
Nagoya Math. J. 206 (2012), 99–153
DOI 10.1215/00277630-1548511

FINITE SYMPLECTIC ACTIONS ON THE K3 LATTICE

KENJI HASHIMOTO

Abstract. In this paper, we study finite symplectic actions on K3 surfaces X,
that is, actions of finite groups G on X which act on H2,0(X) trivially. We show

that the action on the K3 lattice H2(X,Z) induced by a symplectic action of
G on X depends only on G up to isomorphism, except for five groups.
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§0. Introduction

A compact complex surface X is called a K3 surface if it is simply con-
nected and has a nowhere vanishing holomorphic 2-form ωX . (For properties
on K3 surfaces, see [1].) An automorphism g of X is said to be symplectic
if g∗ωX = ωX . Nikulin ([19], [20]) studied symplectic actions of finite groups
on K3 surfaces. In particular, he showed the following result.

Theorem 0.1 ([20, Theorems 4.5, 4.7]). There exist exactly 14 finite
abelian groups G (G = C2,C3, . . .) which act on K3 surfaces faithfully and
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100 K. HASHIMOTO

symplectically. Moreover, for each G, the action of G on the K3 lattice
induced by a faithful and symplectic action of G on a K3 surface is unique
up to isomorphism.

In this paper, we prove that the above uniqueness holds for any finite
groups except for five groups (see Theorem 8.10). We use the same notation
for groups as in [29] (see Table 10.2).

Main Theorem. Let G be a finite group such that G �= Q8, T24,S5,L2(7),
A6. Then the action of G on the K3 lattice induced by a faithful and symplec-
tic action of G on a K3 surface is unique up to isomorphism. More precisely,
if Gi

∼= G acts on a K3 surface Xi faithfully and symplectically (i = 1,2),
then there exists an isomorphism α : H2(X1,Z) → H2(X2,Z) preserving the
intersection forms such that α ◦ G1 ◦ α−1 = G2 in GL(H2(X2,Z)).

As a corollary, we have the following by a similar argument in [20] (see [28]
for a detailed argument).

Corollary 0.2. Let G be a finite group which does not belong to the
exceptional cases listed above. If G acts on K3 surfaces Xi faithfully and
symplectically for i = 1,2, then there exists a connected family X of K3
surfaces with an action of G which satisfies the following conditions:

(1) X1,X2 are fibers of X ;
(2) the restriction of the action of G on X to the fiber Xi coincides with

the given one (i = 1,2);
(3) the action of G on each fiber of X is symplectic.

If two K3 surfaces X1 and X2 with actions of G satisfy the conclusions
of Corollary 0.2, X1 and X2 are said to be G-deformable.

We recall known results on finite symplectic actions on K3 surfaces. After
a result of Nikulin [20], Mukai [18] classified finite groups which act on K3
surfaces faithfully and symplectically by listing the 11 maximal groups (see
Theorem 2.4). Xiao [29] gave another proof of Mukai’s result by studying
the singularities of the quotient G\X for a K3 surface X with a symplectic
action of a finite group G. Moreover, he showed the following.

Theorem 0.3 ([29, Theorem 3]). Let G be a finite group. Suppose that
G �= Q8, T24. Then, for any K3 surface X with a faithful and symplectic
action of G, the quotient G\X has the same A-D-E configuration of the
singularities.
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FINITE SYMPLECTIC ACTIONS ON THE K3 LATTICE 101

Considering his result, one may expect that the uniqueness as in Theo-
rem 0.1 holds for most nonabelian finite groups as well. This paper is moti-
vated by this expectation. We follow Kondō’s approach (see [15]) with which
he gave another proof of Mukai’s result. (See Remark 3.4 for Nikulin’s contri-
bution to this other proof.) He embeds the coinvariant lattice H2(X,Z)G =
(H2(X,Z)G)⊥ into a Niemeier lattice N and describes a symplectic action
as an action on N . Here a Niemeier lattice is a negative definite even uni-
modular lattice of rank 24 which is not isomorphic to the Leech lattice. By
looking at this action more carefully, we prove the main theorem. For some
finite groups, the uniqueness of their (symplectic) actions on K3 surfaces
was studied by several authors (see [16], [23], [14], [22], [30], [28]). In the
case where G is abelian, Garbagnati and Sarti ([10], [11]) and Garbagnati [7]
computed the structure of H2(X,Z)G and H2(X,Z)G and corrected errors
of computations of discriminant groups of H2(X,Z)G in [20]. We use com-
puter algebra systems GAP [12] and Maxima [17] for the computations of
permutation groups and lattices.

The paper proceeds as follows. In Section 1, we recall basic facts on
lattices, which are used through the paper. We recall results on finite sym-
plectic actions on K3 surfaces in Section 2. Using these results, we take a
lattice-theoretic approach to study finite symplectic actions on K3 surfaces.
We introduce the notion of finite symplectic actions on the K3 lattice Λ,
taking account of Nikulin’s characterization of symplectic actions on K3
surfaces (see Definition 2.5 and Proposition 2.6). The set of finite symplec-
tic actions G ⊂ O(Λ) on Λ is denoted by L. For G ∈ L, there exists a K3
surface X with a symplectic action of G such that we have a G-equivalent
isomorphism Λ ∼= H2(X,Z). Section 3 is the key of the paper. By Kondō’s
lemma (see Lemma 3.2), the coinvariant lattice ΛG for G ∈ L is embed-
ded into a Niemeier lattice N primitively. Since the action of G on ΛG is
extended to that on N such that NG = ΛG, we can study G as an auto-
morphism group of N . Applying the classification of Niemeier lattices, we
classify the primitive embeddings of ΛG into Niemeier lattices. To prove the
main theorem, we first prove the uniqueness of ΛG and ΛG. In Sections 4
and 6, we show the uniqueness of ΛG and ΛG, respectively, by using the
result in Section 3. Next, we show the uniqueness of the gluing data of ΛG

and ΛG to Λ. In Sections 5 and 7, we show that either O(ΛG) = O(q(ΛG))
or O(ΛG) = O(q(ΛG)) holds for any G ∈ L. This implies the uniqueness of
the gluing data. Finally, in Section 8, we prove the main theorem by using
the results in the previous sections. Some applications of the main theorem
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102 K. HASHIMOTO

are given in Section 9. We give the list of Niemeier lattices and the results
of the computations in Section 10.

§1. Basic facts on lattices

1.1. Definitions
A lattice L = (L, 〈 , 〉) is a free Z-module L of finite rank equipped with

an integral symmetric bilinear form 〈 , 〉. We identify a lattice L with its
Gramian matrix (〈vi, vj 〉) under an integral basis (vi) of L. The discriminant
disc(L) of L is defined as the determinant of the Gramian matrix of L. If
disc(L) �= 0 (resp., = ±1), a lattice L is said to be nondegenerate (resp.,
unimodular). Let t(+) (resp., t(−)) be the number of positive (resp., negative)
eigenvalues of the Gramian matrix of L. We call (t(+), t(−)) the signature
of L and write

(1.1) signL = (t(+), t(−)).

If 〈v, v〉 ≡ 0 mod 2 for all v ∈ L, a lattice L is said to be even. We denote by
L(λ) the Z-module L equipped with λ times the bilinear form 〈 , 〉, that is,
(L,λ〈 , 〉). A sublattice K of L is said to be primitive if L/K is torsion free.
An automorphism of L is defined as a Z-automorphism of L preserving the
bilinear form 〈 , 〉. We denote by O(L) the group of automorphisms of L.
For a subset S ⊂ L, we define a subgroup O(L,S) of O(L) by

(1.2) O(L,S) =
{
g ∈ O(L)

∣∣ g · S = S
}
.

Definition 1.1. A lattice L with an action of G is called a G-lattice if G

is a subgroup of O(L) and is denoted by (G,L). For a G-lattice (G,L), we
define the invariant lattice LG and the coinvariant lattice LG by

(1.3) LG =
{
v ∈ L

∣∣ g · v = v(∀g ∈ G)
}
, LG = (LG)⊥

L .

A G-lattice (G,L) and a G′-lattice (G′,L′) are said to be isomorphic if there
exists an isomorphism α : L → L′ such that

(1.4) α ◦ G ◦ α−1 = G′.

