ON 2-CLASS FIELD TOWERS FOR QUADRATIC NUMBER FIELDS WITH 2-CLASS GROUP OF TYPE (2,2)

by FRANK GERTH III

(Received 25 July, 1996)

1. Introduction. Let K be a quadratic number field with 2-class group of type (2,2). Thus if S_{K} is the Sylow 2-subgroup of the ideal class group of K, then $S_{K} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Let

$$
K \subset K_{1} \subset K_{2} \subset K_{3} \subset \ldots
$$

be the 2 -class field tower of K. Thus K_{1} is the maximal abelian unramified extension of K of degree a power of $2 ; K_{2}$ is the maximal abelian unramified extension of K_{1} of degree a power of 2 ; etc. By class field theory the Galois group $\operatorname{Gal}\left(K_{1} / K\right) \cong S_{K} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and in this case it is known that $\operatorname{Gal}\left(K_{2} / K_{1}\right)$ is a cyclic group (cf. [3] and [10]). Then by class field theory the class number of K_{2} is odd, and hence $K_{2}=K_{3}=K_{4}=\ldots$. We say that the 2 -class field tower of K terminates at K_{1} if the class number of K_{1} is odd (and hence $K_{1}=K_{2}=K_{3}=\ldots$); otherwise we say that the 2-class field tower of K terminates at K_{2}. Our goal in this paper is to determine how likely it is for the 2-class field tower of K to terminate at K_{1}, and how likely it is for the 2-class field tower of K to terminate at K_{2}. We shall consider separately the imaginary quadratic fields and the real quadratic fields.

Suppose first that $K=\mathbb{Q}(\sqrt{-m})$, where $m=p_{1} p_{2} \ldots p_{r}$ with primes $p_{1}<p_{2}<\ldots<$ p_{r}. We let

$$
\begin{align*}
& A=\left\{K=\mathbb{Q}(\sqrt{-m}): \text { the } 2 \text {-class group } S_{K} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}\right\} \tag{1.1}\\
& A_{i}=\left\{K \in A: \text { the } 2 \text {-class field tower of } K \text { terminates at } K_{i}\right\} \tag{1.2}
\end{align*}
$$

for $i=1,2$. For positive real numbers x and for $i=1,2$, we let

$$
\begin{align*}
A_{x} & =\{K \in A: m \leq x\} \tag{1.3}\\
A_{i, x} & =\left\{K \in A_{i}: m \leq x\right\} . \tag{1.4}
\end{align*}
$$

We then define relative densities d_{i} as follows. Let

$$
\begin{equation*}
d_{i}=\lim _{x \rightarrow \infty} \frac{\left|A_{i_{-x}}\right|}{\left|A_{x}\right|} \tag{1.5}
\end{equation*}
$$

for $i=1,2$, where $|C|$ denotes the cardinality of a set C. In the next section we shall prove the following theorem.

Theorem 1. Let d_{1} and d_{2} be the relative densities defined by equation (1.5). Then

$$
d_{1}=\frac{1}{7} \quad \text { and } \quad d_{2}=\frac{6}{7}
$$

Now we consider real quadratic fields $K=\mathbb{Q}(\sqrt{m})$, where $m=p_{1} p_{2} \ldots p_{r}$ with primes $p_{1}<p_{2}<\ldots<p_{r}$. We let

$$
\begin{align*}
& A^{\prime}=\left\{K=\mathbb{Q}(\sqrt{m}) \text { the } 2 \text {-class group } S_{K} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}\right\} \tag{1.6}\\
& A_{i}^{\prime}=\left\{K \in A^{\prime}: \text { the } 2 \text {-class field tower of } K \text { terminates at } K_{i}\right\} \tag{1.7}
\end{align*}
$$

for $i=1,2$. For positive real numbers x and for $i=1,2$, we let

$$
\begin{align*}
A_{x}^{\prime} & =\left\{K \in A^{\prime}: m \leq x\right\} \tag{1.8}\\
A_{i x}^{\prime} & =\left\{K \in A_{i}^{\prime}: m \leq x\right\} \tag{1.9}
\end{align*}
$$

and then we define relative densities d_{i}^{\prime} for $i=1,2$ by

$$
\begin{equation*}
d_{i}^{\prime}=\lim _{x \rightarrow \infty} \frac{\left|A_{i, x}^{\prime}\right|}{\left|A_{x}^{\prime}\right|} . \tag{1.10}
\end{equation*}
$$

