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L-Functoriality for Local Theta
Correspondence of Supercuspidal
Representations with Unipotent Reduction

Shu-Yen Pan

Abstract. _e preservation principle of local theta correspondences of reductive dual pairs over
a p-adic ûeld predicts the existence of a sequence of irreducible supercuspidal representations of
classical groups. Adams andHarris–Kudla–Sweet have a conjecture about the Langlands parameters
for the sequence of supercuspidal representations. In this paper we provemodiûed versions of their
conjectures for the case of supercuspidal representations with unipotent reduction.

1 Introduction

1.1 Let F be a non-archimedean local ûeld of odd residual characteristic, (G ,G′) a re-
ductive dual pair over F consisting of either (1) two unitary groups (with respect to a
quadratic extension D/F); or (2) an even orthogonal group and a symplectic group.
_ere exists a one-to-one correspondence (called the local theta correspondence) be-
tween some irreducible admissible representations of G and some irreducible admis-
sible representations of G′ with respect to a ûxed splitting of themetaplectic cover of
G ×G′ (cf. [MVW87,Wal90]).

It is very interesting to know how the Langlands parameters of the paired represen-
tations are related. In [Ral82], Rallismatches the Satake parameters of the unramiûed
representations for an unramiûed reductive dual pair. In [Aub91], Aubertmatches the
parameters of the representations with non-trivial vectors ûxed by an Iwahori sub-
group for the case of a split reductive dual pair of the similar size. _e representations
considered by Rallis and Aubert are all in the principal series, but in this paperwe fo-
cus on the correspondence of certain supercuspidal representations. However, all the
representations considered in [Ral82], [Aub91] and here all belong to the class called
representations with unipotent reduction and characterized by Lusztig [Lus95,Lus02].
(Lusztig called these representations unipotent. Here we follow the terminology of
Mœglin–Waldspurger in [MW03].)

1.2 We now describe our result in more detail. One of the most interesting phenomena
of the local theta correspondence is the so-called preservation principle or conserva-
tion relation. More precisely, denote G by G(V) if G is the group of isometries of

Received by the editors October 21, 2013; revised August 3, 2016.
Published electronically December 6, 2016.
_is project is supported by NSC-grant 96-2115-M-007-002 of Taiwan.
AMS subject classiûcation: 22E50, 11F27, 20C33.
Keywords: local theta correspondence, supercuspidal representation, preservation principle, Lang-

lands functoriality.

https://doi.org/10.4153/CJM-2016-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-033-1


L-Functoriality for Local _eta Correspondence 187

the (quadratic, symplectic or Hermitian) space V . For a given quadratic (symplec-
tic, or Hermitian, respectively) space V , we have two Witt towers {V ′+} and {V ′−}
of symplectic (quadratic, or skew-Hermitian, respectively) spaces, called the related
Witt towers (cf. Subsections 2.3). Suppose that π is an irreducible supercuspidal rep-
resentation of G(V). Let n′±(π) denote the minimal dimensions of V ′± varying in
their respective Witt towers such that π occurs in the theta correspondence for the
reductive dual pairs (G(V),G(V ′±)). _en it is known in [KR05,HKS96] that

(1.1) n′+(π) + n′−(π ⊗ sgn) = 2dim(V) +
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if G(V) is even orthogonal,
2, if G(V) is unitary,
4, if G(V) is symplectic,

where “sgn” denotes the sign character (cf. Subsection 2.1) of the group G(V). Note
that the formulation here is slightly diòerent from the original one in [HKS96] for
unitary group cases due to the choice of diòerent splittings of themetaplectic covers.

If we start with any irreducible supercuspidal representation π of a group G(V),
then we can obtain two irreducible supercuspidal represnetations π′+ and π′− of
G(V ′+) and G(V ′−), respectively, such that π ⊗ (π′± ⊗ sgn) ûrst occurs in the theta
correspondence for the dual pair (G(V),G(V ′±)). _en we switch the roles of V
and V ′± and repeat the same process. We will obtain a sequence of spaces {Vi}
(indexed by Z) and irreducible supercuspidal representations π i of G(Vi) such that
π i ⊗ (π i+1 ⊗ sgn) is a ûrst occurrence of irreducible supercuspidal representations
for the reductive dual pair (G(Vi),G(Vi+1)) for each i ∈ Z. Note that the spaces Vi
and Vj are in the sameWitt tower if i ≡ j (mod 4). From (1.1) we have the relation
dim(Vi−1)+dim(Vi+1) = 2dim(Vi)+δ i ,where δ i is 0, 2, or 4 depending on the space
Vi . Hence, we can and will normalize the index i such that

⋅ ⋅ ⋅ > dim(V−2) > dim(V−1) ≥ dim(V0) ≤ dim(V1) < dim(V2) < ⋅ ⋅ ⋅

(cf. Subsections 2.3).

1.3 Let WF denote theWeil group of F and let LG = ∨G ⋊WF be the L-group of G where
∨G denotes the complex dual group of G. Suppose that π is an irreducible admissi-
ble representation of G. According to the local Langlands conjecture ([Bor79]), there
should be a unique (up to conjugation) homomorphism (called the Langlands param-
eter)

φ∶WF × SL2(C)Ð→ LG

satisfying certain conditions associated with π. Let θ(π) denote the irreducible ad-
missible representation ofG′ pairedwith π in the theta correspondence for the reduc-
tive dual pair (G ,G′). Adams [Ada89]makes a conjecture on the Langlands param-
eter of θ(π) provided the Langlands parameter φ of π is known (see Conjecture 3.1).
Suppose that the Langlands parameter φ0 of π0 in the sequence {π i} is known. _en
Harris, Kudla, and Sweet [HKS96]make a conjecture on the Langlands parameter φ i
of π i modiûed from Adams’s conjecture (see Subsection 3.3).
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A special class of irreducible admissible representations called having unipotent re-
duction are deûned by Lusztig [Lus83]. If G is adjoint simple, Lusztig [Lus95,Lus02]
constructs a bijection between (the isomorphism classes of) the irreducible admissi-
ble representations π with unipotent reduction and (the equivalence classes of) the
reûned unramiûed Langlands parameters φ (i.e., the parameters φ whose restriction
to the initial group of F is trivial). A unramiûed Langlands parameter is characterized
by a pair (y,N) (up to conjugation) such that
● y is an semisimple element in the complex dual group ∨G;
● N is a nilpotent element in the Lie algebra of ∨G;
● Ady(N) = qN ,
where q is the cardinality of the residue ûeld of F. Such a pair (y,N) will also be
called the Langlands parameter of π. Following Lusztig’s construction, we will write
down the Langlands parameter (y,N) of an irreducible supercuspidal representation
π with unipotent reduction of a classical groupG(V),which is not necessarily adjoint
or even connected (cf. Section 6).

1.4 It is known that the representations with unipotent reduction are preserved by the
local theta correspondence in some cases. In particular, for dual pairs of orthogonal-
symplectic cases, if one of the representation in sequence {π i} has unipotent reduc-
tion, then every representation in the sequence has unipotent reduction. _e case for
unitary groups is a littlemore involved (cf. Subsection 4.4.1).

_e aim of this article is to analyze the Langlands parameters of the sequence {π i}
of supercuspidal representationswith unipotent reductions. More precisely, for k ∈ N,
let ρk be the symmetric tensor representation of SL2(C) on a k-dimensional complex
vector space. Let dρk ∶ sl2(C) → glk(C) be the associated representation of the Lie
algebra sl2(C). _en we deûne

γk = ρk ([ q1/2 0
0 q−1/2 ]) and δk = dρk ([ 0 1

0 0 ]) .

_emain results (_eorems 5.3, 5.5, 5.7, and 5.9) of this paper are the following:
(I) Suppose that G(V0) is a unitary group and the dimensions of V0 ,V1 are of the

same parity. Let (y i ,N i) be the Langlands parameter for the supercuspidal
representation π i ⊗ sgn((i+1)(i+2)+t0)/2 with unipotent reduction if D/F is un-
ramiûed; for π i if D/F is ramiûed (where t0 is given in (4.5)). _en we have

y i = diag(y0 , γ2 , γ4 , . . . , γ2i♯) and N i = diag(N0 , δ2 , δ4 , . . . , δ2i♯),

where i♯ = min(∣i∣, ∣i + 1∣).
(II) Suppose that G(V0) is a unitary group and the dimensions of V0 ,V1 are of the

opposite parity. _en (y i ,N i) for the representation in (5.4) where i odd is
given by

y i = diag(y0 , γ1 , γ3 , . . . , γ2∣i∣−1) and N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).
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(III) Suppose that G(V0) is an even orthogonal group. _en (y i ,N i) for π i is given
by

y i = diag(y0 , γ1 , γ3 , . . . , γ2∣i∣−1) and N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).

(IV) Suppose that G(V0) is a symplectic group. _en (y i ,N i) for π i is given by

y i =
⎧⎪⎪⎨⎪⎪⎩

diag(y0 ,−γ1 ,−γ3 , . . . ,−γ2∣i∣−1), if i is even,
diag(−y0 , γ1 , γ3 , . . . , γ2∣i∣−1), if i is odd,

N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).

For the case of orthogonal-symplectic groups, the result is a consequence of amod-
iûcation of Adams’ conjecture (see Conjecture 3.2). _us, the theorems imply that the
modiûed Adams’ conjecture holds when the representations are supercuspidal with
unipotent reduction. However, for the case of unitary groups, Adams’ conjecture (see
Conjecture 3.1) and henceHarris–Kudla–Sweet’s conjecture [HKS96, speculations 7.7
and 7.8] need to bemodiûed slightly due to the fact that representations with unipo-
tent reductions are not really preserved by theta correspondence.

1.5 _e basic idea of the proof is very simple. _e irreducible supercuspidal representa-
tion with unipotent reduction of G is so special and must be induced from an irre-
ducible representation of an open compact subgroup, which is in�ated from an irre-
ducible unipotent cuspidal representation of a product of ûnite classical groups. In
this situation, the Langlands parameter of the representation can be constructed ex-
plicitly. Also the analog of the preservation principle holds for ûnite reductive dual
pairs (cf. (4.2)) and the correspondence of unipotent cuspidal representations for û-
nite dual pairs is known (cf. [AM93]). _en Proposition 4.6 provides a compatibility
result between the correspondence of supercuspidal representations with unipotent
reduction for reductive dual pairs over a nonarchimedean local ûeld and the cor-
respondence of unipotent cuspidal representations for reductive dual pairs over its
residue ûeld. Finally, the relation of the Langlands parameter of the representations
paired by theta correspondence is established.

1.6 _e content of the paper is as follows. In Section 2, we give the notation and ba-
sic results of local theta correspondence, in particular, the preservation principle by
Kudla and Rallis in [KR05]. _e homomorphisms between L-groups are given in
Section 3. _e deûnition is adapted from [Ada89,KR94,HKS96]. In Section 4, we
give the description of the sequence of irreducible cuspidal representations of ûnite
classical groups in which unipotent representations occur. Proposition 4.6 is the key
relation between the theta correspondence of unipotent cuspidal representations of
ûnite classical groups and the theta correspondence of supercuspidal representations
of p-adic classical groups. _en in Section 5 we state the main results of the paper,
_eorems 5.3, 5.5, 5.7, and 5.9. In Section 6 we give an explicit description of the
Langlands parameter (y,N) associated with an irreducible supercuspidal represen-
tation π with unipotent reduction of a classical group G(V). _e description follows
closely the construction in [Lus95, Lus02,Mor96] for adjoint simple groups. In the
ûnal section, we give the proofs of themain theorems and provide a few examples.
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2 Local Theta Correspondence

2.1 Basic Notation

Let F be a non-archimedean local ûeld with odd residual characteristic, let f be the
residue ûeld of F, and let q be the cardinality of f. We ûx anontrivial additive character
ψ of F.

Let D be F itself or a quadratic extension E of F, let V a (non-degenerate) є-
Hermitian space (with є = 1 or −1) over D, and let G(V) be the group of isometries.
We consider the following cases:
(a) If D = E and

(a.1) if dimE(V) = n is odd, then G(V) is the unitary group Un(F);
(a.2) if dimE(V) = n is even, then G(V) is denoted by U+

n(F) (resp. U−

n(F))
when the anisotropic kernel of V is trivial (resp. 2-dimensional).

If E/F is a ramiûed, we always assume that V is even-dimensional.
(b) If D = F, є = −1 and dim(V) = 2n, then G(V) is the symplectic group Sp2n(F).
(c) If D = F, є = 1, and dim(V) = 2n, then the even orthogonal group G(V) is

denoted by O+

2n(F) (resp. O−

2n(F), O′

2n(F)) when the anisotropic kernel of V is
trivial (resp. four-dimensional, two-dimensional). For the case G(V) = O′

2n(F)
we will assume that the center of the even Cliòord algebra of V is an unramiûed
quadratic extension of F.

If G(V) is a nontrivial unitary group (resp. nontrivial orthogonal group), let sgn
denote the linear character ofG(V) of order twowhose restriction to the special uni-
tary group (resp. orthogonal group) is trivial. If G(V) is a symplectic group or the
trivial group, let sgn be the trivial character.

