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1. Introduction. Let K be a quadratic number field with 2-class group of type (2,2).
Thus if SK is the Sylow 2-subgroup of the ideal class group of K, then SK = Till. X Z/2Z.
Let

be the 2-class field tower of K. Thus K{ is the maximal abelian unramified extension of K
of degree a power of 2; K2 is the maximal abelian unramified extension of K\ of degree a
power of 2; etc. By class field theory the Galois group Ga\(K,/K) = SK = Z/2ZxZ/2Z,
and in this case it is known that Ga\(K2/Kl) is a cyclic group (cf. [3] and [10]). Then by
class field theory the class number of K2 is odd, and hence K2 = K3 = K4 = ... . We say
that the 2-class field tower of K terminates at K] if the class number of K{ is odd (and
hence K] = K2 = K3 = . . . ) ; otherwise we say that the 2-class field tower of K terminates at
K2. Our goal in this paper is to determine how likely it is for the 2-class field tower of K
to terminate at Ku and how likely it is for the 2-class field tower of K to terminate at K2.
We shall consider separately the imaginary quadratic fields and the real quadratic fields.

Suppose first that K = Q ( V - m ) , where m = p\p2... pr with primes p | < p 2 <.. . <
pr. We let

A = {K = Q(V - m): the 2-class group SK = Z/2Z X Z/2Z} (1.1)

A,: = {K E A : the 2-class field tower of K terminates at /(,} (1.2)

for i = l ,2. For positive real numbers x and for /' = 1, 2, we let

Ax = {KeA:m<x} (1.3)

Aijt = {KeAi:m<x}. (1.4)

We then define relative densities d, as follows. Let

di = hm — - (1.5)
•>•-* lAvl

for / = 1, 2, where \C\ denotes the cardinality of a set C. In the next section we shall prove
the following theorem.

THEOREM 1. Let d\ and d2 be the relative densities defined by equation (1.5). Then

1 6
d\=~ and d2 = ~.
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N o w we cons ide r rea l q u a d r a t i c fields K = Q ( V m ) , w h e r e m—p^p2...pr with
primes /?, <p2 < • • • <pr- We let

A' = {K = Q(Vm):the 2-class group SK = Z/2Z X 1/21} (1.6)

Al = {K e A' :the 2-class field tower of /C terminates at /(,} (1.7)

for / = 1,2. For positive real numbers x and for / = 1,2, we let

A'x = {K&A':m<x} (1.8)

/4;J. = {/Cey4;:m<jr} (1.9)

and then we define relative densities d\ for / = 1,2 by

^ (1.10)

In the last section we shall prove the following theorem.

THEOREM 2. Let d\ and d'2 be the relative densities defined by equation (1.10). Then

d>h and ^ = | -
2. Proof of Theorem 1. Let K = Qv-m) , where m=pxp2...pr with primes

P\ <Pi< • • • <pr- For the 2-class group 5^ = Z/2Z X Z/2Z, we know from genus theory
that m must have one of the following forms:

m =

P\PiPi with each p, = 3(mod 4)
P\PiP?, with two of the p, = l(mod 4) and the other p, = 3(mod4)

P\Pi with pi =p2(m°d4)

\J-P\Pi

(2-1)

(cf. section 2 of [8]). Moreover, there are additional restrictions imposed on the primes
dividing m in order that SK = Z/2Z x Z/2Z. These restrictions can be specified by
indicating the values of certain Legendre symbols used to form Redei matrices (cf. [9]).
The appropriate values for the Legendre symbols are given in various cases in [8].

Now recalling the specification of A in equation (1.1) and the forms of m in (2.1), we
let

Bx = {K e A :m = P\p2p?, with each p, = 3(mod4)} (2.2)

B2 = {K e A:m =P\p2p^ with two of the p,• = I(mod4)

and the other p, = 3(mod 4)} (2.3)

B3 = {K sA:m=p^p2 or 2p]p2}. (2.4)

Next for positive real numbers x, we let

(2.5)
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for i = 1,2,3. It is a standard calculation that

(cf. [7], Theorem 437).
For B|, the relevant case in section 2 in [8] is case (iii). Then for the Legendre

symbols we need

) ( 2 . 7 )

or

£ ) - • ©-1- © - • (28)