In the last section we shall prove the following theorem.
Theorem 2. Let d_{1}^{\prime} and d_{2}^{\prime} be the relative densities defined by equation (1.10). Then

$$
d_{1}^{\prime}=\frac{7}{19} \quad \text { and } \quad d_{2}^{\prime}=\frac{12}{19}
$$

2. Proof of Theorem 1. Let $K=\mathbb{Q} \sqrt{-m}$, where $m=p_{1} p_{2} \ldots p_{r}$ with primes $p_{1}<p_{2}<\ldots<p_{r}$. For the 2-class group $S_{K} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, we know from genus theory that m must have one of the following forms:
$m=\left\{\begin{array}{l}p_{1} p_{2} p_{3} \text { with each } p_{i} \equiv 3(\bmod 4) \\ p_{1} p_{2} p_{3} \text { with two of the } p_{i} \equiv 1(\bmod 4) \text { and the other } p_{i} \equiv 3(\bmod 4) \\ p_{1} p_{2} \text { with } p_{1} \equiv p_{2}(\bmod 4) \\ 2 p_{1} p_{2}\end{array}\right.$
(cf. section 2 of [8]). Moreover, there are additional restrictions imposed on the primes dividing m in order that $S_{K} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. These restrictions can be specified by indicating the values of certain Legendre symbols used to form Rédei matrices (cf. [9]). The appropriate values for the Legendre symbols are given in various cases in [8].

Now recalling the specification of A in equation (1.1) and the forms of m in (2.1), we let

$$
\begin{align*}
B_{1}= & \left\{K \in A: m=p_{1} p_{2} p_{3} \text { with each } p_{i} \equiv 3(\bmod 4)\right\} \tag{2.2}\\
B_{2}= & \left\{K \in A: m=p_{1} p_{2} p_{3} \text { with two of the } p_{i} \equiv 1(\bmod 4)\right. \\
& \text { and the other } \left.p_{i} \equiv 3(\bmod 4)\right\} \tag{2.3}\\
B_{3}= & \left\{K \in A: m=p_{1} p_{2} \text { or } 2 p_{1} p_{2}\right\} . \tag{2.4}
\end{align*}
$$

Next for positive real numbers x, we let

$$
\begin{equation*}
B_{i, x}=\left\{K \in B_{i}: m \leq x\right\} \tag{2.5}
\end{equation*}
$$

for $i=1,2,3$. It is a standard calculation that

$$
\begin{equation*}
\left|B_{3, x}\right|=O\left(\frac{x \log \log x}{\log x}\right) \quad(\text { as } x \rightarrow \infty) \tag{2.6}
\end{equation*}
$$

(cf. [7], Theorem 437).
For B_{1}, the relevant case in section 2 in [8] is case (iii). Then for the Legendre symbols we need

$$
\begin{equation*}
\left(\frac{p_{2}}{p_{1}}\right)=1, \quad\left(\frac{p_{3}}{p_{1}}\right)=-1, \quad\left(\frac{p_{3}}{p_{2}}\right)=1 \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{p_{2}}{p_{1}}\right)=-1, \quad\left(\frac{p_{3}}{p_{1}}\right)=1, \quad\left(\frac{p_{3}}{p_{2}}\right)=-1 \tag{2.8}
\end{equation*}
$$

Next we let $u_{i j}=0$ or 1 for $1 \leq i<j \leq 3$. (We shall specify below how we want to choose the $u_{i j}$.) Then we let

$$
\begin{gather*}
B_{1 . x}(0,1,0)=\left\{p_{1} p_{2} p_{3} \leq x: p_{1}<p_{2}<p_{3}\right. \text { are primes with each } \\
\qquad p_{i} \equiv 3(\bmod 4), \quad\left(\frac{p_{j}}{p_{i}}\right)=(-1)^{u_{i j}} \text { for } 1 \leq i<j \leq 3 \\
\text { with } \left.u_{12}=0, \quad u_{13}=1, \quad u_{23}=0\right\} \tag{2.9}
\end{gather*}
$$

and

$$
\begin{align*}
& B_{1 . x}(1,0,1)=\left\{p_{1} p_{2} p_{3} \leq x: p_{1}<p_{2}<p_{3}\right. \text { are primes with each } \\
& \qquad p_{i} \equiv 3(\bmod 4), \quad\left(\frac{p_{j}}{p_{i}}\right)=(-1)^{u_{i 1}} \text { for } 1 \leq i<j \leq 3 \\
& \text { with } \left.u_{12}=1, \quad u_{13}=0, \quad u_{23}=1\right\} . \tag{2.10}
\end{align*}
$$