2.2 Reductive Dual Pairs

Let (G(V),G(V ′)) be a reductive dual pair over F where G(V) and G(V ′) are the
classical groups considered in the previous subsection. _e dual pair (G(V),G(V ′))
splits; i.e., there exists a splitting homomorphism

β∶G(V) ×G(V ′)Ð→Mp(V ⊗D V ′)
whereMp(V ⊗D V ′) denotes themetaplectic cover of the symplectic group Sp(V ⊗D
V ′). Let ωψ be theWeil representation ofMp(V⊗DV ′)with respect to the nontrivial
character ψ. We regard ωψ as a representation of G(V) ×G(V ′) via the splitting β.

Suppose π is an irreducible admissible representation of G(V). We write

ωψ/( ⋂
f ∈HomG(V)(ωψ ∣G(V) ,π)

ker( f )) ≃ π ⊗Θ(π,V ′)

for some Θ(π,V ′) equal to 0 or a smooth representation of G(V ′). If Θ(π,V ′) /=
0, then it is a ûnitely generated representation of G(V ′) with a unique irreducible
quotient θ(π,V ′). _e correspondence that is denoted by π↔ θ(π,V ′) is a bijection
between subsets of (isomorphism classes of) irreducible admissible representations
of G(V) and irreducible admissible representations of G(V ′), which occurs in the
correspondence [MVW87,Wal90].
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_e following basic facts for the theta correspondence are well known ([MVW87,
Kud86]):
(a) If Θ(π,V ′) /= 0, then Θ(π,V ′ + V ′

k ,k) /= 0 for any k ≥ 1.
(b) Θ(π,V ′

an + V ′

k ,k) /= 0 if k ≥ dimD(V).
(c) If π is supercuspidal, Θ(π,V ′

an + V ′

k−1,k−1) = 0 and Θ(π,V ′

an + V ′

k ,k) /= 0, then
π′ ∶= θ(π,V ′

an + V ′

k ,k) is also supercuspidal. Moreover, θ(π,V ′

an + V ′

l , l) is never
supercuspidal if l > k.

Here V ′

an is an anisotropic є′-Hermitian space and V ′

k ,k denotes the direct sum of k
copies of є′-Hermitian hyperbolic planes. _e correspondence π↔ π′ of supercuspi-
dal representations in (c) is called a ûrst occurrence (of supercuspidal representations).

2.3 Preservation Principle

From now on we consider the theta correspondence under the splitting with respect
to a generalized latticemodel of theWeil representation ωψ given in [Pan01] (see also
[Pan02, section 11]).
For a ûxed є-Hermitian space V over D we consider the following related Witt

towers {V ′±

an + V ′

k ,k ∣ k = 0, 1, 2, . . .}:
(a) D = E and V ′+

an (resp. V ′−

an ) is the trivial (resp. a two-dimensional anisotropic)
є′-Hermitian space;

(b) D = E and both V ′+

an and V ′−

an are one-dimensional anisotropic є′-Hermitian
spaces with non-isomorphic forms;

(c) D = F, є = 1, and both V ′+

an and V ′−

an are the trivial;
(d) D = F, є = −1, and the anisotropic space V ′+

an (resp. V ′−

an ) is the trivial (resp. four-
dimensional);

(e) D = F, є = −1, and both V ′+

an and V ′−

an are two-dimensional with non-isomorphic
quadratic forms.

Let π be an irreducible supercuspidal representation of G(V). _en π ⊗ sgn is
also irreducible supercuspidal. Let n+(π) (resp. n−(π ⊗ sgn)) denote the small-
est dimension of V ′+

an + V ′

k ,k (resp. V ′−

an + V ′

k ,k) in its Witt tower such that π
(resp. π⊗sgn) occurs in the theta correspondence for the pair (G(V),G(V ′+

an +V ′

k ,k))
(resp. (G(V),G(V ′−

an + V ′

k ,k))). _e following relation

(2.1) n+(π) + n−(π ⊗ sgn) = 2dim(V) +
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if G(V) is even orthogonal,
2 if G(V) is unitary,
4 if G(V) is symplectic,

is called the preservation principle (or conservation relation) (see [HKS96, KR05,
Pan02]). _e preservation principle suggests that there exist irreducible supercus-
pidal representations π i of G(Vi) for i ∈ Z such that π is isomorphic to π i0 for some
integer i0 (the integer i0 might not be unique), and π i ↔ π i+1 ⊗ sgn is a ûrst occur-
rence in the local theta correspondence for the dual pair (G(Vi),G(Vi+1)) for i ∈ Z.

Let n i denote the dimension of Vi . We assume that π0 does not come from a
smaller group via the theta correspondence; i.e., we normalize the index i such that
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⋅ ⋅ ⋅ > n−2 > n−1 ≥ n0 ≤ n1 < ⋅ ⋅ ⋅ . _en from (2.1), it is not diõcult to see that we have
the following cases:
(I) n i = n + i(i + 1) with n−1 = n0 = n for some n, and G(Vi) is unitary for each i;
(II) n i = n + i2 with n0 = n for some n, and G(Vi) is unitary for each i;
(III) n i = n + i2 − 1+(−1)i+1

2 with n−1 = n0 = n1 = n for some n, and G(Vi) is
orthogonal (resp. symplectic) if i is even (resp. odd); or

(IV) n i = n+ i2+ 1+(−1)i+1

2 with n0 = n for some n, andG(Vi) is symplectic (resp. or-
thogonal) if i is even (resp. odd).

Note that n i = n−i−1 for case (I), and n i = n−i otherwise.

Remark 2.1 (i) For case (I) with n = 0, we have n−1 = n0 = 0. _e anisotropic
kernel of Vi is zero-dimensional if i ≡ 0, 3 (mod 4), and two-dimensional if
i ≡ 1, 2 (mod 4).

(ii) For case (II) with n = 0, we have n0 = 0, n−1 = n1 = 1. _e anisotropic kernel
of Vi is zero-dimensional if i ≡ 0 (mod 4), two-dimensional if i ≡ 2 (mod 4),
and one-dimensional otherwise.

(iii) For case (III) with n = 0, we have n−1 = n0 = n1 = 0. _e quadratic space Vi has
trivial (resp. four-dimensional) anisotropic kernel if i ≡ 0 (mod 4) (resp. i ≡ 2
(mod 4)).

(iv) For case (IV) with n = 0, we have n0 = 0 and n−1 = n1 = 2. _e quadratic space
Vi has two-dimensional anisotropic kernel for every odd i.

Let n∗i denote the dimension of the complex vector space Vi such that G(Vi) is
the complex dual group of G(Vi). _en we have

(2.2) n∗i =
⎧⎪⎪⎨⎪⎪⎩

n i , if G(Vi) is unitary or even orthogonal;
n i + 1, if G(Vi) is symplectic.

It is easy to check that n∗i = n∗0 + i2 for cases (III) and (IV).

3 L-functoriality of Local Theta Correspondence

Let F, V , and G(V) be deûned as in Subsection 2.1.

3.1 L-groups

LetWF be theWeil group of F, ∨G(V) the complex dual group ofG(V). _e L-group
LG(V) = ∨G(V) ⋊WF of (the inner class of) G(V) is deûned with respect to the
action ofWF on ∨G(V) described as follows (cf. [Ada89, section 3]).
(a) If G(V) = Un(F) or U±

n(F), the subgroup WE ofWF acts trivially on ∨G(V) =
GLn(C) and an element wσ ∈ WF ∖ WE acts on GLn(C) by g ↦ Φn

tg−1Φ−1
n ,

where

(3.1) Φn =
⎡⎢⎢⎢⎢⎣

1
−1

. . .

(−1)n−1

⎤⎥⎥⎥⎥⎦
and tg denotes the transpose of thematrix g.
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(b) If G(V) = Sp2n(F), then the action ofWF on ∨G(V) = SO2n+1(C) is trivial and
hence LG(V) = SO2n+1(C) ×WF , the direct product.

(c) If G(V) = O+

2n(F) or O−

2n(F), then the action of WF on ∨G(V) = O2n(C) is
trivial and hence LG(V) = O2n(C) ×WF .

(d) Suppose that G(V) = O′

2n(F). Recall that we assume that the center E of the
even Cliòord algebra of V is an unramiûed extension of F. _e subgroup WE
acts trivially on ∨G(V) = O2n(C) and an elementwσ ∈WF ∖WE acts on O2n(C)
via g ↦ Φ′

2n gΦ′−1
2n , where

(3.2) Φ′

2n = diag(−1, 1, . . . , 1) ∈ O2n(C) ∖ SO2n(C).

3.2 Homomorphisms of L-groups

Let (G(V),G(V ′)) be a reductive dual pair. Slightly modiûed from [HKS96, sec-
tion 7] and [Ada89, section 4], the homomorphism α between L-groups LG(V) and
LG(V ′) is deûned as follows.

3.2.1 Unitary Cases

For positive integers a1 , . . . , ak we deûne

(3.3) Φa1 ,a2 ,⋅⋅⋅,ak = diag(Φa1 ,Φa2 , . . . ,Φak) =
⎡⎢⎢⎢⎢⎢⎣

Φa1
Φa2

. . .
Φak

⎤⎥⎥⎥⎥⎥⎦
,

where Φa i is given in (3.1).
Let n (resp. n′) denote the dimension of V (resp. V ′) and suppose that n ≤ n′.

Choose a pair of characters χ1 , χ2 of E× such that χ1∣F× = єdim(V
′
)

E/F and χ2∣F× = єdim(V)E/F
where єE/F is the quadratic character with respect to the extension E/F. We regard
χ1 , χ2 as characters ofWE via the local class ûeld theory. _emap α∶GLn(C)⋊WF →
GLn′(C) ⋊WF is deûned by

g ×w z→ χ2(w)diag( χ1(w)−1g , idn′−n) ×w(3.4)

1 ×wσ z→ Φn ,n′−nΦ−1
n′ ×wσ ,

where g ∈ GLn(C), w ∈WE , wσ ∈WF ∖WE and idn′−n denotes the identitymatrix of
size n′ − n.

3.2.2 Split Orthogonal-symplectic Case

In this subsectionwe consider that casewhere V (resp. V ′) is a 2n-dimensional (resp.
2n′-dimensional) quadratic (resp. symplectic) space such that the anisotropic kernels
of V is either trivial or four-dimensional. _is situation is called the split case.

Suppose that n ≤ n′. We deûne α∶O2n(C) ×WF → SO2n′+1(C) ×WF by

(3.5) g ×w z→ diag( g , det(g) id2(n′−n)+1) ×w

for g ∈ O2n(C) and w ∈WF .
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Suppose that n′ < n. We deûne α∶ SO2n′+1(C) ×WF → O2n(C) ×WF by

g ×w z→ diag(g , id2(n−n′)−1) ×w(3.6)

for g ∈ SO2n′+1(C) and w ∈WF .

3.2.3 Non-split Orthogonal-symplectic Case

Now we consider the case where V (resp. V ′) is a 2n-dimensional (resp. 2n′-dimen-
sional) quadratic (resp. symplectic) space such that the anisotropic kernels of V is
two-dimensional. _is situation is called the non-split case.

Suppose that n ≤ n′. We deûne α∶O2n(C) ⋊WF → SO2n′+1(C) ×WF by

g ×w z→ diag(g , det(g) id2(n′−n)+1) ×w(3.7)
1 ×wσ z→ diag(−Φ′

2n ,− id2(n′−n)+1) ×wσ

for g ∈ O2n(C), w ∈WE and wσ ∈WF ∖WE . Here Φ′

2n is deûned in (3.2).
Suppose that n′ < n. We deûne α∶ SO2n′+1(C) ×WF → O2n(C) ⋊WF by

g ×w z→ diag(g , id2(n−n′)−1) ×w(3.8)
1 ×wσ z→ diag(− id2n′+1 , id2(n−n′)−1)Φ′

2n ×wσ

for g ∈ SO2n′+1(C), w ∈WE and wσ ∈WF ∖WE .

3.3 L-functoriality for Local Theta Correspondence

According to the local Langlands conjecture (cf. [Bor79])with each irreducible admis-
sible representation π ofG(V) one can associate a unique admissible homomorphism

φ∶WF × SL2(C)Ð→ LG(V)
up to conjugation under ∨G(V). _e (conjugacy class of the) homomorphism φ is
called the Langlands parameter of the representation π.
For l ∈ N, let ρ l denote the symmetric tensor representation of SL2(C) on the

l-dimensional complex vector space. We also write idk for the k-copies of trivial rep-
resentation of SL2(C).

3.3.1 Unitary Case

Regard idk ⊕ρ l as a homomorphism from SL2(C) to GLk+l(C) ⋊WF via

idk ⊕ρ l ∶ SL2(C)→ GLk(C) ×GLl(C)↪ GLk+l(C)↪ GLk+l(C) ⋊WF .

_e following conjecture from [HKS96, section 7] is modiûed from Adams’ conjec-
ture in [Ada89].