We recall some basic properties on discriminant forms of lattices for the
reader’s convenience (see [21] for details). Let L be a nondegenerate even
lattice. The discriminant group A(L) is a finite abelian group defined by

(1.5) A(L) = L∨/L, L∨ =
{
v ∈ L ⊗ Q

∣∣ 〈v,L〉 ⊂ Z
}
.
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Here we extend the bilinear form 〈 , 〉 on L to that on L ⊗ Q linearly. We
have

(1.6) |A(L)| = | disc(L)|.

The discriminant form q(L) of L is defined by

(1.7) q(L) : A(L) → Q/2Z; x mod L → 〈x,x〉 mod 2Z.

We simply write q(L) instead of (A(L), q(L)). For a prime number p, let
A(L)p and q(L)p denote the p-components of A(L) and q(L), respectively.
We have

(1.8) A(L) =
⊕

p

A(L)p, q(L) =
⊕

p

q(L)p.

We can consider q(L)p as the discriminant form of L ⊗ Zp. (The discrimi-
nant group and form for a nondegenerate even lattice over Zp are similarly
defined. Note that any lattice over Zp is even if p �= 2.) An automorphism
of q(L) is defined as an automorphism of a finite abelian group A(L) pre-
serving q(L). We denote the group of automorphisms of q(L) by O(q(L)).
An automorphism ϕ ∈ O(L) induces an automorphism ϕ ∈ O(q(L)). This
correspondence gives the natural homomorphism

(1.9) O(L) → O
(
q(L)

)
.

We define

(1.10) O0(L) = Ker
(
O(L) → O(q(L))

)
and

(1.11) O(L) = Im
(
O(L) → O(q(L))

)
.

1.2. Facts
We use the following facts (for details, see [21]).

Lemma 1.2. Let L1,L2 be nondegenerate even lattices. We define

(1.12) Isom
(
q(L1), −q(L2)

)
=

{
γ : q(L1)

∼→ q(L2)
}
.

If γ ∈ Isom(q(L1), −q(L2)), the lattice Γγ , defined by

(1.13) Γγ =
{
x ⊕ y ∈ L∨

1 ⊕ L∨
2

∣∣ γ(x mod L1) = y mod L2

}
,
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104 K. HASHIMOTO

is an even unimodular lattice which contains L1 and L2 primitively. This
correspondence gives a one-to-one correspondence between Isom(q(L1),
−q(L2)) and the set of even unimodular lattices Γ ⊂ L∨

1 ⊕ L∨
2 which con-

tain L1 and L2 primitively. Moreover, let γ′ ∈ Isom(q(L1), −q(L2)), and
let ϕi ∈ O(Li). Then, ϕ1 ⊕ ϕ2 ∈ O(L1 ⊕ L2) is extended to an isomorphism
Γγ → Γγ′ if and only if γ′ ◦ ϕ1 ◦ γ−1 = ϕ2 in O(q(L2)).

Lemma 1.3. Let Γ be a nondegenerate even lattice, and let L be a non-
degenerate primitive sublattice of Γ.

(1) If g ∈ O0(L), the action of g on L is extended to that on Γ whose
restriction to (L)⊥

Γ is trivial.
(2) Suppose that Γ is unimodular. If G is a subgroup of O(Γ,L) and the

action of G on (L)⊥
Γ is trivial, then the induced action of G on A(L) is

trivial.
(3) Suppose that Γ is unimodular. If a group G acts on Γ and ΓG is non-

degenerate, then the induced action of G on A(ΓG) is trivial.

A lattice over Zp is defined as a free Zp-module of finite rank with a
Zp-valued symmetric bilinear form 〈 , 〉. First we consider the case p �= 2.
In this case, any lattice can be diagonalized over Zp.

Proposition 1.4 (see [5, Chapter 15, Section 7]). Let p be an odd prime,
and let εp ∈ Z×

p be a nonsquare p-adic unit. If L(p) is a nondegenerate lattice
over Zp, we have

(1.14) L(p) ∼=
⊕
k≥0

(〈pk 〉 ⊕nk ⊕ 〈εpp
k 〉 ⊕mk),

where nk ≥ 0 and mk ∈ {0,1} are uniquely determined. Hence,

(1.15) q(L(p)) ∼=
⊕
k≥1

(
q
(p)
+ (pk)⊕nk ⊕ q

(p)
− (pk)⊕mk

)
,

where

q
(p)
+ (pk) = 〈1/pk 〉 on Z/pkZ,(1.16)

q
(p)

− (pk) = 〈εp/p
k 〉 on Z/pkZ.(1.17)

In (1.15), nk and mk are also uniquely determined.
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Let L be a nondegenerate lattice. We can determine q(L)p as follows. Let
Z(p) be a localization of Z by the prime ideal (p), which is considered as a
subring of Zp. Then L can be diagonalized over Z(p). Then we can write

(1.18) L ∼=
⊕
k≥0

L
(p)
k (pk)

over Z(p), where L
(p)
k are lattices over Z(p) such that L

(p)
k = 0 or disc(L(p)

k ) ∈
Z×

(p)/(Z×
(p))

2. (The discriminant of a lattice over a ring R is defined modulo
(R×)2.) The nk and mk for L ⊗ Zp in the above proposition are determined
by

(1.19) (nk,mk) =

⎧⎪⎪⎨⎪⎪⎩
(0,0) if L

(p)
k = 0,

(rankL
(p)
k ,0) if disc(L(p)

k ) ∈ (Z×
p )2/(Z×

(p))
2,

(rankL
(p)
k − 1,1) otherwise.

Next we consider the more complicated case p = 2.

Proposition 1.5 (see [5, Chapter 15, Section 7]). Let L(2) be a nonde-
generate lattice over Z2. Then L(2) can be written as an orthogonal sum of
the following lattices:

(1.20) 〈ε2k 〉,
(

0 2k

2k 0

)
,

(
2k+1 2k

2k 2k+1

)
,

where k ≥ 0 and ε ∈ {1,3,5,7}. Hence, if L(2) is even, q(L(2)) can be written
as an orthogonal sum of the following:

q(2)
ε (2k) = 〈ε/2k 〉 on Z/2kZ,(1.21)

u(2)(2k) =

(
0 1/2k

1/2k 0

)
on (Z/2kZ)⊕2,(1.22)

v(2)(2k) =

(
1/2k−1 1/2k

1/2k 1/2k−1

)
on (Z/2kZ)⊕2.(1.23)

In the case p = 2, the uniqueness as in Proposition 1.4 does not hold.
Although there is a complete system of invariants of a nondegenerate lattice
over Z2 (see [5]), we only recall the unimodular case.
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Proposition 1.6 (see [5, Chapter 15, Section 7]). For a nondegenerate
lattice L(2) over Z2 with disc(L(2)) ∈ Z×

2 , a quadruple (r, d, t, e) defined as
follows is a complete system of invariants of L(2). If

(1.24) L(2) ∼=
⊕

i

〈εi〉 ⊕
(

0 1
1 0

)⊕n

⊕
(

2 1
1 2

)⊕m

,

the invariants r, d, t, e are defined by

r = rankL(2),(1.25)

d =

{
+1 if disc(L(2)) ∈ ±(Z×

2 )2/(Z×
2 )2,

−1 otherwise;
(1.26)

t =
∑

i

εi mod 8Z2 ∈ Z2/8Z2;(1.27)

e =

{
I if L(2) is odd,

II otherwise.
(1.28)

For example, we can directly check that

(1.29) 〈1〉 ⊕3 ∼=
(

2 1
1 2

)
⊕ 〈3〉

over Z2. We actually have (r, d, t, e) = (3,+1,3, I) for both lattices. Using
Proposition 1.6, we can determine q(L)2 for a nondegenerate even lattice L

similarly to the case p �= 2. We can find an orthogonal decomposition

(1.30) L ∼=
⊕
k≥0

L
(2)
k (2k)

over Z2, where L
(2)
k is of the form (1.24). Then we can write q(L)2 as the

corresponding orthogonal sum of (1.21)–(1.23). (For relations among (1.21)–
(1.23), see [21].)

For a finite abelian group A, let l(A) denote the minimum number of
generators of A. Let L be a nondegenerate even lattice. Since rankL∨ =
rankL (see (1.5)), we have

(1.31) l
(
A(L)

)
≤ rankL.