Next we let «,y = 0 or 1 for 1 < ; <j < 3. (We shall specify below how we want to choose
the Ujj.) Then we let

BUv(0,1,0) = {p\p2p3^x:p\ <p2<p3 are primes with each

/;, = 3(mod 4), (PA = (-1)"" for 1 < < < / < 3
W

withU|2 = 0, « i S = l , "23 = 0} (2.9)

and

BU v(l ,0,1) = {p\P2P* — x:p\ <p2
<P? are primes with each

Pi = 3(mod 4), f^j = (-1)"« for 1 < i <j < 3

With M , 2 = 1 , "13 = 0, "23=1}- (2-10)

From equations (2.2), (2.5), and (2.7) through (2.10), we see that

Now given a set of values «,y (1 < / < / < 3 ) as above, for arbitrary distinct odd primes p,

and Pj, we let S(p,-,py) = 1 if (-) = (-1)""", and we let 5(p,,/?;) = 0 if (-) ¥> (-1)"". For

the set of values t/|2 = 0, uu= 1, u2^ = Q, we get

|B,.v(0, l ,0 ) |= 2 X S(pup2) 2 8(P\,Pj)8(p2,Ih)

~2~'\—' (as.v—>sc) (2.12)
2! log.v K ' K '

(cf. (2.11) and (2.12) in [5]). The analytic machinery for this type of calculation appears
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in Section 4 of [4] and Section 5 of [6]. Alternately, one can use the analytic machinery
developed in Section 3 of [2]. An intuitive explanation for (2.12) is that

2 !

P\<Pl<P7.

and a factor of \ is introduced by each of the congruence conditions p, = 3(mod 4) for
/ = 1,2,3 and by each of the factors 8(pnpj) for 1 < i <j < 3. A similar calculation shows
that

(2.13)

(2.14)

(2.15)

| B , , ( 1 , 0 , l ) | 2 ^
2! log*

Then from (2.11), (2.12), and (2.13), we get

For the calculation of \B2jc\, the formula analogous to (2.14) is

The factor "12" can be explained as follows. First we note that there are three distinct
arrangements for the congruence conditions l(mod 4), l(mod 4), 3(mod 4) in (2.3). For
each of these arrangements, there are four allowable sets of values for the Legendre

symbols ( — I, ( — ),( — ) in case (iv) in section 2 in [8], and then 3-4 = 12. For example,
V?,/ \px) \p2)

when p, = p2 = -pi = l(mod 4), the allowable sets of Legendre symbol values are

and

—) = - 1 , ( —I = - 1 for at least one of p, =pt,p2.
P \ > \pi>

(The last line actually corresponds to three distinct sets.) Now from the discussion of case
(iii) in Section 2 in [8], we have B] c Au and from the discussion of case (iv) in Section 2
in [8], we have B2<=A2. Then BKv^AKt and B2x.cA2l.. Since A-BiUB2UB3 and
BhB2,Bi are disjoint sets, then from equations (1.3), (1.4), (2.5), (2.6), and formulas
(2.14) and (2.15), we get

2_6 1 *(loglog*)2 ^
"2! log* U»s*-»°°J (2.16)

l + 1 4 . 2 - . -

2! log*

-6 l*(loglogjr)2

logx
(as*—). (2.18)
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Then from equation (1.5) and formulas (2.16) through (2.18), we get d] = \ and d2 = f,
which completes the proof of Theorem 1.

3. Proof of Theorem 2. Let K = Q(Vm), where m = ptp2...pr with primes
Pi <p2<... <pr. In order that the 2-class group SK = 7H2TLK7L\27L, genus theory
requires that m must have one of the following forms:

\P\PiPzP* with each p, = 3(mod4)
m ~ \ PxPiPiP* with two Pi = I(mod4) and two p,, = 3(mod4) (3.1)

^m' with m' divisible by at most three odd primes.

An example of the last case is m' = P\p2pj, with each p, = I(mod4). There are additional
requirements on the primes dividing m in order that S*- = Z/2Z X Z/2Z, and we shall
consider those requirements later in this section.