Conjecture 3.1 Let (G(V),G(V ′)) be a reductive dual pair of unitary groups. Let
n and n′ denote the dimensions of V and V ′, respectively. Suppose that n ≤ n′, π is an
irreducible supercuspidal representation of G(V) with Langlands parameter φ∶WF ×
SL2(C)→ LG(V), and the correspondence π↔ θ(π,V ′) is a ûrst occurrence of super-
cuspidal representations. _en the Langlands parameter θ(φ)∶WF×SL2(C)→ LG(V ′)
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of θ(π,V ′) is given by

θ(φ)∣WF = α ○ φ∣WF ,
θ(φ)∣SL2(C) = (α ○ φ∣SL2(C)) ⋅ (idn ⊕ρn′−n),

where α∶ LG(V)→ LG(V ′) is given in (3.4).

3.3.2 Orthogonal-symplectic Case

It is known that ρ l(SL2(C)) ⊂ SOl(C) for a positive odd integer l , and idk ⊕ρ l is
regarded as a homomorphism from SL2(C) to SOk+l(C) ⋊WF via

idk ⊕ρ l ∶ SL2(C)→ SOk(C) × SOl(C)↪ SOk+l(C)↪ SOk+l(C) ⋊WF .

_e following conjecture is modiûed from a conjecture in [Ada89, section 4]. _e
modiûcation is the analog in the case of symplectic-orthogonal groups of Harris-
Kudla-Sweet’s conjecture in [HKS96, section 7].

Conjecture 3.2 Let (G(V),G(V ′)) be a reductive dual pair of an even orthogonal
group and a symplectic group. Let 2n and 2n′ denote the dimension ofV andV ′, respec-
tively. Suppose that n′ ≥ n (resp. n′ > n) if G(V ′) is symplectic (resp. even orthogonal).
Suppose also that π is an irreducible supercuspidal representation of G(V) with Lang-
lands parameter φ∶WF × SL2(C) → LG(V), and the correspondence π ↔ θ(π,V ′)
is a ûrst occurrence of supercuspidal representations. _en the Langlands parameter
θ(φ)∶WF × SL2(C)→ LG(V ′) of θ(π,V ′) is given by

θ(φ)∣WF = α ○ φ∣WF ,
θ(φ)∣SL2(C) = (α ○ φ∣SL2(C)) ⋅ (idk ⊕ρ l)

where k = 2n, l = 2n′ − 2n + 1 (resp. k = 2n + 1, l = 2n′ − 2n − 1) if G(V ′) is symplectic
(resp. even orthogonal), and α∶ LG(V)→ LG(V ′) is given in (3.5)–(3.8).

3.4 Consequences of the Conjectures

Keep the setting in Subsection 2.3. For unitary cases, note that dim(Vi) and dim(Vj)
are of the same parity if i and j are of the same parity. Now the pair of characters χ1 , χ2
of E× are chosen such that χ1∣F× = єdim(V1)

E/F , and χ2∣F× = єdim(V0)

E/F . Harris–Kudla–
Sweet [HKS96] describe the Langlands parameter φ i of π i in terms of the Langlands
parameter φ0∶WF × SL2(C) → GLn0(C) ⋊WF of π0 as follows. Let φ0(w), φ0(wσ),
and φ0(x) be the elements in GLn0(C) deûned by

φ0(w) = φ0(w) ×w ,
φ0(wσ) = φ0(wσ) ×wσ ,
φ0(x) = φ0(x) × 1

for w ∈WE , wσ ∈WF ∖WE , and x ∈ SL2(C).
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3.4.1 Unitary Case (I)

Suppose that the dimensions of V0 and V1 are all of the same parity. _en n i = n0 +
i(i + 1). According to Conjecture 3.1 and (3.4),

φ i ∶WF × SL2(C)Ð→ GLn0+i(i+1)(C) ⋊WF

should be given by

w z→
⎧⎪⎪⎨⎪⎪⎩

diag(φ0(w), χ1(w) idi(i+1)) ×w if i is even,
χ2(w)χ1(w)−1 diag(φ0(w), χ1(w) idi(i+1)) ×w if i is odd,

wσ z→ diag(φ0(wσ), idi(i+1))Φn0 ,2,4, . . . ,2i♯Φ
−1
n0+i(i+1) ×wσ ,

x z→ diag(φ0(x), ρ2(x), ρ4(x), . . . , ρ2i♯(x)) × 1

(3.9)

for w ∈WE , wσ ∈WF ∖WE , x ∈ SL2(C), and i♯ = min(∣i∣, ∣i + 1∣).

Remark 3.3 Since in this case dim(Vi) are either all even or all odd, one may
choose χ1 = χ2 and simplify the expression in (3.9). _is is the original formulation
in [HKS96]. However, tomake the expression in (3.9) and (3.10) more symmetric,we
do not make such a choice here.

3.4.2 Unitary Case (II)

Suppose that the dimensions ofV0 andV1 are of the opposite parity. _en n i = n0+ i2.
According to Conjecture 3.1 and (3.4),

φ i ∶WF × SL2(C)Ð→ GLn0+i2(C) ⋊WF

should be given by

w z→
⎧⎪⎪⎨⎪⎪⎩

diag(φ0(w), χ1(w) idi2) ×w if i is even,
χ2(w)χ1(w)−1 diag(φ0(w), χ1(w) idi2) ×w if i is odd,

wσ z→ diag(φ0(wσ), idi2)Φn0 ,1,3, . . . ,2∣i∣−1Φ−1
n0+i2 ×wσ ,

x z→ diag(φ0(x), ρ1(x), ρ3(x), . . . , ρ2∣i∣−1(x)) × 1

(3.10)

for w ∈WE , wσ ∈WF ∖WE , and x ∈ SL2(C).

3.4.3 Split Orthogonal-symplectic Case

Now n∗i = n∗0 + i2 where n∗i is deûned in (2.2). According toConjecture 3.2, (3.5), and
(3.6), for i ∈ Z ∖ {0},

φ i ∶WF × SL2(C)Ð→ LG(Vi) =
⎧⎪⎪⎨⎪⎪⎩

On∗0+i2(C) ×WF , or
SOn∗0+i2(C) ×WF

should be given by
w z→ diag(φ0(w), det(φ0(w)), idi2−1) ×w
x z→ diag(φ0(x), det(φ0(x))ρ1(x), ρ3(x), . . . , ρ2∣i∣−1(x)) × 1

(3.11)

for w ∈WF and x ∈ SL2(C).
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3.4.4 Non-split Orthogonal-symplectic Case

Note that n∗0 is odd, since V0 is symplectic. According to Conjecture 3.2, (3.7), and
(3.8), we have

φ1(wσ) = diag(−φ0(wσ), id1)Φ′

n∗0+1 ×wσ ,

φ2(wσ) = diag(−φ1(wσ)Φ′

n∗0+1 ,−det(φ1(wσ)) id3) ×wσ

= diag(φ0(wσ),− id1 ,− id3) ×wσ .

_en it is easy to see that, for i ∈ Z ∖ {0},

φ i ∶WF × SL2(C)Ð→ LG(Vi) =
⎧⎪⎪⎨⎪⎪⎩

On∗0+i2(C) ⋊WF , or
SOn∗0+i2(C) ×WF

should be given by
w z→ diag(φ0(w), idi2) ×w ,

wσ z→
⎧⎪⎪⎨⎪⎪⎩

diag( φ0(wσ),− idi2) ×wσ if i even,
diag(−φ0(wσ), idi2)Φ′

n∗0+i2 ×wσ if i odd,

x z→ diag(φ0(x), ρ1(x), ρ3(x), . . . , ρ2∣i∣−1(x)) × 1

(3.12)

for w ∈WE , wσ ∈WF ∖WE , and x ∈ SL2(C).

4 Supercuspidal Representations with Unipotent Reduction

4.1 Unipotent Representations of Finite Classical Groups

Let v be a (non-degenerate) symplectic space or an even quadratic space over f, or a
Hermitian space over a quadratic extension of f. Let G(v) denote the the group of
isometries, and let G0(v) denote the identity component of G(v). Deligne–Lusztig
[DL76] deûne a very special class of irreducible representations ofG0(v) called unipo-
tent cuspidal. Lusztig [Lus77] shows that the group G0(v) has a unique unipotent
cuspidal representation if and only if the dimension of v is one of the forms:

(4.1) dim(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2 s(s + 1) for some integer s if G(v) = U(v),
2s(s + 1) for some integer s if G(v) = Sp(v),
2s2 for some even integer s if G0(v) = SO+(v),
2s2 for some odd integer s if G0(v) = SO−(v).

_is unipotent cuspidal representationwill be denoted by ζs . Note that the dimension
of v is allowed tobe zero. In this situation, byour convention, the trivial representation
of the trivial group is also called unipotent (cuspidal).
(a) If G(v) is unitary or symplectic, we extend the index of ζs to whole integers by

letting ζs = ζ−s−1.
(b) For the ûnite even orthogonal groupO(v), the induced representation IndO(v)

SO(v)ζs
is decomposed into ζ ⊕ (ζ ⊗ sgn) for a cuspidal representation ζ of O(v) when
s /= 0. Following [AM93], we call both ζ and ζ ⊗ sgn the unipotent cuspidal repre-
sentations of O(v). _ey will be denoted by ζs and ζ−s , i.e., ζ−s = ζs ⊗ sgn.
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Suppose that ξ i is an irreducible representation of the groupG(vi) for i = 1, . . . , k.
_e irreducible representation ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξk of G(v1) × ⋅ ⋅ ⋅ ×G(vk) is called unipotent
if each ξ i is unipotent.

4.2 Theta Correspondences for Finite Reductive Dual Pairs

Recall thatwe ûx a nontrivial additive character ψ of F. Without loss of generality, we
can assume that ψ∣p is trivial and ψ∣o is nontrivial, where o is the ring of integers of
F and p is the maximal ideal of o. _en ψ induces a nontrivial character ψ̄ of f. We
consider the correspondence for the reductive dual pairs deûned over f with respect
to theWeil representation ω̄ associated with ψ̄.

Suppose η is an irreducible cuspidal representation of a ûnite classical groupG(v).
_en the “preservation principle” (cf. [Pan02, theorem 12.3]) for ûnite reductive dual
pairs suggests that there exist irreducible cuspidal representations η i ofG(vi) for i ∈ Z
such that η ≃ η i0 for some integer i0, and η i ↔ (η i+1 ⊗ sgn) is a ûrst occurrence of
irreducible cuspidal representations for the dual pair (G(vi),G(vi+1)). Here “sgn”
is the sign character if G(v) is a nontrivial unitary or orthogonal group, and it is the
trivial character if G(v) is trivial or symplectic. We know that

(4.2) dim(vi−1) + dim(vi+1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2dim(vi) + 1 if G(vi) is unitary,
2dim(vi) if G(vi) is orthogonal,
2dim(vi) + 2 if G(vi) is symplectic,

for each i ∈ Z. From (4.2) the index i can be normalized such that we have the fol-
lowing three cases:
(i) vi is unitary for each i, and dim(vi) = dim(v0) + i(i+1)

2 .
(ii) vi is symplectic if i is odd, split orthogonal if i ≡ 0 (mod 4), orthogonal with

2-dimensional anisotropic kernel if i ≡ 2 (mod 4), and

dim(vi) = dim(v0) +
⎧⎪⎪⎨⎪⎪⎩

2( i
2 )

2 if i is even,
2( i−1

2 )( i+1
2 ) if i is odd.

(iii) vi is symplectic when i is even, orthogonal when i is odd, and

dim(vi) = dim(v0) +
⎧⎪⎪⎨⎪⎪⎩

2( i
2 )

2 if i is even,
2( i−1

2 )( i+1
2 ) + 1 if i is odd.

In particular, dim(v0) is theminimum among all dimensions.
Next we want to know how a unipotent cuspidal representation η of G(v) occurs

in its sequence {η i ∣ i ∈ Z}. We consider the following cases.

4.2.1 Finite Unitary Groups

In this subsection, suppose G(v) is unitary and η ↔ η′ is a ûrst occurrence
in ω̄ for the dual pair (G(v),G(v′)). _en from [AMR96] §1.C we know that
(η ⊗ sgndim(v

′
))↔ (η′ ⊗ sgndim(v)) occurs in ω̄♭, which denotes theWeil represen-

tation deûned in [Gér77]. Assume that η = ζ j for some integer j.
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(a) If dim(v′) is even, then η ⊗ sgndim(v
′
) = ζ j . By [AM93, theorem 4.1] we know

that η′ ⊗ sgndim(v) = ζ j+1 or ζ j−1, i.e.,

η′ =
⎧⎪⎪⎨⎪⎪⎩

ζ j−1 ⊗ sgndim(v) , if j ≡ 0, 1 (mod 4);
ζ j+1 ⊗ sgndim(v) , if j ≡ 2, 3 (mod 4).

(b) If both dim(v′) and dim(v) are odd, then η ⊗ sgndim(v
′
) = ζ j ⊗ sgn. Because ζ j

is unipotent, ζ j ⊗ sgn is in the Lusztig series E(G(v), s), where s is a semisimple
element in the dual group of G(v) such that no eigenvalue of s is equal to 1. _en
by [AMR96, théorème 2.6] we see that dim(v′) = dim(v) and η′ ⊗ sgndim(v) =
η ⊗ sgndim(v

′
), i.e., η′ = η, if we identify G(v) and G(v′).