The following theorem is a reformulation of Eichler’s result in a viewpoint
of discriminant forms.
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Theorem 1.7 ([21, Theorem 1.13.2]). Let L,L′ be indefinite (nondegen-
erate) even lattices of rank ≥ 3. Suppose that the following conditions are
satisfied

(1) For each p �= 2, either rankL ≥ l(A(L)p) + 2, or nk + mk ≥ 2 for some
k in the orthogonal decomposition (1.15); that is,

(1.32) q(L)p
∼= qp ⊕ q

(p)
± (pk) ⊕ q

(p)
± (pk)

for some qp and k > 0.
(2) Either rankL ≥ l(A(L)p) + 2, or

(1.33) q(L)2 ∼= q2 ⊕ q′
2

for some q2 and q′
2, where q′

2 is one of the following:

u(2)(2k), k > 0,(1.34)

v(2)(2k), k > 0,(1.35)

q(2)
ε1

(2k) ⊕ q(2)
ε2

(2k), εi ∈ Z×
2 , k > 0.(1.36)

(3) We have signL = signL′ and q(L) ∼= q(L′).

Then L is isomorphic to L′.

We use the following facts in Section 7.

Theorem 1.8 ([21, Theorem 1.14.2]). Let L be an indefinite even lattice
of rank ≥ 3. If the following conditions are satisfied, O(L) = O(q(L)).

(1) For each p �= 2, rankL ≥ l(A(L)p) + 2.
(2) Either rankL ≥ l(A(L)p) + 2, or

(1.37) q(L)2 ∼= q2 ⊕ u(2)(2) or q2 ⊕ v(2)(2)

for some q2.

Remark 1.9. The conditions of Theorem 1.8 are stronger than those of
Theorem 1.7.

Theorem 1.10 ([21, Theorem 1.9.5]). If L(p) is a nondegenerate even
lattice over Zp, we have O(L(p)) = O(q(L(p))).
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§2. Finite symplectic actions on the K3 lattice Λ

A compact complex surface X is called a K3 surface if it is simply con-
nected and has a nowhere vanishing holomorphic 2-form ωX .

Definition 2.1. For a K3 surface X , an automorphism g of X is said
to be symplectic if g∗ωX = ωX .

We study faithful and symplectic actions of finite groups on K3 surfaces.

Notation 2.2. We use a Fraktur letter (e.g., G) for an abstract group,
and we use a Latin letter (e.g., G) for a group with an action on an object
(a lattice, a finite set, etc.). The abstract group structure of G is denoted
by [G].

Definition 2.3. We denote by G
symp
K3 the set of finite abstract groups

G �= 1 which can be realized as faithful and symplectic actions of groups on
K3 surfaces.

Mukai [18] determined G
symp
K3 by listing the eleven maximal groups in

G
symp
K3 .

Theorem 2.4 ([18, Theorem 0.6]). A finite abstract group G �= 1 is an
element in G

symp
K3 if and only if G is a subgroup of the following 11 groups:

T48,N72,M9,S5,L2(7),H192, T192,A4,4,A6, F384,M20.

There are exactly 79 groups in G
symp
K3 . See Table 10.2 for all elements in

G
symp
K3 . We use Xiao’s notation (see [29]).
For a K3 surface X , the second integral cohomology group H2(X,Z) with

its intersection form is isomorphic to the K3 lattice Λ defined by

(2.1) Λ =

(
0 1
1 0

)⊕3

⊕ E8(−1)⊕2,

which is the unique even unimodular lattice of signature (3,19) up to iso-
morphism (see Theorem 1.7; see also [26]). Here E8 is the root lattice of
type E8. The Néron–Severi group NS(X) of X is considered as a sublattice
of H2(X,Z). If a group G acts on X , the action of G induces a left action
on H2(X,Z) by

(2.2) g · v = (g−1)∗v, g ∈ G,v ∈ H2(X,Z).
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Note that if the action of G is faithful, so is the induced action of G on
H2(X,Z) by the global Torelli theorem (see [24], [3], [1]). Hence, if we take
an isomorphism α : H2(X,Z) → Λ, the action of G on X induces a subgroup
α ◦ G ◦ α−1 ⊂ O(Λ), which is isomorphic to G as an abstract group.

We define the notion of finite symplectic actions on the K3 lattice.

Definition 2.5. A finite subgroup G �= 1 of O(Λ) is called a finite sym-
plectic action on the K3 lattice Λ if the following conditions are satisfied:
(1) ΛG is negative definite;
(2) 〈v, v〉 �= −2 for all v ∈ ΛG.
We denote the set of finite symplectic actions on the K3 lattices Λ by L.
Note that the finiteness of G follows from condition (1).

Definition 2.5 is justified due to the following.

Proposition 2.6 ([20, Lemma 4.2, Theorem 4.3]). If a finite group G acts
on a K3 surface X faithfully and symplectically, then H2(X,Z)G ⊂ NS(X)
and the induced subgroup of O(Λ) is an element in L. Conversely, any
element in L is induced by a symplectic action of a finite group on a K3
surface.

A K3 surface which admits a symplectic action of a finite group is char-
acterized by coinvariant lattices ΛG of G ∈ L.

Proposition 2.7 ([20, Theorem 4.15]). Let G ∈ G
symp
K3 . A K3 surface

X admits a symplectic action of G if and only if there exists a primitive
embedding ΛG ↪→ NS(X) for some G ∈ L such that [G] = G.

Now we consider extensions of symplectic actions.

Proposition 2.8. Suppose that a finite group G acts on a K3 surface X

faithfully and symplectically. Then the action of G on X is extended to a
faithful and symplectic action of G′ := O0(H2(X,Z)G).

Proof (see [20]). By Lemma 1.3(1), the action of G on H2(X,Z) is
extended to that of G′ such that

(2.3) H2(X,Z)G = H2(X,Z)G′
.

By the definition of a symplectic action, we have ωX ∈ H2(X,C)G. Since G is
a finite group, there exists a G-invariant Kähler (1,1)-form κ ∈ H2(X,R)G.
By (2.3), the action of G′ also fixes ωX and κ. By the global Torelli theorem
for K3 surfaces, the action of G′ on H2(X,Z) is induced by that on X . Since
the action of G′ fixes ωX , the action of G′ on X is symplectic.
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Definition 2.9. For G ∈ L, we define Clos(G) by

(2.4) Clos(G) = O0(ΛG).

By Lemma 1.3(1), the action of G on Λ is extended to that of Clos(G)
such that ΛG = ΛClos(G), and Clos(G) is considered as an element in L (see
Definition 2.5). We define the subset Lclos of L by

(2.5) Lclos =
{
G ∈ L

∣∣ Clos(G) = G
}
.

By the following proposition, rankΛG depends only on the structure of G

as an abstract group.

Proposition 2.10 ([20, Proposition 7.1], [18, Proposition 1.2]). Let g be
an element in O(Λ) such that the group 〈g〉 generated by g is an element
in L. Then ord(g) ≤ 8 and Tr(g;Λ) = χ(g) − 2, where

(2.6) χ(g) = 24,8,6,4,4,2,3,2 if ord(g) = 1,2,3,4,5,6,7,8.

Hence, for G ∈ L,

(2.7) rankΛG = c(G) := 24 − 1
|G|

∑
g∈G

χ(g).

In particular, c(G) = c(Clos(G)).

§3. Embeddings of ΛG into Niemeier lattices

In this paper, a Niemeier lattice is a negative definite even unimodular
lattice of rank 24 which is not isomorphic to the negative Leech lattice. Here
the negative Leech lattice is the unique negative definite even unimodular
lattice of rank 24 which has no vector v such that 〈v, v〉 = −2 (see [5]). In
this section, we study primitive embeddings of ΛG into Niemeier lattices.

Definition 3.1. Let N denote the set of isomorphism classes of G-
lattices (G,N) which satisfy the following conditions:

(1) G �= 1 and N is a Niemeier lattice;
(2) there exists a vector v ∈ NG such that 〈v, v〉 = −2;
(3) there exists no vector v ∈ NG such that 〈v, v〉 = −2;
(4) there exists a primitive embedding NG ↪→ Λ.

https://doi.org/10.1215/00277630-1548511 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1548511


FINITE SYMPLECTIC ACTIONS ON THE K3 LATTICE 111

Lemma 3.2 ([15, Lemma 5]). For any G ∈ L, (G,ΛG) ∼= (G′,NG′ ) for
some (G′,N) ∈ N . Conversely, if (G′,N) ∈ N , then there exists an element
G ∈ L such that (G,ΛG) ∼= (G′,NG′ ).

