tinv ≤ t) = lim
ε→0

P(max
z

Tz ≤ t)

= lim
ε→0

∏
z odd

P(Tz ≤ t)

=
(

1 −
∫ L

0
(�t ∗ �t)(x) dx

)1/2L

= (1 − (Ft (L) − Ft(−L))2)1/2L,

which completes the proof of Theorem 3.

4. Proof of Theorem 4

Recall that q has compact support, and let R > 0 such that if |x − y| > R then p(x, y) = 0.
We start by introducing the stopping times

τ 1
s = inf{t ≥ s : 
t = rt + 1},

τ 2
s = inf{t ≥ s : 
t ≤ R},

and τ 3
s = inf{t ≥ s : rt = 0},

and, for x ≥ 0, the interface process

ιt (x) = ξt (x + 
t − 1).
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We observe that, since rt = 0 if and only if ξt (x) = 1{y≤0}(x), it suffices to prove that
P(τ 3

s < ∞) = 1. To do this, we will prove that each of the stopping times introduced above is
finite with probability 1. Let ε0 > 0. Then Proposition 1 provides a constant M > 0 such that

P(rs − 
s ≥ M) ≤ ε0 for all s ≥ 0.

Furthermore, if rs − 
s < M , then the number of possible configurations for the process ιs is at
most 2M < ∞. In particular, there exists an ε1 > 0 such that the probability that from time s

the process rt − 
t decreases to −1 is greater than or equal to ε1. Since rs − 
s < M infinitely
often, P(τ 1

s < ∞) = 1. Let t1 = τ 1
s and denote by ζt the voter model starting at time t1 from

ζt1(x) = ξt1(x) = 1{y≤rt1 }(x). Since p(x, y) = 0 if |x − y| > R, it is easy to check that ξt

and ζt can be defined on the same space in such a way that ξt = ζt until the first time t2 = τ 2
t1

at which the process 
t visits [1, R]. Moreover, Theorem 5 of Cox and Durrett (1995) implies
that the leftmost-zero, 
′

t = inf{x : ζt (x) = 0}, is recurrent, so

P(τ 2
t1

< ∞) = 1 and P(
t visits [1, R] i.o.) = 1.

To conclude, we use the argument described above: if rt2 − 
t2 < M then rt2 < R + M and
the number of possible configurations ξt2 is at most 2R+M . In particular, there exists an ε2 > 0
such that the probability that from time t2 the process rt decreases to 0 is greater than or equal to
ε2. In conclusion, each time 
t visits the set [1, R], the process rt returns to 0 with probability
at least ε2(1 − ε0) > 0. The Borel–Cantelli lemma then implies the result.

5. Proofs of Theorems 5 and 6

Proof of Theorem 5. The key of the proof is duality. Recall that if β < 1, the dual process
performs coalescing branching random walks in which each particle gives birth to a new particle
at rate 1 − β. We denote by X

(x,t)
s = max ξ̂

(x,t)
s the right edge of the dual process. If we start

the process from the initial configuration ξ0(x) = 1{y≤0}(x), the duality property

ξt (x) = 0 ⇐⇒ ξ0(z) = 0 for some z ∈ ξ̂
(x,t)
t

implies that ξt (x) = 1 if and only if X
(x,t)
t > 0. Moreover, in the simplest nearest neighbor

case, the right edge process X
(x,t)
s is easy to describe:

1. if X
(x,t)
s meets a δ, then it is forced to move along the corresponding δ-arrow;

2. if a particle at X
(x,t)
s branches, then X

(x,t)
s moves only if it takes it further from 0.

In conclusion, if x > 0 then X
(x,t)
s is a continuous-time random walk which makes transitions

X(x,t)
s →

{
X

(x,t)
s + 1 at rate 1,

X
(x,t)
s − 1 at rate β,

and with 0 as an absorbing state. Let ux be the probability that X
(x,t)
s = 0 at some time s ≥ 0.

By decomposing according to whether X
(x,t)
s first jumps on the left or on the right gives

ux = β

β + 1
ux−1 + 1

β + 1
ux+1 for all x ≥ 1.
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This implies that ux+1 − ux is a geometrical sequence with parameter β so that

ux − u0 =
x−1∑
k=0

βk(u1 − u0) = 1 − βx

1 − β
(u1 − u0).

Now, since X
(x,t)
s drifts to the right, limx→∞ ux = 0. Moreover, u0 = 1 so it follows, from the

previous equation, that u1 = β. In conclusion, ux = βx and

P(rt ≥ x) = P(X
(x,t)
t = 0) ≤ P(X(x,t)

s = 0 at some time s ≥ 0) = βx.

This completes the proof.

Proof of Theorem 6. We denote by τ the last time the rightmost-one process rt returns to 0.
Since β > 1, there exist C < ∞ and γ > 0 such that

P(τ > εt) ≤ C exp(−γ εt).

In particular, it suffices to prove the result for the continuous-time random walk Yt starting at
Y0 = 0 which makes transitions

Yt →
{

Yt + 1 at rate β,

Yt − 1 at rate 1.

Let Zn be the discrete-time version of Yt , namely the Bernoulli random walk which jumps
on the right with probability β/(1 + β) and on the left with probability 1/(1 + β). Then,
Proposition 3 of Spitzer (1976, Section 1.5) implies that

P

(∣∣∣∣Zn

n
− β − 1

β + 1

∣∣∣∣ ≥ ε

)
≤ 2e−γ ε2n

for any n ≥ 1 and ε > 0. To deduce the analogous result for the continuous-time version Yt ,
we observe that large-deviation results for the Poisson distribution imply that the probability
of more than (β + 1 + ε)t or less than (β + 1 − ε)t jumps by time t is smaller than Ce−γ t for
some C, γ ∈ (0, ∞). It follows that

P(|Yt − (β − 1)t | ≥ εt) ≤ Ce−γ ε2t

for appropriate C < ∞ and γ > 0.
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