(c) If dim(v′) is odd and dim(v) is even, then dim(v′) = dim(v) + 1 by (b) and
preservation principle (4.2). In this case, η′ is not unipotent unless dim(v) = 0.

Lemma 4.1 Let {η i ∣ i ∈ Z} be a sequence of cuspidal representations given by
preservation principle such that each G(vi) is unitary and dim(v0) = 0. _en η i ⊗
sgndim(vi+1) is unipotent for each i ∈ Z.

Proof By assumption, η i ↔ (η i+1 ⊗ sgn) occurs in the Weil representation ω̄.
_en from [AMR96, §1.C] we know that (η i ⊗ sgndim(vi+1))↔ (η i+1 ⊗ sgndim(vi)+1)
occurs in ω̄♭. Note that dim(vi) + 1 ≡ dim(vi+2) (mod 2) from (4.2). Hence,
η i+1 ⊗ sgndim(vi)+1 = η i+1 ⊗ sgndim(vi+2). From [AM93, theorem 3.5] we know that
η i ⊗ sgndim(vi+1) is unipotent if and only if η i+1 ⊗ sgndim(vi+2) is unipotent. Because
dim(v0) = 0, η0 = η0 ⊗ sgndim(v1) is the trivial representation of the trivial unitary
group. _us η0 is unipotent, and hence each η i ⊗ sgndim(vi+1) is unipotent.

Remark 4.2 From this lemma and the above argument, we conclude the follow-
ing about the position of the unipotent cuspidal representation ζ j of U j( j+1)

2
(q) in its

sequence {η i ∣ i ∈ Z}:
(i) If j ≡ 2, 3 (mod 4), then dim(v j+1) = ( j+1)( j+2)

2 is even, and hence ζ j = η j with
dim(v0) = 0 by Lemma 4.1.

(ii) If j ≡ 1 (mod 4), then dim(v) = j( j+1)
2 is odd and ζ j⊗sgn ûrst occurs in ω̄♭ with

dim(v′) = dim(v), i.e., ζ j ûrst occurs in ω̄ with dim(v′) = dim(v). _erefore
ζ j = η0 ⊗ sgn = η−1 with dim(v0) = j( j+1)

2 .
(iii) If j ≡ 0 (mod 4), then dim(v) = j( j+1)

2 is even and ζ j ⊗ sgn ûrst occurs in ω̄♭
with dim(v′) = dim(v) + 1 which is odd. _is means that ζ j ûrst occurs in ω̄
with dim(v′) = dim(v) + 1, and therefore ζ j = η0 with dim(v0) = j( j+1)

2 .
We can check that η−i−1 = η i ⊗ sgn for all cases. From the above, we also see that if
dim(v0) /= 0, then there is at most one unipotent representation, namely η0, in the
sequence {η i ∣ i ∈ Z}.
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4.2.2 Finite Symplectic and Even Orthogonal Groups

Lemma 4.3 Let {η i ∣ i ∈ Z} be a sequence of cuspidal representations given by
preservation principle such that dim(v0) = 0 and each G(vi) is either symplectic or
even orthogonal. _en all η i and η i ⊗ sgn are unipotent.

Proof Now the occurrence of η i ↔ (η i+1 ⊗ sgn) in ω̄ implies the occurrence of
η i ↔ (η i+1 ⊗ sgn) in ω̄♭ since ω̄ = ω̄♭ for this case. From [AM93, theorem 3.5] we
know that η i is unipotent if and only if η i+1 and η i+1 ⊗ sgn are unipotent. (Of course,
if G(vi+1) is a symplectic group, then sgn is trivial and η i+1 , η i+1 ⊗ sgn are the same
representation.) Now dim(v0) = 0, so η0 is the trivial representation of the trivial
orthogonal group G(v0). _us, η0 is unipotent, and hence each η i and η i ⊗ sgn are
unipotent.

Remark 4.4 In [AM93, theorem 3.5(2)], there is an assumption that the residual
characteristic q has to be large enough so that the decompostion of the Weil repre-
sentation for (Sp(v), SO(v′)) in [Sri79] holds. However, if we look at the proof in
[Sri79, p. 151] carefully, we see that the assumption on q is only needed when both
Sp(v), SO(v′) have the same rank. In our situation, that will happen only when both
have zero rank by the preservation principle. _is means that the assumption on q in
[AM93, theorem 3.5(2)] is not necessary if we only consider the correspondence of
unipotent cuspidal representations.

Remark 4.5 _is is case (ii) of Subsection 4.2. Suppose that dim(v0) = 0. It is
known from case (b) of Subsection 4.1 that η−i ≃ η i ⊗ sgn for each i ∈ Z. If i is odd,
then vi is symplectic and η i is the unique unipotent cuspidal representation of Sp(vi)
with dim(vi) = 2( i−1

2 )( i+1
2 ), i.e., η i = ζ i−1

2
. If i is even and not zero, then η i , η i ⊗ sgn

are the two unipotent cuspidal representations of O±(vi) with dim(vi) = 2( i
2 )

2.
Since all unipotent cuspidal representations of ûnite symplectic groups and ûnite

even orthogonal groups occur in the sequence {η i ∣ i ∈ Z} if dim(v0) = 0,we see that
no representation in {η i ∣ i ∈ Z} is unipotent if dim(v0) /= 0.

4.3 Supercuspidal Representations of Depth Zero

Let F, D, and V be as in Subsection 2.1. A lattice L in V is called a good lattice if
L∗pD ⊆ L ⊆ L∗ where

L∗ = {v ∈ V ∣ ⟨v , l⟩ ∈ oD for all l ∈ L},

and oD denotes the ring of integers of D and pD denotes themaximal ideal in oD .
Let L be a good lattice in V . _en the quotients v∗ ∶= L∗/L and v ∶= L/L∗pD are

vector spaces over fD ∶= oD/pD with non-degenerate є-Hermitian (or є-symmetric)
forms. _e stabilizerG(V)L of L inG(V) is amaximal compact subgroup (cf. [Tit79,
3.2]), and there is a surjective homomorphism

(4.3) G(V)L Ð→ G(v) ×G(v∗)

https://doi.org/10.4153/CJM-2016-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-033-1


L-Functoriality for Local _eta Correspondence 201

with kernel denoted byG(V)L ,0+ . If η and η∗ are representations ofG(v) andG(v∗),
respectively, then η ⊗ η∗ is a representation of G(v) ×G(v∗) and can be pulled back
as a representation of G(V)L via the homomorphism in (4.3).

When G(V) is connected (i.e., G(V) is not orthogonal), from [MP96,Mor99] we
know that the compactly induced representation

c-IndG(V)
G(V)L(η ⊗ η

∗)

is an irreducible supercuspidal representation of G(V) if and only if η and η∗ are
irreducible cuspidal representations of G(v) and G(v∗), respectively. Moreover, all
irreducible supercuspidal representations of G(V) of depth zero are obtained in this
way.

Now we want to show that the same result still holds for an orthogonal group. Let
G = O(V), H = SO(V), and let π be an irreducible supercuspidal representation
of H of depth zero. _en IndG

H π is either an irreducible representation or the direct
sum of two irreducible representations π1 ⊕ π2. Now every irreducible supercuspi-
dal representation πG of G of depth zero is either IndG

H π or π i for some irreducible
supercuspidal representation π of H of depth zero. Because H is connected, we have
π = c-IndH

HLη for some good lattice L in V and some irreducible representation η
of HL in�ated from an irreducible cuspidal representation of HL/HL ,0+ . Now HL is
a subgroup of GL of index 2. If πG = IndG

Hπ, then ηG ∶= IndGL
HL
η is irreducible and

πG = c-IndG
GLηG . If πG = π i for i = 1, 2, then IndGL

HL
η is the direct sum of two irre-

ducible representations η1 ⊕ η2, and πG = c-IndG
GLη

i .

Proposition 4.6 Suppose the supercuspidal representation πr in a sequence given by
preservation principle is of the form c-IndG(Vr)

G(Vr)Lr
(η ⊗ η∗) for some good lattice Lr in

some space Vr and some cuspidal representations η, η∗. _en there exist integers s, t
such that η = ηs , η∗ = η∗t and

(4.4) πr+i = c-IndG(Vr+i)

G(Vr+i)Lr+i
(ηs+i ⊗ η∗t+i)

for i ∈ Z where Lr+i is a good lattice in Vr+i and ηs+i (resp. η∗t+i) is the i-th term a�er
ηs (resp. η∗t ) in its sequence given by preservation principle.

Proof Suppose that:
● (G(V),G(V ′)) is a reductive dual pair;
● π is the induced representation c-IndG(V)

G(V)L(η ⊗ η
∗) where η (resp. η∗) is an irre-

ducible cuspidal representation of G(L/L∗pD) (resp. G(L∗/L)) where L is a good
lattice in V ;

● π′ is the induced representation c-IndG(V ′
)

G(V ′)L′
(η′ ⊗ η′∗) where η′∗ (resp. η′) is an

irreducible cuspidal representation of G(L′∗/L′) (resp. G(L′/L′∗pD)) where L′ is a
good lattice in V ′.

_en by [Pan02, theorems 9.3 and 9.5] we know that π ↔ π′ is a ûrst occurrence
in the local theta correspondence if and only if both η ↔ η′∗ and η∗ ↔ η′ are ûrst
occurrences in the theta correspondence for ûnite reductive dual pairs.
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Now back to our situation: πr ↔ (πr+1 ⊗ sgn) ûrst occurs in the theta correspon-
dence. Write

πr = π = c-IndG(V)
G(V)L(η ⊗ η

∗) and πr+1 ⊗ sgn = π′ = c-IndG(V ′
)

G(V ′)L′
(η′ ⊗ η′∗).

_en η↔ η′∗ ûrst occurs in the theta correspondence. Hence, we can choose an in-
teger s (could be positive or negative) such that η = ηs and η′∗ = ηs+1⊗ sgn. Similarly,
there is an integer t such that η∗ = η∗t and η′ = η∗t+1 ⊗ sgn. _en we have

πr+1 ⊗ sgn = c-IndG(Vr+1)

G(Vr+1)Lr+1
((ηs+1 ⊗ sgn)⊗ (η∗t+1 ⊗ sgn)) ,

and hence

πr+1 ≃ c-IndG(Vr+1)

G(Vr+1)Lr+1
(ηs+1 ⊗ η∗t+1).

_erefore, (4.4) holds for i = 1, and consequently, it also holds for any positive integer
i by induction.

Next consider the case i = −1: πr−1 ↔ (πr ⊗ sgn). If we write

πr−1 = c-IndG(V ′
)

G(V ′)L′
(η′ ⊗ η′∗) and πr = c-IndG(V)

G(V)L(η ⊗ η
∗),

then η′ ↔ η∗, η′∗ ↔ η are ûrst occurrences, and hence η′ = ηs−1, η∗ ⊗ sgn = ηs , and
η′∗ = η∗t−1, η ⊗ sgn = η∗t for some integers s, t. _erefore, (4.4) holds for i = −1, and
consequently, it also holds for any negative integer i again by an induction argument.
_us, the proposition is proved.

4.4 Correspondence of Supercuspidal Representations with Unipotent Reduction

An irreducible admissible representation is said to be unipotent or having unipotent
reductions if it admits a nonzero invariant vector by the pro-p-unipotent radical of a
parahoric subgroup (cf. [Lus83,MW03]). From the results ofMoy–Prasad andMorris
mentioned in Subsection 4.3, we know that the supercuspidal representation

c-IndG(V)
G(V)L(η ⊗ η

∗)

has unipotent reduction if both η, η∗ are unipotent cuspidal representations. All su-
percuspidal representations with unipotent reductions are constructed in the way.

Suppose that {π i ∣ i ∈ Z} is a sequence of irreducible supercuspidal representa-
tions by preservation principle in which at least one representation have unipotent
reduction. So we can write

(4.5) π0 = c-IndG(V0)

G(V0)L0
(ηs0 ⊗ η∗t0)

for some integers s0 , t0 where sequences {η i ∣ i ∈ Z} and {η∗i ∣ i ∈ Z} are as in
Remarks 4.2 or 4.5. From these two remarks, we know that if dim(v0) /= 0, then at
most one representation in {η i ∣ i ∈ Z} is unipotent. _erefore, for our purpose, we
will consider the cases such thatdim(v0) = dim(v∗0) = 0 for the sequences {η i ∣ i ∈ Z}
and {η∗i ∣ i ∈ Z}. We have the following cases.
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4.4.1 Unitary Case I: Unramified Extension

We assume that E is an unramiûed extension of F. Because η i = ζ i⊗ sgn
(i+1)(i+2)

2 from
Lemma 4.1, we have

π i = c-IndG(Vi)

G(Vi)Li
(ηs0+i ⊗ η∗t0+i)

= c-IndG(Vi)

G(Vi)Li
(( ζs0+i ⊗ sgn

(i+1)(i+2)
2 +

s20+s0(2i+3)
2 ) ⊗ ( ζ∗t0+i ⊗ sgn

(i+1)(i+2)
2 +

t20+t0(2i+3)
2 ))

by Proposition 4.6. Consider the following situations (the details of which can be
found in Section 7):
(a) If t0 − s0 ≡ 0 (mod 4), then s0 + t0 = 0. Hence both s0 , t0 are even and

s20 + s0(2i + 3)
2

≡ t20 + t0(2i + 3)
2

≡ t0
2

(mod 2).