Remark 3.3. In Lemma 3.2, we write (G,ΛG) instead of (G|ΛG
,ΛG) (see

Definition 1.1). We use the same notation in what follows.

Remark 3.4. Lemma 3.2 is a direct consequence of Nikulin’s work (see
[20], [21]). Moreover, Nikulin pointed out that lattices such as ΛG (“Leech-
type” lattices) can be classified by embedding them into even unimodular
lattices (the latter part of [20, Section 1.14]).

By Lemma 3.2, the study of (G,ΛG) for G ∈ L is reduced to that of N . In
the following sections, we present how to make a complete list of N . Some
consequences from the list are given in Section 3.4.

3.1. Some facts on Niemeier lattices
The following theorem is standard.

Theorem 3.5 (see [5, Chapter 16]). There exist exactly 23 isomorphism
classes of Niemeier lattices. The isomorphism class of a Niemeier lattice N

is determined by the root sublattice of N , whose type is given in Table 10.1.
Here the root sublattice of N is the sublattice generated by vectors v ∈ N

such that 〈v, v〉 = −2.

Let N be a Niemeier lattice. A vector d ∈ N is called a root if 〈d, d〉 = −2.
Let Δ denote the set of roots of N . A Weyl chamber C is a connected
component of N ⊗ R −

⋃
d∈Δ d⊥. The set of positive roots Δ+ corresponding

to C is defined by

(3.1) Δ+ =
{
d ∈ Δ

∣∣ 〈d, C 〉 ⊂ R>0

}
.

We have Δ = Δ+ � −Δ+. The set of simple roots R(N,Δ+) corresponding
to Δ+ is the set of positive roots d ∈ Δ+ such that there exists no decom-
position d = d1 + d2 with di ∈ Δ+. It is known that R(N,Δ+) becomes
a Dynkin diagram of rank 24. The automorphism group of the Dynkin
diagram R(N,Δ+) is denoted by Aut(R(N,Δ+)). Let W (N) denote the
subgroup of O(N) generated by reflections of d ∈ Δ. The action of W (N)
on the set of Weyl chambers is free and transitive. The group O(N,Δ+)
(see (1.2)) is considered as a subgroup of Aut(R(N,Δ+)). We have O(N) =
W � O(N,Δ+).
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3.2. Method for making the list of N
We use the above result to construct a complete list of N . For the proof

of the following lemma, see [15].

Lemma 3.6 ([15, Lemma 6]). Let N be a Niemeier lattice, and let G be
a subgroup of O(N). Then Definition 3.1(3) is satisfied if and only if there
exists a G-invariant set of positive roots.

Let N1, . . . ,N23 be all Niemeier lattices, and let Δ+
i be a set of positive

roots of Ni. Let G ⊂ O(Ni) be a subgroup satisfying Definition 3.1(3). By
Lemma 3.6, we may assume that G preserves Δ+

i by replacing G by γGγ−1

for some γ ∈ W (Ni) if necessary. Hence, we may only consider subgroups
of O(Ni,Δ+

i ). Using GAP [12], we can make a complete list of subgroups
Gi1, . . . ,Giji of O(Ni,Δ+

i ) such that [Gij ] ∈ G
symp
K3 up to conjugacy.* Since

O(Ni,Δ+
i ) is realized as a subgroup of Aut(R(Ni,Δ+

i )), so is Gij . To decide
whether (Gij ,Ni) ∈ N , we should check conditions (2)–(4) in Definition 3.1
for (Gij ,Ni).

Condition (2) can be checked directly. For example, if Ni is of type
A⊕24

1 , condition (2) is equivalent to the existence of a Gij-fixed element
in R(Ni,Δ+

i ). By Lemma 3.6, condition (3) is already satisfied.
To confirm condition (4), it is sufficient to show that there exists an even

lattice L such that

(3.2) signL =
(
3,19 − c(Gij)

)
, q(L) ∼= −q(NGij )

by Lemma 1.2 and Proposition 2.10. We can compute the Gramian matrix
of NGij by using the orbit decomposition of R(Ni,Δ+

i ) which is obtained
from the list of (Gij ,Ni). From the Gramian matrix of NGij , we can deter-
mine A(NGij ) and q(NGij ) (see Section 1). Since q(NGij ) ∼= −q(NGij ) by
Lemma 1.2, we obtain the list of q(NGij ). From the list, we have the follow-
ing.

Lemma 3.7. For (Gij ,Ni) satisfying Definition 3.1(2), condition (4) is
equivalent to the inequality

(3.3) l
(
A(NGij )

)
≤ 22 − c(Gij) = rankNGij − 2.

Here l(A) denotes the minimum number of generators of a finite abelian
group A.

*Note that conjugacy in O(Ni,Δ
+
i ) is equivalent to conjugacy in O(Ni), which is a

property of semidirect product groups.
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Proof. For each case satisfying inequality (3.3), we can find a lattice L

satisfying (3.2). (See Tables 10.2 and 10.3 for q(NGij ) and L in each case,
respectively.) Conversely, the existence of L implies that

(3.4) l
(
A(NGij )

)
= l

(
A(NGij )

)
= l

(
A(L)

)
≤ rankL = 22 − c(Gij)

by Lemma 1.2 and (1.31).

By the above argument, the set which consists of (Gij ,Ni) satisfying
Definition 3.2(2) and the inequality (3.3) becomes a complete list of N .

3.3. Example
We consider the case of the cyclic group C8 of order 8 as an example.

We make the list of (G,N) ∈ N with [G] = C8. Since c(C8) = 18, we have
rankNG = 18 and rankNG = 6. Using GAP [12], we can make a complete
list of subgroups G ⊂ O(N,Δ+) such that [G] = C8 up to conjugacy for each
Niemeier lattice N . The result is as follows.

Case (I) (II) (III) (IV) (V) (VI)
Root type of N E⊕4

6 A⊕4
5 ⊕ D4 A⊕8

3 A⊕12
2 A⊕12

2 A⊕24
1

Number of stable
components of R(N,Δ+) 0 1 0 2 0 2
(G,N) ∈ N ? No Yes No Yes No Yes

If Definition 3.1(2) holds, then at least one component of the Dynkin
diagram R(N,Δ+) is stable under the action of G. In the case (I), the
action of G as a permutation group of the components E6 of R(N,Δ+) is
transitive. Therefore, we have (G,N) /∈ N in the case (I). Similarly, we have
(G,N) /∈ N in the cases (III) and (V). In fact, we have (G,N) ∈ N in the
cases (II), (IV), and (VI), as we will see below. Let g be a generator of G.

The case (II). There exists a numbering of R(N,Δ+) = {v1, . . . , v24} as
in Figure 1 such that

(3.5) g · vi = vσ(i),

where

σ = (1,6,11,16,5,10,15,20)(2,7,12,17,4,9,14,19)
(3.6)

(3,8,13,18)(23,24).
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Figure 1: A⊕4
5 ⊕ D4

Hence, NG ⊗ Q is generated by

w1 =
3∑

i=0

(v1+5i + v5+5i), w2 =
3∑

i=0

(v2+5i + v4+5i),

(3.7)

w3 =
3∑

i=0

v3+5i, w4 = v21, w5 = v22, w6 = v23 + v24

over Q. From the explicit description of G ⊂ O(N,Δ+), we find that NG is
generated by the above vectors and (w1 + w3)/2 over Z. Therefore,

(3.8) w1,w2, (w1 + w3)/2,w4,w5,w6

form a basis of NG over Z. The Gramian matrix of NG under the basis (3.8)
is

(3.9)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−16 8 0 0 0 0
8 −16 8 0 0 0
0 8 −8 0 0 0
0 0 0 −2 1 0
0 0 0 1 −2 2
0 0 0 0 2 −4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We can determine A(NG) and q(NG) from (3.9) is (see Section 1):

A(NG) ∼= Z/2Z ⊕ Z/4Z ⊕ (Z/8Z)⊕2,(3.10)
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Figure 2: A⊕12
2

q(NG) ∼= 〈1/2〉 ⊕ 〈1/4〉 ⊕
(

0 1/8
1/8 0

)
.(3.11)

Since q(NG) ∼= −q(NG) by Lemma 1.2, we have

(3.12) q(NG) ∼= 〈 −1/2〉 ⊕ 〈 −1/4〉 ⊕
(

0 1/8
1/8 0

)
.