From equations (2.2), (2.5), and (2.7) through (2.10), we see that

$$
\begin{equation*}
\left|B_{1-x}\right|=\left|B_{1 . x}(0,1,0)\right|+\left|B_{1, x}(1,0,1)\right| . \tag{2.11}
\end{equation*}
$$

Now given a set of values $u_{i j}(1 \leq i<j \leq 3)$ as above, for arbitrary distinct odd primes p_{i} and p_{j}, we let $\delta\left(p_{i}, p_{j}\right)=1$ if $\left(\frac{p_{j}}{p_{i}}\right)=(-1)^{u_{i j}}$, and we let $\delta\left(p_{i}, p_{j}\right)=0$ if $\left(\frac{p_{j}}{p_{i}}\right) \neq(-1)^{u_{i j}}$. For the set of values $u_{12}=0, u_{13}=1, u_{23}=0$, we get

$$
\begin{align*}
& \sim 2^{-6} \cdot \frac{1}{2!} \frac{x(\log \log x)^{2}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{2.12}
\end{align*}
$$

(cf. (2.11) and (2.12) in [5]). The analytic machinery for this type of calculation appears
in Section 4 of [4] and Section 5 of [6]. Alternately, one can use the analytic machinery developed in Section 3 of [2]. An intuitive explanation for (2.12) is that

$$
\sum_{\substack{p_{1} p_{2}, p_{3} \\ p_{1}<p_{2}<p_{3} \\ p_{1} p_{2} p_{3} \in x_{3}}} 1 \sim \frac{1}{2!} \frac{x(\log \log x)^{2}}{\log x} \quad(\text { as } x \rightarrow \infty)
$$

and a factor of $\frac{1}{2}$ is introduced by each of the congruence conditions $p_{i} \equiv 3(\bmod 4)$ for $i=1,2,3$ and by each of the factors $\delta\left(p_{i}, p_{j}\right)$ for $1 \leq i<j \leq 3$. A similar calculation shows that

$$
\begin{equation*}
\left|B_{1 . x}(1,0,1)\right| \sim 2^{-6} \cdot \frac{1}{2!} \frac{x(\log \log x)^{2}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{2.13}
\end{equation*}
$$

Then from (2.11), (2.12), and (2.13), we get

$$
\begin{equation*}
\left|B_{1 . x}\right| \sim 2.2^{-6} \cdot \frac{1}{2!} \frac{x(\log \log x)^{2}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{2.14}
\end{equation*}
$$

For the calculation of $\left|B_{2, x}\right|$, the formula analogous to (2.14) is

$$
\begin{equation*}
\left|B_{2, x}\right| \sim 12.2^{-6} \cdot \frac{1}{2!} \frac{x(\log \log x)^{2}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{2.15}
\end{equation*}
$$

The factor " 12 " can be explained as follows. First we note that there are three distinct arrangements for the congruence conditions $1(\bmod 4), 1(\bmod 4), 3(\bmod 4)$ in (2.3). For each of these arrangements, there are four allowable sets of values for the Legendre symbols $\left(\frac{p_{2}}{p_{1}}\right),\left(\frac{p_{3}}{p_{1}}\right),\left(\frac{p_{3}}{p_{2}}\right)$ in case (iv) in section 2 in [8], and then $3 \cdot 4=12$. For example, when $p_{1} \equiv p_{2} \equiv-p_{3} \equiv 1(\bmod 4)$, the allowable sets of Legendre symbol values are

$$
\left(\frac{p_{2}}{p_{1}}\right)=1, \quad\left(\frac{p_{3}}{p_{1}}\right)=-1, \quad\left(\frac{p_{3}}{p_{2}}\right)=-1
$$

and

$$
\left(\frac{p_{2}}{p_{1}}\right)=-1, \quad\left(\frac{p_{3}}{p_{i}}\right)=-1 \text { for at least one of } p_{i}=p_{1}, p_{2}
$$