_us, π i ⊗ sgn
(i+1)(i+2)+t0

2 has unipotent reduction for each i ∈ Z.
(b) If t0 − s0 ≡ 1 (mod 4), then s0 + t0 = −1, and hence t0 is even. We can see that

(i + 1)(i + 2)
2

+ s20 + s0(2i + 3)
2

≡ i(i + 1)
2

+ t0
2

(mod 2),

(i + 1)(i + 2)
2

+ t20 + t0(2i + 3)
2

≡ (i + 1)(i + 2)
2

+ t0
2

(mod 2).

Hence, π i ⊗ sgn
t0+2
2 (resp. π i ⊗ sgn

t0
2 ) has unipotent reduction for i ≡ 1 (mod 4)

(resp. i ≡ 3 (mod 4)).
(c) If t0 − s0 ≡ 2 (mod 4), then s0 + t0 = 0. We can see that

s20 + s0(2i + 3)
2

/≡ t20 + t0(2i + 3)
2

(mod 2)

for any i. Hence, none of π i or π i ⊗ sgn has unipotent reduction unless
i ∈ {t0 , t0 − 1,−t0 ,−t0 − 1}.

(d) If t0 − s0 ≡ 3 (mod 4), then s0 + t0 = −1, and hence t0 is odd. We can see that
(i + 1)(i + 2)

2
+ s20 + s0(2i + 3)

2
≡ (i + 1)(i + 2)

2
+ t0 + 1

2
(mod 2),

(i + 1)(i + 2)
2

+ t20 + t0(2i + 3)
2

≡ i(i + 1)
2

+ t0 − 1
2

(mod 2).

Hence, π i⊗sgn
t0−1
2 (resp. π i⊗sgn

t0+1
2 ) has unipotent reduction for i ≡ 1 (mod 4)

(resp. i ≡ 3 (mod 4)).
It is easy to see that dim(V0), dim(V1) are of the same parity for cases (a) and (c), and
of the opposite parity otherwise.

4.4.2 Unitary Case II: Ramified Extension

Now we assume that E is a ramiûed extension of F. _en one of ηs0 and η∗t0 is a
unipotent cuspidal representation of a ûnite even orthogonal group, and the other is
a unipotent cuspidal representation of a symplectic group. From Remark 4.5 we see

https://doi.org/10.4153/CJM-2016-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-033-1


204 S.-Y. Pan

that every representation in {η i ∣ i ∈ Z} or {η∗i ∣ i ∈ Z} is unipotent, and hence by
Proposition 4.6 all representations π i and π i ⊗ sgn have unipotent reduction.

4.4.3 Orthogonal-symplectic Case

_e situation for reductive dual pairs of even orthogonal groups and symplectic
groups is similar to the case considered in Subsection 4.4.2, i.e., if one representa-
tion in the sequence {π i ∣ i ∈ Z} has unipotent reduction, then all π i and π i ⊗ sgn
have unipotent reduction.

5 The Main Results

5.1 Unramified Langlands Parameters

A Langlands parameter φ∶WF × SL2(C) → ∨G(V) ⋊WF is called unramiûed if it is
trivial on the inertia subgroup IF ofWF . It is known that WF/IF is an inûnite cyclic
group generated by a Frobenius element Fr (cf. [Tat79] (1.4.1)), and hence it is not
diõcult to see that an unramiûed Langlands parameter φ is characterized by the con-
jugacy class of a pair (y,N) where
● y is a semisimple element of the dual group ∨G(V),
● N is a nilpotent element of the Lie algebra ∨g(V), and
● Ady(N) = qN
where Ad denotes the adjoint action of ∨G(V) on its Lie algebra ∨g(V), and q is the
cardinality of f (cf. [Lus83] 1.2). Details can be found in Subsections 5.1.1 and 5.1.2. We
will also call such a pair (y,N) an (unramiûed) Langlands parameter for G(V).
A correspondence between the set (of isomorphism classes) of irreducible admis-

sible representations of an adjoint simple group with unipotent reduction and the set
(of equivalence classes) of unramiûed Langlands parameters is given in [Lus95] and
[Lus02] via the isomorphisms of certain Hecke algebras. Because we only concern
supercuspidal representations, those Hecke algebras degenerate and do not play any
role here. _e explicit description of an extension of Lusztig’s result in our situation
(i.e., for a group not necessarily adjoint) is given in Section 6.
For a positive integer k, let ρk be given in Subsection 3.3. _en we deûne

γk = ρk ([ q1/2 0
0 q−1/2 ]) = diag(q(k−1)/2 , q(k−3)/2 , . . . , q(1−k)/2) ∈ GLk(C),

δk = dρk ([ 0 1
0 0 ]) ∈ glk(C).

(5.1)

Note that ρk(γ2) = γk and Adγk(δk) = qδk .

5.1.1 Unitary Case

Suppose thatG(V) is aunitary group. Let φ∶WF×SL2(C)→ LG(V) be anunramiûed
Langlands parameter, and let Fr ∈ WF denote a ûxed geometric Frobenius element.
Let φ be deûned as in Subsection 3.4.1. Because φ∣SL2(C) is a (ûnite-dimensional)
algebraic representation, there are positive integers a1 , . . . , ak such that

φ∣SL2(C) ≃ ρa1 ⊕ ⋅ ⋅ ⋅ ⊕ ρak ,
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where ρa i is given in Subsection 3.3. Deûne

y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ (Fr, [ q1/2 0
0 q−1/2 ]) if Fr ∈WE ,

φ (Fr, [ q1/2 0
0 q−1/2 ])Φa1+⋅⋅⋅+akΦ−1

a1 , . . . ,ak
if Fr ∈WF ∖WE ,

N = d(φ∣SL2(C)) ([ 0 1
0 0 ]) ,

(5.2)

where Φa1 , . . . ,ak is given in (3.3), and the sl2(C)-representation d(φ∣SL2(C)) denotes
the diòerential of φ∣SL2(C). _enN is anilpotent element in ∨g(V) and y is a semisim-
ple element in ∨G(V), which does not depend on the choice of Fr, because φ is un-
ramiûed. It is easy to check that Φ−1

a1 , . . . ,ak
NΦa1 , . . . ,ak = −tN .

Lemma 5.1 Let y and N be deûned as in (5.2). _en we have Ady(N) = qN.

Proof First suppose that Fr is in WE . _en

Ady(N) = φ (Fr, [ q1/2 0
0 q−1/2 ]) ⋅ d(φ∣SL2(C)) ([ 0 1

0 0 ]) ⋅ φ (Fr, [ q1/2 0
0 q−1/2 ])

−1

= d(φ∣SL2(C))([
q1/2 0
0 q−1/2 ] [ 0 1

0 0 ] [
q1/2 0
0 q−1/2 ]

−1
)

= d(φ∣SL2(C)) (q [ 0 1
0 0 ]) = qN .

Next suppose that Fr ∈WF ∖WE . By the action given in Subsection 3.1, we have

Ady(N) = φ (Fr, [ q1/2 0
0 q−1/2 ])ΦnΦ−1

a1 , . . . ,ak
NΦa1 , . . . ,akΦ

−1
n φ (Fr, [ q1/2 0

0 q−1/2 ])
−1

= φ (Fr, [ q1/2 0
0 q−1/2 ])Φn(−tN)Φ−1

n φ (Fr, [ q1/2 0
0 q−1/2 ])

−1

= φ (Fr, [ q1/2 0
0 q−1/2 ])Fr(N)φ (Fr, [ q1/2 0

0 q−1/2 ])
−1

= d(φ∣SL2(C))([
q1/2 0
0 q−1/2 ] [ 0 1

0 0 ] [
q1/2 0
0 q−1/2 ]

−1
) = qN ,

where n = dim(V).

5.1.2 Orthogonal-symplectic Case

Suppose that G(V) is an even orthogonal group or a symplectic group. For a given
unramiûed parameter φ we deûne

y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ (Fr, [ q1/2 0
0 q−1/2 ]) if G(V) is Sp2n(F) or O±

2n(F),

φ (Fr, [ q1/2 0
0 q−1/2 ])Φ′

2n if G(V) is O′

2n(F),

N = d(φ∣SL2(C)) ([ 0 1
0 0 ])

(5.3)

where Φ′

2n is deûned in (3.2).
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Lemma 5.2 Let y and N be deûned as in (5.3). _en we have Ady(N) = qN.

Proof First, if G(V) is Sp2n(F) or O±

2n(F), then WF acts trivial on ∨G(V) and
∨g(V). _e proof is exactly the same as the proof of the ûrst part of Lemma 5.1.
Next suppose G(V) = O′

2n(F). _en Fr is in WF ∖WE where E is deûned in Subsec-
tion 3.1(d). Hence from Subsection 3.1, we have

Ady(N) = φ (Fr, [ q1/2 0
0 q−1/2 ])Φ′

2nNΦ′−1
2n φ (Fr, [ q1/2 0

0 q−1/2 ])
−1

= φ (Fr, [ q1/2 0
0 q−1/2 ])Fr(N)φ (Fr, [ q1/2 0

0 q−1/2 ])
−1

= d(φ∣SL2(C))([
q1/2 0
0 q−1/2 ] [ 0 1

0 0 ] [
q1/2 0
0 q−1/2 ]

−1
) = qN .

5.2 The Main Results

Keep the setting of Subsection 2.3 and assume that there are inûnitely many repre-
sentations in the sequence {π i ∣ i ∈ Z} that have unipotent reductions. As in Subsec-
tion 4.4, we write π0 = c-IndG(V0)

G(V0)L0
(ηs0 ⊗ η∗t0) for some integers s0 , t0.

5.2.1 Unitary Case (I)

In this subsection we suppose that dim(V0), dim(V1) are of the same parity. If D = E
is an unramiûed extension of F, we see that we are in case (a) of Subsection 4.4.1, and
hence t0 is even, each π i ⊗ sgn

(i+1)(i+2)+t0
2 has unipotent reduction. If E is a ramiûed

extension of F, then every representation π i has unipotent reduction from Subsec-
tion 4.4.2.

_eorem 5.3 Suppose that G(V0) is a unitary group and dim(V0), dim(V1) are of
the same parity. Let (y i ,N i) be the Langlands parameter for the supercuspidal repre-
sentation with unipotent reduction π i ⊗ sgn

(i+1)(i+2)+t0
2 (resp. π i) for D/F unramiûed

(resp. ramiûed). _en we have

y i = diag(y0 , γ2 , γ4 , . . . , γ2i♯) and N i = diag(N0 , δ2 , δ4 , . . . , δ2i♯),

where i♯ = min(∣i∣, ∣i + 1∣), and γk , δk are deûned as in (5.1).

Note that 2+4+⋅ ⋅ ⋅+2i♯ = i(i+ 1) for i ∈ Z. _e proof of the theoremwill be given
in Subsection 7.1.

Remark 5.4 First suppose that E is an unramiûed quadratic extension of F. We
have Fr ∈ WF ∖WE . By deûnition, we have y0 = φ(Fr, γ2)Φn0Φ−1

a1 , . . . ,ak
, where n0 =

dim(V0) and [a1 , . . . , ak] is the partition of n0 associated with N0. _en from (3.9)
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and (5.2) we have

diag(φ0(Fr, γ2), ρ2(γ2), ρ4(γ2), . . . , ρ2i♯(γ2))
×Φn0 ,2,4, . . . ,2i♯Φ

−1
n0+i(i+1)Φn0+i(i+1)Φ−1

a1 , . . . ,ak ,2,4, . . . ,2i♯

= diag( y0Φa1 , . . . ,akΦ
−1
n0
, ρ2(γ2), ρ4(γ2), . . . , ρ2i♯(γ2))

×Φn0 ,2,4, . . . ,2i♯Φ
−1
a1 , . . . ,ak ,2,4, . . . ,2i♯

= diag( y0 , ρ2(γ2), ρ4(γ2), . . . , ρ2i♯(γ2))
= diag(y0 , γ2 , γ4 , . . . , γ2i♯).

Next, if E is a ramiûed quadratic extension of F, then Fr ∈WE , y0 = φ (Fr, γ2) and

diag(φ0(Fr, γ2), ρ2(γ2), ρ4(γ2), . . . , ρ2i♯(γ2))
= diag( y0 , ρ2(γ2), ρ4(γ2), . . . , ρ2i♯(γ2))
= diag(y0 , γ2 , γ4 , . . . , γ2i♯).

_erefore, _eorem 5.3 is consistent with (3.9) (cf. [HKS96, speculation 7.7]) up to a
twisting of the sgn character.