The case (IV). Similarly, there exists a numbering of R(N,Δ+) as in
Figure 2 such that g · vi = vσ(i), where

σ = (3,4)(5,7,6,8)(9,11,13,15,17,19,21,23)
(3.13)

(10,12,14,16,18,20,22,24).

Moreover, NG ⊗ Q is generated by

w1 = v1, w2 = v2, w3 = v3 + v4, w4 =
8∑

i=5

vi,

(3.14)

w5 =
7∑

i=0

v9+2i, w6 =
7∑

i=0

v10+2i

over Q, and NG is generated by

(3.15) w1,w2,w3,w4,w5,
1
3
(w1 − w2 + w5 − w6)
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1 2 23 24� � · · · � �

Figure 3: A⊕24
1

over Z. The Gramian matrix of NG under the basis (3.15) is

(3.16)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 −1
1 −2 0 0 0 1
0 0 −2 0 0 0
0 0 0 −4 0 0
0 0 0 0 −16 −8

−1 1 0 0 −8 −6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From (3.16), we can check that q(NG) is isomorphic to (3.12).
The case (VI). There exists a numbering of R(N,Δ+) as in Figure 3 such

that g · vi = vσ(i), where

σ = (3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)
(3.17)

(17,18,19,20,21,22,23,24).

Moreover, NG ⊗ Q is generated by

w1 = v1, w2 = v2, w3 =
4∑

i=3

vi, w4 =
8∑

i=5

vi,

(3.18)

w5 =
16∑
i=9

vi, w6 =
24∑

i=17

vi

over Q, and NG is generated by

(3.19) w1,w2,w3,
1
2
(w1 + w2 + w3 + w4),

1
2
(w4 + w5),

1
2
(w4 + w6)
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over Z. The Gramian matrix of NG under the basis (3.19) is

(3.20)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 −1 0 0
0 −2 0 −1 0 0
0 0 −4 −2 0 0

−1 −1 −2 −4 −2 −2
0 0 0 −2 −6 −2
0 0 0 −2 −2 −6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From (3.20), we can check that q(NG) is isomorphic to (3.12).
The type of the root sublattice of NG, that is, the sublattice generated

by vectors v ∈ NG such that 〈v, v〉 = −2, in each case is as follows:

(3.21)
Case (II) (IV) (VI)

Root type A3 A1 ⊕ A2 A⊕2
1

Hence, Definition 3.1(2) is satisfied. Condition (3) is satisfied by Lem-
ma 3.6. By the above argument, we have

(3.22) q(NG) ∼= 〈 −1/2〉 ⊕ 〈 −1/4〉 ⊕
(

0 1/8
1/8 0

)

in each case. Let L be a lattice defined by

(3.23) L = 〈2〉 ⊕ 〈4〉 ⊕
(

0 8
8 0

)
.

Then we have signL = (3,1) and q(L) ∼= −q(NG). By Lemma 1.2, there
exists a primitive embedding NG ↪→ Λ such that (NG)⊥

Λ
∼= L. Thus, condi-

tion (4) is satisfied. Therefore, we have (G,N) ∈ N in the cases (II), (IV),
and (VI).

3.4. Consequences from the list of N
Let Q denote a set defined by

(3.24) Q =
{
(G, q)

∣∣ ∃G ∈ L such that G = [G], q ∼= q(ΛG)
}
.

By Lemma 3.2, we have

(3.25) Q =
{
(G, q)

∣∣ ∃(G,N) ∈ N such that G = [G], q ∼= q(NG)
}
.
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We introduce an equivalence relation ∼ on Q by

(3.26) (G, q) ∼ (G′, q′) ⇔ G = G′ and q ∼= q′.

By (3.25) and the list of q((Ni)Gij ) for (Gij ,Ni) ∈ N , we have the following.

Proposition 3.8. For G ∈ G
symp
K3 , we have

(3.27) �
({

q
∣∣ (G, q) ∈ Q

}
/isom

)
=

{
1 if G �= Q8, T24,

2 if G = Q8, T24.

Remark 3.9. From Xiao’s list (see [29]), we have �Gsymp
K3 = 79. By the

above proposition, �(Q/ ∼) = 81. In Table 10.2, we list a complete represen-
tative {(Gn, qn)} of Q/ ∼. Our numbering coincides with that in [29].

By (3.25), we have the natural map

(3.28) π : N → Q; (G,N) →
(
[G], q(NG)

)
.

In Table 10.6, the type of the root sublattice of NG for each (G,N) ∈ N is
given. From the table, we have the following.

Proposition 3.10. Let Q ◦ denote the subset of Q defined by

(3.29) Q ◦ =
{
(G, q) ∈ Q

∣∣ G �= G58

}
.

There exists a section σ : Q ◦ → π−1(Q ◦) of π with the following conditions.
We set N ′ = σ(Q ◦).
(1) Let (G,N) ∈ N , and let (G′,N ′) ∈ N ′. If π(G,N) = π(G′,N ′) and NG ∼=

(N ′)G′
, then (G,N) ∼= (G′,N ′).

(2) Let (G,N) ∈ N ′. If [G] �= G3, then N is of type A⊕24
1 .

Proof. For each (G, q) ∈ Q ◦, we can choose σ(G, q) ∈ N case by case.
For example, we consider the case of C8 = G14 (see Section 3.3). By the
table (3.21), the root types of NG for (G,N) ∈ N with [G] = C8 are dif-
ferent from each other. Therefore, NG are not isomorphic to each other.
Hence, we can choose (G,N) of the case (VI), in which N is of type A⊕24

1 ,
as σ(G14, q14). Similarly, for (G,N) ∈ N with π(G,N) = (Gn, qn), the iso-
morphism classes of NG can be distinguished by looking at the root types
except for the cases n = 32,41,56,63. For the cases n = 32,41,56,63, we can
distinguish them by looking at the root types and the numbers of vectors
v ∈ NG such that 〈v, v〉 = −4 or −6. As a consequence, we can choose (G,N)
enclosed by boxes in Table 10.6. The choice of σ is not unique.
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§4. Uniqueness of coinvariant lattices ΛG

Let S denote a set of G-lattices defined by

(4.1) S =
{
(G,S)

∣∣ ∃G′ ∈ L such that (G,S) ∼= (G′,ΛG′ )
}
.

For (G,S) ∈ S , we have G ⊂ O0(S) by Lemma 1.3(3). In this section, we
apply the results in the previous section to prove the following.

Theorem 4.1. The natural map ϕ : S/isom → Q/ ∼ is bijective.

Proof. The surjectivity of ϕ is trivial. We will show the injectivity. Let
(G, q) ∈ Q. Suppose that (G,S) ∈ S , [G] = G and q(S) ∼= q. We show that
(G,S) is uniquely determined up to isomorphism.

(1) The case G �= G58. By Proposition 3.10, there exists an element
(Γ,N) ∈ N ′ such that [Γ] = G and q(NΓ) ∼= q. We show that (G,S) ∼=
(Γ,NΓ). By Lemma 1.2, q(S) ∼= q ∼= q(NΓ) ∼= −q(NΓ). Again by Lemma 1.2,
there exists a primitive embedding S ↪→ N ′ of S into a Niemeier lattice N ′

such that (S)⊥
N ′ ∼= NΓ. By Lemma 1.3, the action of G on S is extended

to that on N ′ such that (N ′)G = S and (N ′)G ∼= NΓ. Thus, (G,N ′) ∈ N
(see Definition 3.1). By Proposition 3.10, we have (G,N ′) ∼= (Γ,N). Hence,
(G,S) = (G, (N ′)G) ∼= (Γ,NΓ).