With A' defined by (1.6), we next define

B\ = {K e.A' :m= p{p2p3p4 with each p,•. = 3(mod 4)}, (3.2)

B'2 = {K E A' :m = P\P2PiP4 with two pt = I(mod4) and two p-, = 3(mod 4)}, (3.3)

B'3 = {K e A' :at most three odd primes divide m}, (3.4)

For positive real numbers x, we let

for / = 1,2,3. It is straightforward to calculate that

(as*^co) . (3.6)

To calculate \B\J and \B'2J, we need to specify the additional conditions on
Pi'P2>/?3,/?4 that are required for SK = Z/2Z x Z/2Z. These conditions come from
Redei matrices that have rank = 3, and these matrices are determined by the values

)
•Pi'

For fields K e B'2, we can use the type 4 case of Proposition 1 in [1]. We first let
P\ = Pi = 1 (mod 4) and PJ,=PA = 3(mod 4) to match the type 4 case of Proposition 1 in [1].
Then the relevant conditions on Legendre symbols are

or

) ( ) ( ) (
p2l \p?/ \pjJ \p
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In cases (a) and (b), I—) can be either +1 or — 1. An enumeration of all of the

possibilities in these cases (including the value of I —) I yields 16 possibilities for case
V \pJJ

(a) and 28 possibilities for case (b). So there are 44 possibilities for the set of values

I ( - ) : 1 < i <j < 4} that produce fields K = Q(Vp,p2p3/?4) e B'2.
[\pj/ J

Next we observe that if we order the primes so that P\<p2<Pz<p^ there are 6
distinct arrangements of the congruence conditions I(mod4), I(mod4), 3(mod4),
3(mod 4). Now since

then the analog of Formula (2.15) is

\B'7 J ~ 6 . 44. 2~10. (asx—^ro). (3.7)
^ 3! log* ' '

The factor 2"'° comes from a factor of 5 for each of the four congruence conditions and

(Pi\the particular values for the six Legendre symbols I —I with l < / < / < 4 .
\pjl

Now we consider K e B[. Then each p, = 3(mod 4). The relevant Redei matrices are

antisymmetric in this case. (In equation (5.5) of [5], this means (—-) = - ( —'•) for each
\ pj I \ pj I

/ # ; ' . ) Then we can use Proposition 5.7(iii) in [5] to calculate the appropriate number of
Redei matrices with rank = 3. (In Proposition 5.7(iii) of [5], take r = 1, n = \, and
M = [1 0] or [1 1].) Proposition 5.7(iii) gives 40 possibilities, 20 corresponding to each of
the two choices for M. Alternately, one can examine the Redei matrices corresponding to

each set of values for \ I — ) : 1 < / <j < 4 [, and then discover that 40 of these 64 matrices
LVpy/ J

have rank = 3. Hence

r,,, liflaJstf ( < w . ( (3.8)

3! logjc

Then from equations (1.6), (1.8), (3.1) through (3.6) and formulas (3.7) and (3.8), we get

IA:i = \B\J + \B'2J + \B'3J ~ 304. 2- '°. ^ ( ' 0
1

g ' ° g X ) (as x-* »). (3.9)
3! logjc

Now from Theorem 1 in [1], we see that B\ <^A\. However, B'2 <t A2 since some of
the fields in B2 are in A\, as we see by examining the graphs for the type 4 case on p. 175
of [1]. More precisely, there are three graph types (i.e., c,2, c,3, c14 on p. 175 in [1]) that
correspond to fields in A\. Furthermore, we can easily check that there are four graphs
equivalent to one another in each of these three graph types. ("Equivalent" in this sense
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is defined on p. 172 of [1].) Hence there are 12 graphs altogether that correspond to fields
in B'2 that are also in A\. Then we can split up |B2.<| a s follows (see (3.7)):

(asx-,00) (3.10)6 . 1 2 . 2 . ^
3! log*

and

(3.11)

Then since B\ <^A\, we can use (3.8) and (3.10) to get

- ° l - r ( ' ° g l O g X ) 3
1 1 2 . 2 - ° l - r ( ' ° g l O g X ) ( a s ^ c o ) . (3.12)

3! log.v

Using (3.11), we see that

1 9 2 . 2 ^ ( a s ^ ) . (3.l3)
3! log.v

Then from (1.10) (3.9), (3.12), and (3.13), we get d\ = ̂  and d2 = i i which completes the
proof of Theorem 2.
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