5.2.2 Unitary Case (II)

Now we suppose that dim(V0), dim(V1) are of the opposite parity. For this case by
our assumption in Subsection 2.1, E is an unramiûed extension of F. From Subsec-
tion 4.4.1 we see that t0 − s0 is odd, π i or π i ⊗ sgn do not have unipotent reduction
for even i, and

(5.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π i ⊗ sgn
t0+2
2

π i ⊗ sgn
t0
2

π i ⊗ sgn
t0−1
2

π i ⊗ sgn
t0+1
2

has unipotent reduction if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t0 − s0 ≡ 1, i ≡ 1 (mod 4),
t0 − s0 ≡ 1, i ≡ 3 (mod 4),
t0 − s0 ≡ 3, i ≡ 1 (mod 4),
t0 − s0 ≡ 3, i ≡ 3 (mod 4).

Let (y0 ,N0) be the Langlands parameter of the representation c-IndG(V0)

G(V0)L0
(ζs0⊗ζt0).

_eorem 5.5 Suppose that G(V0) is a unitary group and dim(V0), dim(V1) are of
the opposite parity. _en the Langlands parameter (y i ,N i) for the supercuspidal repre-
sentation in (5.4) for i odd is given by

y i = diag(y0 , γ1 , γ3 , . . . , γ2∣i∣−1) and N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).

Note that 1+3+⋅ ⋅ ⋅+(2∣i∣−1) = i2 for i ∈ Z. _e proofwill be given in Subsection 7.2.

Remark 5.6 Again,_eorem 5.5 is consistent with (3.10) (cf. [HKS96, speculation
7.8]) up to a twisting of the sgn character.
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5.2.3 Split Orthogonal-symplectic Case

_eorem 5.7 Suppose that G(V0) is an even orthogonal group. _en the Langlands
parameter (y i ,N i) for π i , i ∈ Z, satisûes

y i = diag(y0 , γ1 , γ3 , . . . , γ2∣i∣−1) and N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).

_e proof will be given in Subsection 7.3.

Remark 5.8 In this case we have

y0 = φ0 (Fr, [
q1/2 0
0 q−1/2 ]) and N0 = dφ0 ([ 0 1

0 0 ])

from the deûnition in (5.2). _en by (3.11), we should have
y i = diag(y0 , det(y0)γ1 , γ3 , . . . , γ2∣i∣−1) and N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).

We will see in Remark 7.2 that det(y0) = 1, and hence_eorem 5.7 is consistent with
Conjecture 3.2.

5.2.4 Non-split Orthogonal-symplectic Case

_eorem 5.9 Suppose that G(V0) is a symplectic group. _en the Langlands param-
eter (y i ,N i) for π i , i ∈ Z, satisûes

y i =
⎧⎪⎪⎨⎪⎪⎩

diag(y0 ,−γ1 ,−γ3 , . . . ,−γ2∣i∣−1) if i is even,
diag(−y0 , γ1 , γ3 , . . . , γ2∣i∣−1) if i is odd,

N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).

_e proof will be given in Subsection 7.4.

Remark 5.10 In this case, by our assumption in Subsection 2.1, E is an unramiûed
quadratic extension of F, and hence Fr is in WF ∖WE . _en according to (3.12), we
should have

y1 = φ1 (Fr, [
q1/2 0
0 q−1/2 ])Φ′

n∗0+1

= diag(−φ0 (Fr, [
q1/2 0
0 q−1/2 ]) , ρ1 ([ q1/2 0

0 q−1/2 ]))Φ′

n∗0+1Φ
′

n∗0+1

= diag(−y0 , γ1),

y2 = φ2 (Fr, [
q1/2 0
0 q−1/2 ]) = diag(−y1 ,−γ3) = diag(y0 ,−γ1 ,−γ3)

by (5.3). _en by inductionwe can see that the pair (y i ,N i) associatedwith φ i should
be given by

y i =
⎧⎪⎪⎨⎪⎪⎩

diag(y0 ,−γ1 ,−γ3 , . . . ,−γ2∣i∣−1), if i is even,
diag(−y0 , γ1 , γ3 , . . . , γ2∣i∣−1), if i is odd,

N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).
Again,_eorem 5.9 is consistent with Conjecture 3.2.
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6 Langlands Parameters for Supercuspidal Representations with
Unipotent Reduction

A construction of the unramiûed Langlands parameter associatedwith an irreducible
representation with unipotent reduction of an adjoint group G is in [Lus95, Lus02],
see also [Mor96]. If G is a unitary group with respect to an unramiûed quadratic
extension, a similar construction can also be found in [Mœg05]. Nowwe follow their
construction closely and give a description of the parameter (y,N) associated with a
supercuspidal representation with unipotent reduction

π = c-IndG(V)
G(V)L(η ⊗ η

∗)

of a classical group G(V) as follows.

6.1 Unitary Groups with Respect to an Unramified Extension

In this subsection we assume that E is an unramiûed quadratic extension of F. _en
G(V)L/G(V)L ,0+ ≃ U(v) ×U(v∗).

6.1.1 Suppose that G(V) = U+

2n(F). From (4.1), we have 2n = 1
2 s(s + 1) + 1

2 t(t + 1)
for some integers s and t. Moreover, since the anisotropic kernel of V is trivial, we
know that both 1

2 s(s + 1) and 1
2 t(t + 1) are even. _e complex dual group of G(V) is

GL2n(C). Now we have the following two possible situations:
Suppose that s − t is even. Deûne d1 = ( s+t

2 )( s+t+2
2 ) and d2 = ( s−t

2 )2. _en d1 =
∑k

i=1 2i, d2 = ∑∣
s−t
2 ∣

i=1 (2i − 1) and d1 + d2 = 2n, where k = min(∣ s+t
2 ∣, ∣ s+t+2

2 ∣). _en
y = (y(1) , y(2)) is an element of GLd1(C) ×GLd2(C) ⊂ GL2n(C) where

y(1) = diag(γ2 , γ4 , . . . , γ2k) and y(2) = diag(γ1 , γ3 , . . . , γ∣s−t∣−1),

γ l is deûned as in (5.1); N = (N(1) ,N(2)) is an nilpotent element in gld1
(C) ×

gld2(C) ⊂ gl2n(C), where

N(1) = diag(δ2 , δ4 , . . . , δ2k) and N(2) = diag(δ1 , δ3 , . . . , δ∣s−t∣−1),
δ l is deûned as in (5.1).

Suppose that s − t is odd. Deûne d1 = ( s−t−1
2 )( s−t+1

2 ) and d2 = ( s+t+1
2 )2. _en

d1 = ∑k
i=1 2i, d2 = ∑

∣
s+t+1

2 ∣

i=1 (2i − 1) and d1 + d2 = 2n, where k = min(∣ s−t−1
2 ∣, ∣ s−t+1

2 ∣).
_en y = (y(1) , y(2)) is an element of GLd1(C) ×GLd2(C) ⊂ GL2n(C), where

y(1) = diag(γ2 , γ4 , . . . , γ2k) and y(2) = diag(γ1 , γ3 , . . . , γ∣s+t+1∣−1);

N = (N(1) ,N(2)) is an nilpotent element in gld1
(C) × gld2(C) ⊂ gl2n(C) where

N(1) = diag(δ2 , δ4 , . . . , δ2k) and N(2) = diag(δ1 , δ3 , . . . , δ∣s+t+1∣−1).
_e orderedpair (d1 , d2) remains unchanged if s is replaced by−s−1 or t is replaced

by −t−1 or both. For each ordered pair (s, t), there is a unique irreducible supercusp-
idal representation ofG(V), namely, πs ,t ∶= c-IndG(V)

G(V)L(ζs⊗ζt)where ζs , ζt are given
in Subsection 4.1. _is representation remains unchanged if s is replaced by −s − 1 or
t is replaced by −t − 1 or both, because ζs = ζ−s−1 and ζt = ζ−t−1. In other words, there
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is a unique irreducible supercuspidal representation associated with the four ordered
pairs of integers: (s, t), (s,−t − 1), (−s − 1, t), and (−s − 1,−t − 1).

_e same ordered pair (d1 , d2) is associatedwith two ordered pairs (s, t) and (t, s),
and there is a unique pair (y,N) associated with the ordered pair (d1 , d2). Hence, if
s /= t and s /= −t − 1, there are two distinct supercuspidal representations πs ,t , πt ,s
with unipotent reductions associated with the Langlands parameter (y,N). If s = t
or s = −t − 1, there is a single supercuspidal representation with unipotent reduction
associated with the Langlands parameter (y,N).

6.1.2 Suppose that G(V) = U−

2n(F). We have 2n = 1
2 s(s + 1) + 1

2 t(t + 1) for some
integers s, t such that both 1

2 s(s+ 1) and 1
2 t(t+ 1) are odd. _e situation is completely

similar to Subsection 6.1.1.

6.1.3 Suppose that G(V) = U2n+1(F). Nowwe have 2n+ 1 = 1
2 s(s+ 1)+ 1

2 t(t+ 1) for
some integers s, t such that exactly one of 1

2 s(s+1) and 1
2 t(t+1) is even. _e situation

is similar to Subsection 6.1.1 except that 2n is replaced by 2n + 1.

6.2 Unitary Groups with Respect to a Ramified Extension

In this subsection we assume that E is a ramiûed quadratic extension of F.

6.2.1 Suppose that G(V) = U+

2n(F). _en G(V)L/G(V)L ,0+ ≃ O+(v) × Sp(v∗).
From (4.1), we have 2n = 2s2 + 2t(t + 1) for some even integer s and some integer t.
Deûne d1 = (s+ t)(s+ t+ 1) and d2 = (s− t− 1)(s− t). _en d1 = ∑k

i=12i, d2 = ∑k′
i=12i

and d1 + d2 = 2n, where k = min(∣s + t∣, ∣s + t + 1∣) and k′ = min(∣s − t − 1∣, ∣s − t∣).
_en y = (y(1) , y(2)) is an element of GLd1(C) ×GLd2(C) ⊂ GL2n(C), where

y(1) = diag(γ2 , γ4 , . . . , γ2k) and y(2) = diag(−γ2 ,−γ4 , . . . ,−γ2k′)
if t ≥ 0; and

y(1) = diag(−γ2 ,−γ4 , . . . ,−γ2k) and y(2) = diag(γ2 , γ4 , . . . , γ2k′)

if t < 0; and N = (N(1) ,N(2)) is an nilpotent element in gld1
(C)×gld2(C) ⊂ gl2n(C),

where

N(1) = diag(δ2 , δ4 , . . . , δ2k) and N(2) = diag(δ2 , δ4 , . . . , δ2k′).
Note that d1 is interchangeable with d2 if t is replaced by −t − 1; however, the pair
(y,N) remains unchanged.

If s /= 0 (i.e., d1 /= d2), then O+(v) is nontrivial. Hence, O+(v) has two unipotent
cuspidal representations, namely ζs and ζ−s = ζs ⊗ sgn, and there is only one unipo-
tent cuspidal representation for Sp(v∗), namely ζ∗t = ζ∗

−t−1. _erefore, we see that
if (y,N) is the Langlands parameter associated with the irreducible supercuspidal
representations c-IndG(V)

G(V)L(ζs ⊗ ζ∗t ), then the Langlands parameter associated with
c-IndG(V)

G(V)L(ζ−s ⊗ ζ∗t ) is (−y,N).
If s = 0 (i.e., d1 = d2), then O+(v) is trivial. _ere is only one irreducible represen-

tation with unipotent reduction associated with the ordered pair (0, t). And in this
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case (y,N) and (−y,N) are in the same conjugacy class, and hence there is only one
Langlands parameter.

6.2.2 Suppose that G(V) = U−

2n(F). _en G(V)L/G(V)L ,0+ ≃ O−(v) × Sp(v∗).
From (4.1), we have 2n = 2s2 + 2t(t + 1) for some odd integer s and some integer t.
_e situation is similar to Subsection 6.2.1.

6.3 Symplectic Groups

Suppose thatG(V) = Sp2n(F). _enG(V)L/G(V)L ,0+ ≃ Sp(v)×Sp(v∗). From (4.1),
we have 2n = 2s(s + 1) + 2t(t + 1) for some integers s and t. _e complex dual group
of G(V) is SO2n+1(C). Deûne d1 = (s + t + 1)2 and d2 = (s − t)2. It is easy to check
that d1 + d2 = 2n + 1. _e unordered pair {d1 , d2} remains unchanged if s is replaced
by −s− 1 or t is replaced by −t− 1 or both. Note that exactly one of d1 , d2 is even. _en
y = (y(1) , y(2)) is a semisimple element of SOd1(C) × SOd2(C) ⊂ SO2n+1(C), where

y(1) = diag(γ1 , γ3 , . . . , γ2∣s+t+1∣−1), y(2) = diag(−γ1 ,−γ3 , . . . ,−γ2∣s−t∣−1)

if s + t + 1 is odd; and

y(1) = diag(−γ1 ,−γ3 , . . . ,−γ2∣s+t+1∣−1), y(2) = diag(γ1 , γ3 , . . . , γ2∣s−t∣−1);

if s+ t+ 1 is even; and N = (N(1) ,N(2)) is a nilpotent element in sod1(C)×sod2(C) ⊂
so2n+1(C) where

N(1) = diag(δ1 , δ3 , . . . , δ2∣s+t+1∣−1) and N(2) = diag(δ1 , δ3 , . . . , δ2∣s−t∣−1).