(2) The case G = G58. From Table 10.4, we find that G43 � G58 and
c(G43) = c(G58). Hence, there exists a subgroup G′

43 of G such that [G′
43] =

G43. Since c(G43) = c(G58), we have (G′
43, S) ∈ S . Let G43 ∈ L be as in

Lemma 8.7. By (1) and Proposition 3.8, (G′, S′) ∈ S such that [G′] = G43

is unique up to isomorphism. Therefore, we have (G′
43, S) ∼= (G43,ΛG43). By

Lemma 8.7(2), there exists a unique subgroup G58 of O0(ΛG48) such that
[G58] = G58 up to conjugacy in O(ΛG48). Hence, (G,S) ∼= (G58,ΛG43).

Definition 4.2. Let (G, q) ∈ Q. By Theorem 4.1, there exists a unique
element (G,S) ∈ S such that ([G], q(S)) ∼ (G, q); that is, [G] = G and q(S) ∼=
q up to isomorphism. The lattice S determined by this condition is denoted
by S(G, q). Since G ⊂ O0(S), G is a subgroup of [O0(S(G, q))].

By the definition of S(G, q), we have

(4.2) ΛG
∼= S

(
[G], q(ΛG)

)
for G ∈ L.

Corollary 4.3. Let (G, q), (G′, q′) ∈ Q. If G ⊂ G′, q ∼= q′, and c(G) =
c(G′), then S(G, q) ∼= S(G′, q′).
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Proof. Let G′ ∈ L such that [G′] = G′ and q(ΛG′ ) ∼= q′. Then ΛG′ ∼=
S(G′, q′). Let G be the subgroup of G′ which corresponds to the subgroup
G of G′. Since c(G) = c(G′), we have S(G, q) ∼= ΛG = ΛG′ ∼= S(G′, q′).

Remark 4.4. In Table 10.4, we give the trees of

(4.3) TS =
{
Gn

∣∣ S(Gn, qn) ∼= S
}

for TS with �TS ≥ 2. From Tables 10.2 and 10.4, we find that there exist
exactly 40 isomorphism classes of lattices S(Gn, qn) (or ΛG for G ∈ L). Also,
we can check that the natural map

(4.4)
{
S(G, q)

∣∣ (G, q) ∈ Q
}
/isom →

{
q

∣∣ ∃G such that (G, q) ∈ Q
}
/isom

is bijective.

Definition 4.5. Let (G, q) ∈ Q. We define Clos(G, q) by

(4.5) Clos(G, q) =
([

O0

(
S(G, q)

)]
, q

)
.

Note that G is a subgroup of [O0(S(G, q))] (see Definition 4.2).

For (G, q) ∈ Q, there exists an element G ∈ L such that ([G], q(ΛG)) ∼
(G, q). Since S([G], q(ΛG)) ∼= ΛG, we have

(4.6) Clos(G, q) =
(
[O0(ΛG)], q

)
=

(
[Clos(G)], q

)
(see Definition 2.9). In particular, we have Clos(G, q) ∈ Q. Let Qclos denote
a subset of Q defined by

(4.7) Qclos =
{
(G, q) ∈ Q

∣∣ Clos(G, q) = (G, q)
}
.

For G ∈ L, G ∈ Lclos if and only if ([G], q(ΛG)) ∈ Qclos.

Corollary 4.6. The map

(4.8) Qclos/ ∼→ {ΛG | G ∈ L }/isom

which is induced by the correspondence (G, q) → S(G, q) is bijective.

Proof. The inverse map of (4.8) is the map induced by the correspondence
S → ([O0(S)], q(S)).
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Corollary 4.7. Let (G, q) ∈ Q. Then we have Clos(G, q) = (G′, q), where
G′ is the unique maximal element in

(4.9)
{
G′ ′ ∈ G

symp
K3

∣∣ (G′ ′, q′ ′) ∈ Q,G ⊂ G′ ′, q ∼= q′ ′, c(G) = c(G′ ′)
}
.

Moreover, we have the following.
(1) If G ∈ {Q8, T24}, that is, (G, q) ∼ (Gn, qn) for n ∈ {12,13,37,38}, then

we have the following table:

n G = Gn m G′ = Gm

12 Q8 12 Q8

13 Q8 40 Q8 ∗ Q8

37 T24 77 T192

38 T24 54 T48

Here m is determined by (Gm, qm) ∼ Clos(G, q).
(2) If G /∈ {Q8, T24}, then G′ is the unique maximal element in

(4.10)
{
G′ ′ ∈ G

symp
K3

∣∣ G ⊂ G′ ′, c(G) = c(G′ ′)
}
.

Proof. For any element G′ ′ in (4.9), we have S(G, q) ∼= S(G′ ′, q′ ′) by Corol-
lary 4.3. Hence, G′ ′ ⊂ G′ = [O0(S(G, q))]. Therefore, the former part of the
corollary follows. We can directly check the latter part by Proposition 3.8
and Table 10.4.

§5. Property O(ΛG) = O(q(ΛG))

This section is devoted to prove the following theorem, which gives a
sufficient condition for G ∈ L such that O(ΛG) = O(q(ΛG)) (see (1.11)).

Theorem 5.1. Let G ∈ L with c(G) = rankΛG ≥ 17 (see Proposition
2.10). The group O(ΛG) is equal to O(q(ΛG)) if and only if [Clos(G) /∈
{G48,G51}. In particular, if c(G) = rankΛG = 19, then O(ΛG) = O(q(ΛG)).

Since c(G48) = c(G51) = 18 by Table 10.2, the latter part of the theorem
follows from the former part.

5.1. Criterion of the property O(L) = O(q(L))
We prepare for a criterion of the property O(L) = O(q(L)).

Lemma 5.2. Let H be a group, and let K1,K2 be subgroups of H. If K1 ⊂
K2 and �K1\H/K2 = 1, then K2 = H.
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Proof. By the second assumption, any element in H is of the form k1k2

with ki ∈ Ki. Hence, K2 = H by the first assumption.

Proposition 5.3. Let L1 be a nondegenerate even lattice. The group
O(L1) is equal to O(q(L1)) if and only if there exists a nondegenerate even
lattice L2 satisfying the following conditions.
(1) There exists an essentially unique even unimodular lattice Γ ⊂ L∨

1 ⊕ L∨
2

which contains Li primitively. Here the uniqueness of Γ means that for
another Γ′, there exist isomorphisms ϕi ∈ O(Li) for i = 1,2 such that
ϕ1 ⊕ ϕ2 induces an isomorphism Γ → Γ′.

(2) The restriction map O(Γ,L2) → O(L2) is surjective (see (1.2)).

Proof. Assume that there exists L2 satisfying conditions (1) and (2).
Let γ ∈ Isom(q(L1), −q(L2)) be the isomorphism corresponding to Γ (see
Lemma 1.2). Condition (1) implies that

O(L2)\ Isom
(
q(L1), −q(L2)

)
/O(L1)

(5.1)
∼= γ−1 ◦ O(L2) ◦ γ\ O

(
q(L1)

)
/O(L1)

is a one point set by Lemma 1.2. On the other hand, condition (2) implies
that for any ϕ2 ∈ O(L2), there exists an automorphism ϕ1 ∈ O(L1) such
that γ ◦ ϕ1 ◦ γ−1 = ϕ2 by Lemma 1.2. Hence, γ−1 ◦ O(L2) ◦ γ ⊂ O(L1). By
Lemma 5.2, we have O(L1) = O(q(L1)).

Conversely, assume that O(L1) = O(q(L1)). Then any nondegenerate even
lattice L2 with q(L2) ∼= −q(L1) satisfies conditions (1) and (2) by Lemma 1.2.
For example, we can take L1(−1) as L2.

5.2. Proof of Theorem 5.1
Now we apply Proposition 5.3 to prove Theorem 5.1. Let G0 ∈ L with

c(G0) ≥ 17. By Corollary 4.6, ΛG0
∼= S(Gn, qn) for some (Gn, qn) ∈ Qclos.

Since n �= 58 (see Table 10.4), we have

(5.2) ΛG0
∼= S(Gn, qn) ∼= NG,

(
[G], q(NG)

)
∼ (Gn, qn) ∈ Qclos

for some (G,N) ∈ N ′ by Proposition 3.10. Since c(G3) = 12 < 17, N is of
type A⊕24

1 by Proposition 3.10. To prove Theorem 5.1, it is sufficient to show
that conditions (1) and (2) in Proposition 5.3 are satisfied for L1 = NG and
L2 = NG if and only if n �= 48,51.