(The last line actually corresponds to three distinct sets.) Now from the discussion of case (iii) in Section 2 in [8], we have $B_{1} \subset A_{1}$, and from the discussion of case (iv) in Section 2 in [8], we have $B_{2} \subset A_{2}$. Then $B_{1, x} \subset A_{1, x}$ and $B_{2, x} \subset A_{2, x}$. Since $A=B_{1} \cup B_{2} \cup B_{3}$ and B_{1}, B_{2}, B_{3} are disjoint sets, then from equations (1.3), (1.4), (2.5), (2.6), and formulas (2.14) and (2.15), we get

$$
\begin{gather*}
\left|A_{1-x}\right| \sim\left|B_{1 . x}\right| \sim 2.2^{-6} \cdot \frac{1}{2!} \frac{x(\log \log x)^{2}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{2.16}\\
\left|A_{2 . x}\right| \sim\left|B_{2 . x}\right| \sim 12.2^{-6} \cdot \frac{1}{2!} \frac{x(\log \log x)^{2}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{2.17}\\
\left|A_{x}\right| \sim\left|B_{1 . x}\right|+\left|B_{2 x x}\right| \sim 14.2^{-6} \cdot \frac{1}{2!} \frac{x(\log \log x)^{2}}{\log x} \quad(\text { as } x \rightarrow \infty) . \tag{2.18}
\end{gather*}
$$

Then from equation (1.5) and formulas (2.16) through (2.18), we get $d_{1}=\frac{1}{7}$ and $d_{2}=\frac{6}{7}$, which completes the proof of Theorem 1.
3. Proof of Theorem 2. Let $K=\mathbb{Q}(\sqrt{m})$, where $m=p_{1} p_{2} \ldots p_{r}$ with primes $p_{1}<p_{2}<\ldots<p_{r}$. In order that the 2 -class group $S_{K} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, genus theory requires that m must have one of the following forms:

$$
m=\left\{\begin{array}{l}
p_{1} p_{2} p_{3} p_{4} \text { with each } p_{i} \equiv 3(\bmod 4) \tag{3.1}\\
p_{1} p_{2} p_{3} p_{4} \text { with two } p_{i} \equiv 1(\bmod 4) \text { and two } p_{i} \equiv 3(\bmod 4) \\
m^{\prime} \text { with } m^{\prime} \text { divisible by at most three odd primes. }
\end{array}\right.
$$

An example of the last case is $m^{\prime}=p_{1} p_{2} p_{3}$ with each $p_{i} \equiv 1(\bmod 4)$. There are additional requirements on the primes dividing m in order that $S_{K} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and we shall consider those requirements later in this section.

With A^{\prime} defined by (1.6), we next define

$$
\begin{align*}
& B_{1}^{\prime}=\left\{K \in A^{\prime}: m=p_{1} p_{2} p_{3} p_{4} \text { with each } p_{i} \equiv 3(\bmod 4)\right\}, \tag{3.2}\\
& B_{2}^{\prime}=\left\{K \in A^{\prime}: m\right.\left.=p_{1} p_{2} p_{3} p_{4} \text { with two } p_{i} \equiv 1(\bmod 4) \text { and two } p_{i} \equiv 3(\bmod 4)\right\}, \tag{3.3}\\
& B_{3}^{\prime}=\left\{K \in A^{\prime}: \text { at most three odd primes divide } m\right\}, \tag{3.4}
\end{align*}
$$

For positive real numbers x, we let

$$
\begin{equation*}
B_{i, x}^{\prime}=\left\{K \in B_{i}^{\prime}: m \leq x\right\} \tag{3.5}
\end{equation*}
$$

for $i=1,2,3$. It is straightforward to calculate that

$$
\begin{equation*}
\left|B_{3 . x}^{\prime}\right|=O\left(\frac{x(\log \log x)^{2}}{\log x}\right) \quad(\text { as } x \rightarrow \infty) \tag{3.6}
\end{equation*}
$$

To calculate $\left|B_{1, x}^{\prime}\right|$ and $\left|B_{2_{x}}^{\prime}\right|$, we need to specify the additional conditions on $p_{1}, p_{2}, p_{3}, p_{4}$ that are required for $S_{\kappa} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. These conditions come from Rédei matrices that have rank $=3$, and these matrices are determined by the values $\left\{\left(\frac{p_{i}}{p_{j}}\right): 1 \leq i<j \leq 4\right\}$.