Note that from our deûnition, det(y(i)) = 1 for i = 1, 2, and hence y(i) is indeed in
SOd i (C).
For such an unordered pair {d1 , d2} the pair (y,N) is uniquely determined. Note

that the unordered pair {d1 , d2} remains the same if s and t are interchanged. For each
ordered pair (s, t), as in Subsection 6.1.1, there is a unique irreducible supercuspidal
representation associated with the four ordered pairs of integers: (s, t), (s,−t − 1),
(−s − 1, t), and (−s − 1,−t − 1). Hence a such pair (y,N) is associated with two
irreducible supercuspidal representations if both d1 , d2 are nonzero (i.e., s /= t and
s /= −t − 1), namely, c-IndG(V)

G(V)L(ζs ⊗ ζt) and c-IndG(V)
G(V)L(ζt ⊗ ζs); and (y,N) is asso-

ciatedwith the unique irreducible supercuspidal representation if one of d1 , d2 is zero
(i.e., s = t or s = −t − 1).

6.4 Orthogonal Groups

6.4.1 Suppose that G(V) = O+

2n(F). Note that π ⊗ sgn is also an irreducible super-
cuspidal representationwith unipotent reduction. NowG(V)L/G(V)L ,0+ ≃ O+(v)×
O+(v∗). From (4.1), we have 2n = 2s2 + 2t2 for some even integers s, t. From Sub-
section 4.1 we know that for each ordered pair (s, t) of even integers there is an ir-
reducible supercuspidal representation πs ,t ∶= c-IndG(V)

G(V)L(ζs ⊗ ζt). If both s, t are
nonzero, then four representations πs ,t , πs ,−t , π−s ,t and π−s ,−t are all distinct. How-
ever, we have π−s ,−t ≃ πs ,t ⊗ sgn and π−s ,t ≃ πs ,−t ⊗ sgn, since ζ−i ≃ ζ i ⊗ sgn.
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_e complex dual group ofG(V) isO2n(C). Deûne d1 = (s+ t)2 and d2 = (s− t)2.
_en 2n = d1+d2, and y = (y(1) , y(2)) is a semisimple element ofOd1(C)×Od2(C) ⊂
O2n(C), where

y(1) = diag(γ1 , γ3 , . . . , γ2∣s+t∣−1) and y(2) = diag(−γ1 ,−γ3 , . . . ,−γ2∣s−t∣−1);

N = (N(1) ,N(2)) is a nilpotent element in sod1(C) × sod2(C) ⊂ so2n(C), where

N(1) = diag(δ1 , δ3 , . . . , δ2∣s+t∣−1) and N(2) = diag(δ1 , δ3 , . . . , δ2∣s−t∣−1).

Note that the ordered pair (d1 , d2) remains the same if s, t are interchanged, or
if s is replaced by −s and t is replaced by −t. _erefore, if both s, t are nonzero and
s /= ±t, the pair (y,N) is associatedwith the four representations πs ,t , π−s ,−t , πt ,s , and
π−t ,−s . Moreover, d1 and d2 are interchanged, and hence y is replaced by −y if either
s is replaced by −s or t is replaced by −t but not both. _en we see that the Langlands
parameter associated with the representations π−s ,t , πs ,−t , πt ,−s , and π−t ,s is (−y,N).

If exactly one of s, t is zero, say t = 0, then d1 = d2, (y,N) and (−y,N) are con-
jugate, and the four representations πs ,0 , π−s ,0 , π0,s , π0,−s have the same Langlands
parameter; i.e., they are in the same L-packet.

Remark 6.1 According to the above recipe, the Langlands parameters associated
with the supercuspidal representations π and π ⊗ sgn with unipotent reductions of
O+

2n(F) are the same; i.e., π and π ⊗ sgn are in the same L-packet.

Example 6.2 Let s be an even positive integer. Let η be a ûxed unipotent cuspidal
representation of O+

2s2(f) given in Subsection 4.1; i.e., η is isomorphic to ζs or ζ−s .
Let V be an 4s2-dimensional quadratic space with trivial anisotropic kernel, and let
L be a good lattice in V such that both L∗/L and L/L∗p are 2s2-dimensional over f.
Deûne y = diag(γ1 , γ3 , . . . , γ4s−1) and N = diag(δ1 , δ3 , . . . , δ4s−1). We have four irre-
ducible supercuspidal representations with unipotent reduction of O(V) ≃ O+

4s2(F)
with which we associate the Langlands parameters (y,N) or (−y,N):

representations Langlands parameter

c-IndG(V)
G(V)L(η ⊗ η), c-Ind

G(V)
G(V)L((η ⊗ sgn)⊗ (η ⊗ sgn)) (y,N)

c-IndG(V)
G(V)L((η ⊗ sgn)⊗ η), c-IndG(V)

G(V)L(η ⊗ (η ⊗ sgn)) (−y,N)

6.4.2 Suppose thatG(V) = O−

2n(F). _enG(V)L/G(V)L ,0+ ≃ O−(v)×O−(v∗). By
(4.1),we have 2n = 2s2 +2t2 for some odd integers s and t. _e situation is completely
similar to Subsection 6.4.1 except for the parity of s, t.

6.4.3 Suppose that G(V) = O′

2n(F). _en G(V)L/G(V)L ,0+ ≃ Oє(v) × O−є(v∗)
where є = + or −. By the assumption that the center E of the even Cliòord algebra of
V is an unramiûed quadratic extension of F, we know that the dimensions of v and
v∗ are both even. Now we have 2n = 2s2 + 2t2 for some integers s, t such that exactly
one of them is even. _e situation is completely similar to Subsection 6.4.1.
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7 Proofs of the Main Theorems

Keep the setting of Subsection 2.3. We can write

π0 = c-IndG(V0)

G(V0)L0
(ηs0 ⊗ η∗t0)

for some cuspidal representation ηs0 (resp. η∗t0 ) of G(vs0) (resp. G(v∗t0)) where v∗t0 =
L∗0/L0, vs0 = L0/L∗0pD and L0 is a good lattice in V0, and ηs0 (resp. η∗t0 ) is the s0-th
(resp. t0-th) term in its corresponding sequence {η i ∣ i ∈ Z} (resp. {η∗i ∣ i ∈ Z}). By
Proposition 4.6 we know that π i = c-IndG(Vi)

G(Vi)Li
(ηs0+i ⊗ η∗t0+i) for i ∈ Z.

7.1 Unitary Case (I)

Proof of_eorem 5.3 First we assume that D is an unramiûed quadratic extension
of F. _en both G(v0) and G(v∗0) are ûnite unitary groups. From Remark 4.2 we
know that dim(vs0) = (s0(s0 + 1))/2 and dim(v∗t0) = (t0(t0 + 1))/2. By Proposi-
tion 4.6 we have

n i ∶= dim(Vi) = 1
2 (s0 + i)(s0 + i + 1) + 1

2 (t0 + i)(t0 + i + 1)
= ( s0−t0

2 )2 + ( s0+t0
2 + i)( s0+t0

2 + i + 1).
(7.1)

Because we now assume that dim(V0) and dim(V1) are of the same parity, from Sub-
section 4.4.1 we see that s0 − t0 must be even. _e sequence {n i ∣ i ∈ Z} achieves
its minimum at i = −1, 0 under our assumption on the index, so s0 + t0 = 0, and
hence n i = ( s0−t0

2 )2 + i(i + 1). From Subsection 4.4.1 π i ⊗ sgn((i+1)(i+2)+t0)/2 has
unipotent reduction and hence it is isomorphic to c-IndG(Vi)

G(Vi)Li
(ζs0+i ⊗ ζt0+i). From

Subsection 6.1.1, the Langlands parameter (y i ,N i) for π i ⊗ sgn((i+1)(i+2)+t0)/2 is

y i = diag(γ1 , γ3 , . . . , γ∣s0−t0 ∣−1 , γ2 , γ4 , . . . , γ2i♯),
N i = diag(δ1 , δ3 , . . . , δ∣s0−t0 ∣−1 , δ2 , δ4 , . . . , δ2i♯),

where i♯ = min(∣i∣, ∣i + 1∣). _erefore, we have y0 = diag(γ1 , γ3 , . . . , γ∣s0−t0 ∣−1) and
N0 = diag(δ1 , δ3 , . . . , δ∣s0−t0 ∣−1), and hence

y i = diag(y0 , γ2 , γ4 , . . . , γ2i♯) and N i = diag(N0 , δ2 , δ4 , . . . , δ2i♯)

for any i ∈ Z.
Nextwe assume thatD is a ramiûed quadratic extension of F. Asmentioned in Sec-

tion 2.1we assume that the dimensions n i are all even. In this situation, one ofG(vs0)
andG(v∗t0) is a ûnite even orthogonal group and the other is a ûnite symplectic group.
We can assume thatG(v∗t0) is symplectic. Now every π i has unipotent reduction from
Subsection 4.4.2. By Remark 4.5 we see that s0 is even and dim(vs0) = 2( s0

2 )2; t0 is
odd and dim(v∗t0) = 2( t0−1

2 )( t0+1
2 ). It is easy to see that s0

2 is even (resp. odd) if the
Witt index ofV0 is half of the dimension ofV0 (resp. half of the dimension ofV0 minus
1). Now the i-th term a�er the term of dimension 2( s0

2 )2 has dimension 2( s0+i
2 )2 if i

is even, and has dimension 2( s0+i−1
2 )( s0+i+1

2 ) if i odd. By Proposition 4.6we conclude
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that

n i =
⎧⎪⎪⎨⎪⎪⎩

2( s0+i
2 )2 + 2( t0+i−1

2 )( t0+i+1
2 ), if i is even;

2( s0+i−1
2 )( s0+i+1

2 ) + 2( t0+i
2 )2 , if i is odd

= ( s0−t0−1
2 )( s0−t0+1

2 ) + ( s0+t0−1
2 + i)( s0+t0+1

2 + i).

_e sequence {n i ∣ i ∈ Z} achieves its minimum at i = −1, 0, so s0 + t0 − 1 = 0; in
particular, s0 and t0 cannot be both positive. Hence,we have n i = ( s0−t0−1

2 )( s0−t0+1
2 )+

i(i + 1). From Subsections 6.2.1 and 6.2.2, the Langlands parameter (y i ,N i) for π i is

y i = diag(−γ2 ,−γ4 , . . . ,−γ2k , γ2 , γ4 , . . . , γ2i♯),
N i = diag(δ2 , δ4 , . . . , δ2k , δ2 , δ4 , . . . , δ2i♯),

where k = min(∣ s0−t0−1
2 ∣, ∣ s0−t0+1

2 ∣) and i♯ = min(∣i∣, ∣i + 1∣). _erefore,

y i = diag(y0 , γ2 , γ4 , . . . , γ2i♯) and N i = diag(N0 , δ2 , δ4 , . . . , δ2i♯),
and hence the theorem is proved.

Example 7.1 Suppose that D is an unramiûed quadratic extension of F. Let
η (resp. η∗) be the unipotent cuspidal representation of G(v) (resp. G(v∗)) with
dim(v) = 15 = 5×(5+1)

2 (resp. dim(v∗) = 3 = 2×(2+1)
2 ). We want to determine the

position of π in its sequence by the preservation principle. Suppose the dimensions
of V0 ,V1 are of the same parity. Consider the representation π = c-IndG(V)

G(V)L(η⊗ η
∗).

Now we have η = ζ5 = ζ−6 and η∗ = ζ2 = ζ−3. Since ζ5 = η5 ⊗ sgn and ζ−3 =
η−3 ⊗ sgn, we have s = −6 = s0 − 2, t = 2 = t0 − 2 with s0 = −4 = −t0, and then

i ⋅ ⋅ ⋅ −3 −2 −1 0 1 ⋅ ⋅ ⋅
dim(vs i ) ⋅ ⋅ ⋅ 21 15 10 6 3 ⋅ ⋅ ⋅
dim(v∗t i ) ⋅ ⋅ ⋅ 1 3 6 10 15 ⋅ ⋅ ⋅

n i ⋅ ⋅ ⋅ 22 18 16 16 18 ⋅ ⋅ ⋅

Hence, π = π−2 in its sequence with n0 = 16. _us the semisimple elements y i in the
Langlands parameters (y i ,N i) of π i ⊗ sgn

(i+1)(i+2)+4
2 are:

i s i t i n i π i ⊗ sgn
(i+1)(i+2)+4

2 y i

−2 −6 2 18 π−2 diag(γ1 , γ3 , γ5 , γ7 , γ2)
−1 −5 3 16 π−1 diag(γ1 , γ3 , γ5 , γ7)
0 −4 4 16 π0 ⊗ sgn diag(γ1 , γ3 , γ5 , γ7)
1 −3 5 18 π1 ⊗ sgn diag(γ1 , γ3 , γ5 , γ7 , γ2)
2 −2 6 22 π2 diag(γ1 , γ3 , γ5 , γ7 , γ2 , γ4)
...

...
...

...
...

...