We check that for (G,N) ∈ N ′ satisfying (5.2), condition (1) is satisfied as
follows. Let N ′ ⊂ (NG)∨ ⊕ (NG)∨ be a Niemeier lattice which contains NG
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and NG primitively. By Lemma 1.3, the action of G on NG is extended to
that on N ′ such that (N ′)G = NG. We have (G,N ′) ∈ N by Definition 3.1.
By Proposition 3.10, (G,N) ∼= (G,N ′). The uniqueness of N is shown.

Before showing condition (2), we prepare for a couple of lemmas.

Lemma 5.4. For (G,N) ∈ N ′ satisfying (5.2), let π denote the restriction
map

(5.3) π : O(N,NG) → O(NG).

Then we have Ker(π) = G. In particular, G � O(N,NG).

Proof. Clearly, we have G ⊂ Ker(π). Let g ∈ Ker(π). Then g|NG
∈ O0(NG)

by Lemma 1.3(3). Since (Gn, qn) ∈ Qclos, that is, Clos(Gn, qn) = (Gn, qn), we
have g ∈ G (see Definition 4.5). Hence, Ker(π) ⊂ G.

Let Δ+ be a set of positive roots of N which is stable under the action
of G (see Section 3.1). Since N is of type A⊕24

1 , O(N,Δ+) is isomorphic to
the Mathieu group M24 of degree 24 and the Weyl group W (N) of N is
isomorphic to C24

2 . We have O(N) = W (N) � M24.

Lemma 5.5. For (G,N) ∈ N ′ satisfying (5.2), we have

(5.4) O(N,NG) = Cm
2 � NM24(G),

where m = rankNG = 24 − c(G) and where NM24(G) is the normalizer sub-
group of G in M24. In particular, we have | O(N,NG)| = 2m|NM24(G)|.

Proof. Set {v1, . . . , v24} = R(N,Δ+), and set W ′ = O(N,NG) ∩ W . The
action of G decomposes R(N,Δ+) into n orbits O1, . . . ,Om. The invariant
lattice NG is generated by

∑
v∈Oj

v (j = 1, . . . ,m) over Q. Let w ∈ W . Then
w is of the form

(5.5) w =
24∏
i=1

T (vi)ei , ei ∈ {0,1},

where T (v) is the reflection of v. Since

(5.6) w ·
24∑
i=1

aivi =
24∑
i=1

(−1)eiaivi, ai ∈ Q,

W ′ is generated by
∏

v∈Oj
T (v) (j = 1, . . . ,m); thus, W ′ ∼= Cm

2 . By Lem-
ma 5.4, we have an injection ι : O(N,NG)/W ′ → NM24(G). For g ∈ NM24(G),
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we have gG · vi = Gg · vi. Therefore, for any j, we have g · Oj = Oj′ for
some j′. Hence, we have NM24(G) ⊂ O(N,NG), and ι is an isomorphism.
The assertion follows from this.

Now we show that for (G,N) ∈ N ′ satisfying (5.2), condition (2) is satis-
fied. By Lemma 5.5, we can determine the order of O(N,NG) from the order
of NM24(G). We can compute the order of NM24(G) by using GAP [12]. On
the other hand, we can also determine the order of O(NG) as follows.

Let B = (bij) ∈ Mm(Z) be the Gramian matrix of NG. Then O(NG)
is identified with the matrix group H consisting of P ∈ Mm(Z) such that
tPBP = B. Let S denote the set consisting of column vectors v ∈ Zm such
that tvBv = bii for some i. Then any element P ∈ H is of the form (v1 · · · vm)
with vi ∈ S. Since NG is negative definite, we can enumerate all elements
in S and H in finite steps. Practically, we take B with smaller |bii|. Since
the rank of NG is less than or equal to 24 − 17 = 7 by the assumption of
Theorem 5.1, we can determine the order of O(NG) in practical time by
this method. The author used Maxima [17] for this computation. The result
is the following.

Lemma 5.6. For (G,N) ∈ N ′ satisfying (5.2), we have [O(N,NG) : G] =
| O(NG)| if and only if [G] �= G48,G51.

For example, we consider the case n = 80 ([G] = G80 = F384). There exists
exactly one element (G,N) ∈ N such that [G] = F384. The Niemeier lat-
tice N is of type A⊕24

1 . We have [NM24(G) : G] = 2 and | O(NG)| = 64.
Since c(G) = 19, we have | O(NG)| = [O(N,NG) : G] = 224−19 · 2 = 64 by
Lemma 5.5.

Similarly, for other cases except n �= 48,51, we have [O(N,NG) : G] =
| O(NG)|. The following is the table of k(G) = [NM24(G) : G]:

n 12 26 32 33 34 39 40 46 49 54 55 56 61
k(G) 48 4 2 6 8 2 24 4 120 2 6 12 2

n 62 63 65 70 74 75 76 77 78 79 80 81
k(G) 2 6 24 1 2 24 2 4 4 2 2 24

On the other hand, we have [O(N,NG) : G] < | O(NG)| for the cases
n = 48,51, as follows:
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n 48 51
k(G) 2 2

O(NG)/2m 6 6

We will finish the proof of Theorem 5.1. We already checked that con-
dition (1) is satisfied. By Lemma 5.4, the restriction map π : O(N,NG) →
O(NG) induces an injection O(N,NG)/G ↪→ O(NG). By Lemma 5.6, this
map is an isomorphism if and only if n �= 48,51. Therefore, condition (2),
that is, the surjectivity of π, is satisfied if and only if n �= 48,51. By Propo-
sition 5.3, O(NG) = O(qNG

) if and only if n �= 48,51.

§6. Uniqueness of invariant lattices ΛG

This section is devoted to prove the following.

Proposition 6.1. Set E = {S5,L2(7),A6}. For (G, q) ∈ Q (see (3.24)),
we have

(6.1) �
({

ΛG
∣∣ G ∈ L, [G] = G, q(ΛG) ∼= q

}
/isom

)
=

{
2 if G ∈ E,

1 otherwise.

The Gramian matrices of ΛG are given in Table 10.3.

Proof. Let G ∈ L such that [G] = G and q(ΛG) ∼= q. By Lemma 1.2,
q(ΛG) ∼= −q(ΛG) ∼= −q.

First we consider the case rankΛG > 3. Since signΛ = (3,19) and ΛG

is negative definite, ΛG is indefinite in this case. From Table 10.3, we can
check that conditions (1) and (2) in Theorem 1.7 for ΛG are satisfied. Hence,
the assertion follows from Theorem 1.7. We can directly find the Gramian
matrices of ΛG with the given signature and discriminant form for each case.

Next we consider the case rankΛG = 3. In this case, ΛG is positive defi-
nite. From the table of definite ternary forms (see [25]), we can check that
there exists a unique positive definite even lattice K of rank 3 such that
q(K) ∼= −q up to isomorphism, except for the cases G = S5,L2(7),A6. If G =
S5,L2(7),A6, there exist exactly two positive definite even lattices K1,K2

of rank 3 such that q(Ki) ∼= −q up to isomorphism. For each i = 1,2, there
exists a primitive embedding ΛG → Λ such that (ΛG)⊥

Λ
∼= Ki by Lemma 1.2.

By Lemma 1.3, the action of G on ΛG is extended to that on Λ such that
ΛG ∼= Ki. This action is an element in L by Definition 2.5. Therefore, the
assertion follows.
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§7. Property O(ΛG) = O(q(ΛG))

This section is devoted to prove the following.

Theorem 7.1. Let G ∈ L. If rankΛG ≥ 4 or, equivalently, c(G) ≤ 18 (see
Proposition 2.10), then O(ΛG) = O(q(ΛG)).

We may assume that G ∈ Lclos by replacing G by Clos(G) if necessary.
Then ΛG

∼= S(Gn, qn) for some (Gn, qn) ∈ Qclos (see Section 4). We can
check that ΛG satisfies conditions (1) and (2) in Theorem 1.8 from Table
10.3, except for the following nine cases:

(7.1) n = 26,30,32,33,40,46,48,56,61.