For fields $K \in B_{2}^{\prime}$, we can use the type 4 case of Proposition 1 in [1]. We first let $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ and $p_{3} \equiv p_{4} \equiv 3(\bmod 4)$ to match the type 4 case of Proposition 1 in $[\mathbf{1}]$. Then the relevant conditions on Legendre symbols are

$$
\begin{aligned}
& \text { (a): }\left(\frac{p_{1}}{p_{2}}\right)=1 \&\left[\left(\frac{p_{1}}{p_{3}}\right)=-1 \text { or }\left(\frac{p_{1}}{p_{4}}\right)=-1\right] \&\left[\left(\frac{p_{2}}{p_{3}}\right)=-1 \text { or }\left(\frac{p_{2}}{p_{4}}\right)=-1\right] \\
& \& \operatorname{not}\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{1}}{p_{4}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=\left(\frac{p_{2}}{p_{4}}\right)
\end{aligned}
$$

or
(b): $\left(\frac{p_{1}}{p_{2}}\right)=-1 \& \operatorname{not}\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=\left(\frac{p_{1}}{p_{4}}\right)=\left(\frac{p_{2}}{p_{4}}\right)$.

In cases (a) and (b), $\left(\frac{p_{3}}{p_{4}}\right)$ can be either +1 or -1 . An enumeration of all of the possibilities in these cases (including the value of $\left(\frac{p_{3}}{p_{4}}\right)$) yields 16 possibilities for case (a) and 28 possibilities for case (b). So there are 44 possibilities for the set of values $\left\{\left(\frac{p_{i}}{p_{j}}\right): 1 \leq i<j \leq 4\right\}$ that produce fields $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3} p_{4}}\right) \in B_{2}^{\prime}$.

Next we observe that if we order the primes so that $p_{1}<p_{2}<p_{3}<p_{4}$, there are 6 distinct arrangements of the congruence conditions $1(\bmod 4), 1(\bmod 4), 3(\bmod 4)$, $3(\bmod 4)$. Now since

$$
\sum_{\substack{p_{1}, p_{2}, p_{3}, p_{4} \\ p_{1}<p_{2}<p_{3}<p_{4} \\ p_{1} p_{2} 2 p_{3} p_{4} \leq x}} 1 \sim \frac{1}{3!} \frac{x(\log \log x)^{3}}{\log x} \quad(\text { as } x \rightarrow \infty)
$$

then the analog of Formula (2.15) is

$$
\begin{equation*}
\left|B_{2, x}^{\prime}\right| \sim 6.44 .2^{-10} \cdot \frac{1}{3!} \frac{x(\log \log x)^{3}}{\log x} \quad(\text { as } x \rightarrow \infty) . \tag{3.7}
\end{equation*}
$$

The factor 2^{-10} comes from a factor of $\frac{1}{2}$ for each of the four congruence conditions and the particular values for the six Legendre symbols $\left(\frac{p_{i}}{p_{j}}\right)$ with $1 \leq i<j \leq 4$.

Now we consider $K \in B_{i}^{\prime}$. Then each $p_{i} \equiv 3(\bmod 4)$. The relevant Rédei matrices are antisymmetric in this case. (In equation (5.5) of [5], this means $\left(\frac{-p_{j}}{p_{i}}\right)=-\left(\frac{-p_{i}}{p_{j}}\right)$ for each $i \neq j$.) Then we can use Proposition 5.7 (iii) in [5] to calculate the appropriate number of Rédei matrices with rank $=3$. (In Proposition 5.7(iii) of [5], take $r=1, n=1$, and $\bar{M}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1\end{array}\right]$.) Proposition 5.7 (iii) gives 40 possibilities, 20 corresponding to each of the two choices for \bar{M}. Alternately, one can examine the Rédei matrices corresponding to each set of values for $\left\{\left(\frac{p_{i}}{p_{j}}\right): 1 \leq i<j \leq 4\right\}$, and then discover that 40 of these 64 matrices have rank $=3$. Hence

$$
\begin{equation*}
\left|B_{1, x}^{\prime}\right| \sim 40.2^{-10} \cdot \frac{1}{3!} \frac{x(\log \log x)^{3}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{3.8}
\end{equation*}
$$