7.2 Unitary Case (II)

Note that from our assumption, D is an unramiûed quadratic extension of F in this
case.
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Proof of_eorem 5.5 Keep the notation from Subsection 7.1. Because we now as-
sume that the dimensions of V0 ,V1 are of the opposite parity, from Subsection 4.4.1,
s0 − t0 is odd. _en s0 + t0 + 1 and s0 − t0 − 1 are both even. _en from (7.1) we have

n i = 1
2 (s0 + i)(s0 + i + 1) + 1

2 (t0 + i)(t0 + i + 1)
= ( s0−t0−1

2 )( s0−t0+1
2 ) + ( s0+t0+1

2 + i)2 .

Because the sequence {n i ∣ i ∈ Z} achieves its minimum when i = 0, we have
s0 + t0 + 1 = 0, and hence n i = ( s0−t0−1

2 )( s0−t0+1
2 ) + i2. Now assume i is odd; then the

representation in (5.4) is isomorphic to c-IndG(V0)

G(V0)L0
(ζs0+i ⊗ ζt0+i), which has unipo-

tent reduction and has Langlands parameter (y i ,N i) given by

y i = diag(γ2 , γ4 , . . . , γ2k , γ1 , γ3 , . . . , γ2∣i∣−1),
N i = diag(δ2 , δ4 , . . . , δ2k , δ1 , δ3 , . . . , δ2∣i∣−1),

where k = min(∣ s0−t0−1
2 ∣, ∣ s0−t0+1

2 ∣) from Subsection 6.1.1. Moreover, we know that
y0 = diag(γ2 , γ4 , . . . , γ2k) and N0 = diag(δ2 , δ4 , . . . , δ2k). _erefore, we have

y i = diag(y0 , γ1 , γ3 , . . . , γ2∣i∣−1) and N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1)

for any odd integer i.

7.3 Split Orthogonal-symplectic Case

In this subsection we assume that V0 is an even-dimensional quadratic space.

Proof of_eorem 5.7 By the assumption in Subsection 2.1, we know that both vs0
and v∗t0 are even-dimensional for this case , and hencewe have dim(vs0) = 2( s0

2 )2 and
dim(v∗t0) = 2( t0

2 )
2 for some even integers s0 , t0 from Subsection 4.1 and Remark 4.5.

By Proposition 4.6 we have

n i =
⎧⎪⎪⎨⎪⎪⎩

2( s0+i
2 )2 + 2( t0+i

2 )2 if i is even,
2( s0+i−1

2 )( s0+i+1
2 ) + 2( t0+i−1

2 )( t0+i+1
2 ) if i is odd.

_is isnow case (III) of Subsection 2.3, and the dimension n∗i deûned in (2.2) becomes

n∗i = ( s0−t0
2 )2 + ( s0+t0

2 + i)2 .

Because the sequence {n∗i ∣ i ∈ Z} achieves its minimum at i = 0, we have s0 + t0 = 0,
i.e., n∗i = ( s0−t0

2 )2 + i2. Now because s0 = −t0, we have dim(vs0) = dim(v∗t0), i.e.,
O(vs0) ≃ O(v∗t0); in particular, from Subsections 6.4.1, 6.4.2, and 6.4.3, we know
that the anisotropic kernel of V0 (and hence every quadratic space in the sequence
{Vi ∣ i ∈ Z}) is either trivial or four-dimensional. Moreover, we know that ηs0 ≃
η∗t0 ⊗ sgn from Subsection 4.1, and consequently π0 ≃ π0 ⊗ sgn. _erefore, from the
requirement of {π i ∣ i ∈ Z} in Subsection 2.3, we have π−i ≃ π i ⊗ sgn for any i ∈ Z.
Hence, from Subsection 6.4.1 (in particular, Example 6.2), the Langlands parameter
(y0 ,N0) associated with π0 is

(7.2) y0 = diag(−γ1 ,−γ3 , . . . ,−γ∣s0−t0 ∣−1) and N0 = diag(δ1 , δ3 , . . . , δ∣s0−t0 ∣−1).
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If i is even, then Vi is an even quadratic space, s i = s0 + i, t i = t0 + i and s0 =
−t0. Hence ∣ s i−t i

2 ∣ = ∣ s0−t0
2 ∣, ∣ s i+t i

2 ∣ = ∣i∣, and, from Subsections 6.4.1 or 6.4.2, the pair
(y i ,N i) associated with π i is

y i = diag(−γ1 ,−γ3 , . . . ,−γ∣s0−t0 ∣−1 , γ1 , . . . , γ2∣i∣−1) = diag(y0 , γ1 , . . . , γ2∣i∣−1),
N i = diag(δ1 , δ3 , . . . , δ∣s0−t0 ∣−1 , δ1 , . . . , δ2∣i∣−1) = diag(N0 , δ1 , . . . , δ2∣i∣−1).

(7.3)

If i is odd, thenVi is a symplectic space, s i = s0+ i− 1, t i = t0+ i− 1 and s0 = −t0. _en
∣ s i−t i

2 ∣ = ∣ s0−t0
2 ∣, ∣ s i+t i

2 + 1∣ = ∣i∣ and, from Subsection 6.3, the pair (y i ,N i) associated
with π i is the same as in (7.3). _us, the theorem is proved.

Remark 7.2 Because s0
2 ,

t0
2 in the proof are of the same parity, ( s0−t0

2 )2 is even, and
hence we have det(y0) = 1 from (7.2). _en _eorem 5.7 is indeed a consequence of
Conjecture 3.1.

7.4 Non-split Orthogonal-symplectic Case

In this subsection we assume that V0 is a symplectic space.

Proof of_eorem 5.9 Now that V0 is symplectic, so are vs0 and v∗t0 . Hence, both s0
and t0 are odd and dim(vs0) = 2( s0−1

2 )( s0+1
2 ) (resp. dim(v∗t0) = 2( t0−1

2 )( t0+1
2 )). By

Proposition 4.6, we have

n i =
⎧⎪⎪⎨⎪⎪⎩

2( s0+i−1
2 )( s0+i+1

2 ) + 2( t0+i−1
2 )( t0+i+1

2 ), if i is even,
2( s0+i

2 )2 + 2( t0+i
2 )2 , if i is odd.

We are now in case (IV) of Subsection 2.3. _en the dimension n∗i deûned in (2.2) is

n∗i = ( s0−t0
2 )2 + ( s0+t0

2 + i)2 .

_e sequence {n∗i ∣ i ∈ Z} achieves its minimum at i = 0; we have s0 + t0 = 0, i.e.,
n∗i = ( s0−t0

2 )2+i2. Because s0+i
2 and t0+i

2 are now of opposite parity for any odd integer
i, from Subsection 6.4.3 we see that all quadratic spaces in the sequence {Vi ∣ i ∈ Z}
must have two-dimensional anisotropic kernel.
Because s0 = −t0, we now have Sp(vs0) ≃ Sp(v∗t0) and π−i ≃ π i ⊗ sgn for any i ∈ Z.

Now from Subsection 6.3,we know that the Langlands parameter (y0 ,N0) associated
with π0 is

(7.4) y0 = diag(γ1 , γ3 , . . . , γ∣s0−t0 ∣−1) and N0 = diag(δ1 , δ3 , . . . , δ∣s0−t0 ∣−1).

If i is even, then Vi is symplectic, s i = s0 + i, t i = t0 + i and s0 = −t0. Hence,
∣ s i−t i

2 ∣ = ∣ s0−t0
2 ∣, ∣ s i+t i

2 ∣ = ∣i∣, and, from Subsection 6.3, the pair (y i ,N i) associated
with π i is

y i = diag(γ1 , γ3 , . . . , γ∣s0−t0 ∣−1 ,−γ1 ,−γ3 , . . . ,−γ2∣i∣−1),
N i = diag(δ1 , δ3 , . . . , δ∣s0−t0 ∣−1 , δ1 , δ3 , . . . , δ2∣i∣−1).
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If i is odd, then Vi is quadratic, s i = s0 + i, t i = t0 + i, and s0 = −t0. Hence ∣ s i−t i
2 ∣ =

∣ s0−t0
2 ∣, ∣ s i+t i

2 ∣ = ∣i∣ and, from Subsections 6.4.3, the pair (y i ,N i) associated with π i is

y i = diag(−γ1 ,−γ3 , . . . ,−γ∣s0−t0 ∣−1 , γ1 , γ3 , . . . , γ2∣i∣−1),
N i = diag(δ1 , δ3 , . . . , δ∣s0−t0 ∣−1 , δ1 , δ3 , . . . , δ2∣i∣−1).

From the above and (7.4), we conclude that

y i =
⎧⎪⎪⎨⎪⎪⎩

diag(y0 ,−γ1 ,−γ3 , . . . ,−γ2∣i∣−1), if i is even;
diag(−y0 , γ1 , γ3 , . . . , γ2∣i∣−1), if i is odd,

N i = diag(N0 , δ1 , δ3 , . . . , δ2∣i∣−1).

_us,_eorem 5.9 is proved.

Example 7.3 Suppose that π = c-IndG(V)
G(V)L(η ⊗ η

∗), where η (resp. η∗) is a unipo-
tent cuspidal representation of O(v) (resp. O(v∗)) with dim(v) = 18 = 2 × 32 (resp.
dim(v∗) = 8 = 2 × 22). Hence, dim(V) = dim(v) + dim(v∗) = 26. We want to deter-
mine the position of π in the sequence given by the preservation principle. Because
O(v) (resp. O(v∗)) has two unipotent cuspidal representations ζ3 , ζ−3 = ζ3 ⊗ sgn
(resp. ζ2 , ζ−2 = ζ2 ⊗ sgn), we have following two possibilities:

(i) Suppose (η, η∗) = (ζ3 , ζ−2), i.e., (s, t) = (6,−4) = (5 + 1,−5 + 1). _en π = π1
with s0 = 5, t0 = −5 and n0 = 2× ( 5−1

2 )× ( 5+1
2 )+ 2× (−5−1

2 )× (−5+1
2 ) = 24. Hence, we

have the following table:

G ⋅ ⋅ ⋅ O′ Sp O′ Sp O′ Sp O′ ⋅ ⋅ ⋅
i ⋅ ⋅ ⋅ −3 −2 −1 0 1 2 3 ⋅ ⋅ ⋅

dim(vs i ) ⋅ ⋅ ⋅ 2 4 8 12 18 24 32 ⋅ ⋅ ⋅
dim(v∗t i ) ⋅ ⋅ ⋅ 32 24 18 12 8 4 2 ⋅ ⋅ ⋅

n i ⋅ ⋅ ⋅ 34 28 26 24 26 28 34 ⋅ ⋅ ⋅
n∗i ⋅ ⋅ ⋅ 34 29 26 25 26 29 34 ⋅ ⋅ ⋅

_us, the semisimple elements y i in Langlands parameters (y i ,N i) of π i are:

i s i t i n∗i π i y i

0 5 −5 25 π0 diag(γ1 , γ3 , γ5 , γ7 , γ9)
1 6 −4 26 π1 diag(−γ1 ,−γ3 ,−γ5 ,−γ7 ,−γ9 , γ1)
2 7 −3 29 π2 diag(γ1 , γ3 , γ5 , γ7 , γ9 ,−γ1 ,−γ3)
3 8 −2 34 π3 diag(−γ1 ,−γ3 ,−γ5 ,−γ7 ,−γ9 , γ1 , γ3 , γ5)
4 9 −1 41 π4 diag(γ1 , γ3 , γ5 , γ7 , γ9 ,−γ1 ,−γ3 ,−γ5 ,−γ7)
...

...
...

...
...

...

(ii) Suppose (η, η∗) = (ζ−3 , ζ2). _e situation is similar to (i) exceptwe only need
to replace i by −i, i.e., π = π−1 with n0 = 24.

(iii) Suppose (η, η∗) = (ζ3 , ζ2). _en (s, t) = (6, 4) = (1 + 5,−1 + 5), π = π5 with
s0 = 1, t0 = −1, and n0 = 2 × ( 1−1

2 ) × ( 1+1
2 ) + 2 × (−1−1

2 ) × (−1+1
2 ) = 0. Hence, we have
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the following table:

G . . . Sp O′ Sp O′ Sp O′ Sp . . .
i . . . 0 1 2 3 4 5 6 . . .

dim(vs i ) . . . 0 2 4 8 12 18 24 . . .
dim(v∗t i ) . . . 0 0 0 2 4 8 12 . . .

n i . . . 0 2 4 10 16 26 36 . . .
n∗i . . . 1 2 5 10 17 26 37 . . .

_us, the semisimple elements y i in the Langlands parameters (y i ,N i) of π i are:

i s i t i n∗i π i y i

0 1 −1 1 π0 diag(γ1)
1 2 0 2 π1 diag(−γ1 , γ1)
2 3 1 5 π2 diag(γ1 ,−γ1 ,−γ3)
3 4 2 10 π3 diag(−γ1 , γ1 , γ3 , γ5)
4 5 3 17 π4 diag(γ1 ,−γ1 ,−γ3 ,−γ5 ,−γ7)
5 6 4 26 π5 diag(−γ1 , γ1 , γ3 , γ5 , γ7 , γ9)
...

...
...

...
...

...

(iv) Suppose (η, η∗) = (ζ−3 , ζ−2). _e situation is similar to (iii) with i replaced
by −i, and hence π = π−5 with n0 = 0.
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