Then from equations (1.6), (1.8), (3.1) through (3.6) and formulas (3.7) and (3.8), we get

$$
\begin{equation*}
\left|A_{x}^{\prime}\right|=\left|B_{1, x}^{\prime}\right|+\left|B_{2, x}^{\prime}\right|+\left|B_{3 x}^{\prime}\right| \sim 304.2^{-10} \cdot \frac{1}{3!} \frac{x(\log \log x)^{3}}{\log x} \quad(\text { as } x \rightarrow \infty) . \tag{3.9}
\end{equation*}
$$

Now from Theorem 1 in [1], we see that $B_{1}^{\prime} \subset A_{1}^{\prime}$. However, $B_{2}^{\prime} \subset A_{2}^{\prime}$ since some of the fields in B_{2}^{\prime} are in A_{1}^{\prime}, as we see by examining the graphs for the type 4 case on p. 175 of [1]. More precisely, there are three graph types (i.e., c_{12}, c_{13}, c_{14} on p. 175 in [1]) that correspond to fields in A_{1}^{\prime}. Furthermore, we can easily check that there are four graphs equivalent to one another in each of these three graph types. ("Equivalent" in this sense
is defined on p .172 of [1].) Hence there are 12 graphs altogether that correspond to fields in B_{2}^{\prime} that are also in A_{1}^{\prime}. Then we can split up $\left|B_{2, x}^{\prime}\right|$ as follows (see (3.7)):

$$
\begin{equation*}
\left|B_{2 x x}^{\prime} \cap A_{1, x \mid}^{\prime}\right| \sim 6.12 .2^{-10} \cdot \frac{1}{3!} \frac{x(\log \log x)^{3}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|B_{2 x x}^{\prime} \cap A_{2 x x}^{\prime}\right| \sim 6.32 .2^{-10} \cdot \frac{1}{3!} \frac{x(\log \log x)^{3}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{3.11}
\end{equation*}
$$

Then since $B_{1}^{\prime} \subset A_{1}^{\prime}$, we can use (3.8) and (3.10) to get

$$
\begin{align*}
\left|A_{1, x}^{\prime}\right| & \sim\left|B_{1_{x}}^{\prime}\right|+\left|B_{2 x}^{\prime} \cap A_{1, x}^{\prime}\right| \\
& \sim 112.2^{-10} \cdot \frac{1}{3!} \frac{x(\log \log x)^{3}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{3.12}
\end{align*}
$$

Using (3.11), we see that

$$
\begin{align*}
\left|A_{2 . x}^{\prime}\right| & \sim\left|B_{2 x x}^{\prime} \cap A_{2 x x}^{\prime}\right| \\
& \sim 192.2^{-10} \cdot \frac{1}{3!} \frac{x(\log \log x)^{3}}{\log x} \quad(\text { as } x \rightarrow \infty) . \tag{3.13}
\end{align*}
$$

Then from (1.10) (3.9), (3.12), and (3.13), we get $d_{1}^{\prime}=\frac{7}{19}$ and $d_{2}^{\prime}=\frac{12}{19}$, which completes the proof of Theorem 2.

REFERENCES

1. E. Benjamin and C. Snyder, Real quadratic number fields with 2-class group of type (2,2), Math. Scand. 76 (1995), 161-178.
2. J. Cremona and R. Odono, Some density results for negative Pell equations: an application of graph theory, J. London Math. Soc. 39 (1989), 16-28.
3. P. Furtwängler, Über das Verhalten der Ideale des Grundkörpers im Klassenkörper, Monatsh. Math. Phys. 27 (1916), 1-15.
4. F. Gerth, Counting certain number fields with prescribed l-class numbers, J. Reine Angew. Math. 337 (1982), 195-207.
5. F. Gerth, The 4 -class ranks of quadratic fields, Invent. Math. 77 (1984), 489-515.
6. F. Gerth, Densities for ranks of certain parts of p-class groups, Proc. Amer. Math. Soc. 99 (1987), 1-8.
7. G. Hardy and E. Wright, An Introduction to the Theory of Numbers, 4th edition, (Oxford Univ. Press, London, 1965).
8. H. Kisilevsky, Number fields with class number congruent to $4 \bmod 8$ and Hilbert's theorem 94, J. Number Theory 8 (1976), 271-279.
9. L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 171 (1934), 55-60.
10. O. Taussky, A remark on the class field tower, J. London Math. Soc. 12 (1937), 82-85.

Department of Mathematics

The University of Texas at Austin
Austin, Texas 78712-1082
U.S.A.