Hence, we have O(ΛG) = O(q(ΛG)) except for these nine cases.
For example, in the case n = 65, we find that

ΛG ∼=
(

4 2
2 4

)
⊕ 〈4〉 ⊕ 〈 −8〉,(7.2)

q(ΛG) ∼= −q65
∼= v(2)(2) ⊕ q

(2)
1 (4) ⊕ q

(2)
7 (8) ⊕ q

(3)
+ (3)(7.3)

from Table 10.3. Since

(7.4) rankΛG = 4 > l
(
A(ΛG)3

)
+ 2 = 3,

condition (1) is satisfied. On the other hand, since v(2)(2) appears in the
orthogonal decomposition (7.3) of q(ΛG), condition (2) is satisfied.

7.1. Preparation for the cases (7.1)
Before studying the nine cases (7.1), we recall some properties of the

spinor norm (see, e.g., [4]). Let L be a nondegenerate lattice. For any ϕ ∈
O(L ⊗ Q), ϕ is written as a composition of reflections:

(7.5) ϕ =
r∏

i=1

T (vi), vi ∈ L ⊗ Q, 〈vi, vi〉 �= 0.

Here T (v) ∈ O(L ⊗ Q) is the reflection of v, which is defined by

(7.6) T (v) · w = w − 2〈v,w〉
〈v, v〉 v.
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The spinor norm θ(ϕ) of ϕ is defined by

(7.7) θ(ϕ) =
r∏

i=1

〈vi, vi〉 mod (Q×)2 ∈ Q×/(Q×)2,

which is independent of the choice of expression (7.5). We define a map f

and a subgroup O′(L) ⊂ O(L) by

(7.8) f = det × θ : O(L) → {±1} × Q×/(Q×)2

and O′(L) = Ker(f). Note that if L = L1 ⊕ L2, then f(O(Li)) ⊂ f(O(L)).
We can define the spinor norm θp(ϕp) ∈ Q×

p /(Q×
p )2 of ϕp ∈ O(L ⊗ Qp) in a

similar way. Moreover, we define

(7.9) fp = det × θp : O(Lp) → {±1} × Q×
p /(Q×

p )2

and O′(Lp) = Ker(fp), where Lp = L ⊗ Zp.
To deal with the cases (7.1), we use the following proposition, which

is a consequence of the strong approximation theorem of quadratic forms
(see [4]).

Proposition 7.2. Let L be an indefinite even lattice of rank ≥ 3. We set
O0(Lp) = Ker

(
O(Lp) → O(q(Lp))

)
and d = disc(L). If the natural map

(7.10) O(L) →
∏
p|d

fp(O(Lp))
fp(O0(Lp))

is surjective, then O(L) = O(q(L)).

Proof. We have a natural commutative diagram

(7.11)

1 → O′(L) → O(L) → f(O(L)) → 1
↓ α ↓ β ↓ γ

1 →
∏
p|d

O′(Lp)
O′

0(Lp)
→

∏
p|d

O(Lp)
O0(Lp)

→
∏
p|d

fp(O(Lp))
fp(O0(Lp))

→ 1,

where O′
0(Lp) = O′(Lp) ∩ O0(Lp). The rows in (7.11) are exact. Since

(7.12) O
(
q(L)

)
=

∏
p|d

O
(
q(L)p

) ∼=
∏
p|d

O(Lp)
O0(Lp)
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by Theorem 1.10, it is sufficient to show that β is surjective. Since [O′(Lp) :
O′

0(Lp)] < ∞, each coset of O′(Lp)/O′
0(Lp) is an open dense subset of O′(Lp)

in p-adic topology. By the strong approximation theorem of quadratic forms
(see [4]), the image of O′(L) in

∏
p|d O′(Lp) is dense. Therefore, α is surjec-

tive. On the other hand, γ is surjective by the assumption. By chasing the
diagram, β is surjective.

For f(O(L)) and fp(O0(Lp)), we have the following.

Lemma 7.3. Let L(p) be a nondegenerate even lattice over Zp.
(1) If v ∈ L(p) satisfies a = 〈v, v〉 ∈ Z×

p ∪ 2Z×
p , then T (v) ∈ O0(L(p)) and

fp(T (v)) = (−1, a) ∈ fp(O0(Lp)).
(2) If L(p) contains U = ( 0 1

1 0 ) as a sublattice, then

(7.13) fp

(
O0(L(p))

)
⊃

{
J2 := 〈(1,Z×

2 /(Z×
2 )2), (−1,2)〉 if p = 2,

Jp := {±1} × Z×
p /(Z×

p )2 otherwise.

(3) If p = 2 and L(2) contains V = ( 2 1
1 2 ) as a sublattice, then

(7.14) f2

(
O0(L(2))

)
⊃ J2.

Proof. Let v, a be as in (1). Since T (v) · w = w − (2〈v,w〉/a)v and 2/a ∈
Z×

p , we have T (v) · w ∈ L(p) for w ∈ L(p). Hence, T (v) ∈ O(L(p)). If w ∈
(L(p))∨, then 〈v,w〉 ∈ Zp; thus T (v) · w ≡ w mod L(p). Hence, T (v) ∈
O0(L(p)). Since the determinant of any reflection is equal to −1, we have
fp(T (v)) = (−1, a). This proves (1).

Let (e1, e2) be a basis of U such that 〈ei, ei〉 = 0 and 〈e1, e2〉 = 1. For
x ∈ Z×

p , set vx = e1 + xe2. We have 〈vx, vx〉 = 2x ∈ 2Z×
p . By (1), T (vx) ∈

O0(L(p)) and fp(T (vx)) = (−1,2x). We can check that the group generated
by elements of the form (−1,2x) is J2 (resp., Jp) if p = 2 (resp., p �= 2).

The proof of (3) is similar to that of (2), and we omit it.

Lemma 7.4. Let L be a nondegenerate even lattice.
(1) We have f(−1L) = ((−1)rankL,disc(L)).
(2) If L ∼= U(t) ⊕ L′ for some L′, then f(O(L)) ⊃ 〈(−1, ±2t)〉, where U(t) =

( 0 t
t 0 ).

Proof. Let (e1, . . . , er) be an orthogonal basis of L ⊗ Q, where r = rankL.
Then, −1L =

∏r
i=1 T (ei) and

∏r
i=1〈ei, ei〉 ≡ disc(L) mod (Q×)2. Therefore,

f(−1L) = ((−1)r,disc(L)). This proves (1).
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Let (e1, e2) be a basis of U(t) such that 〈ei, ei〉 = 0 and 〈e1, e2〉 = t. Then,
O(U(t)) ∼= (Z/2Z)2 is generated by T (e1 ± e2). Therefore, f(O(U(t))) =
〈(−1, ±2t)〉. This proves (2).

7.2. Proof of Theorem 7.1 for the cases (7.1)
We set L = ΛG, r = rankL, and d = disc(L). We will show that the map

(7.10) is surjective in each case in (7.1). In other words, we show that∏
p|d fp(O(Lp)) is generated by the images of O(L) and

∏
p|d fp(O0(Lp)).

As is shown below, we have fp(O(Lp)) = Np except for the cases n = 46,61,
where

(7.15) Np = {±1} × Q×
p /(Q×

p )2.

Recall that the map (a, b, c) → (−1)a3b2c induces an isomorphism
(Z/2Z)3 → Q×

2 /(Q×
2 )2. Moreover, the map (a, b) → εa

pp
b induces an isomor-

phism (Z/2Z)2 → Q×
p /(Q×

p )2 if p �= 2, where εp is a nonsquare p-adic unit.
Let (e1, . . . , er) be a basis of L whose Gramian matrix is given by Table 10.3.
We say that a is represented by L if there exists a vector v ∈ L such that
〈v, v〉 = a. We denote f(O(L)) and fp(O0(Lp)) by I and Ip, respectively.

(1) The case n = 26. We have

(7.16) L ∼=
(

0 8
8 0

)
⊕ 〈2〉 ⊕ 〈4〉, d = −29.

Since 2 and 6 are represented by L, we have (−1,2), (−1,6) ∈ I2 by Lem-
ma 7.3(1). By Lemma 7.4(2), (−1, ±16) = (−1, ±1) ∈ I . We can check that
the images of these four elements generate N2. (In what follows, we omit
“the image(s) of” for simplicity.)

(2) The case n = 30. We have

(7.17) L ∼=
(

0 3
3 0

)⊕2

⊕
(

2 3
3 0

)
, d = −36.

By Lemma 7.4(2), (−1, ±6) ∈ I . Since T (e5) ∈ O(L), we have f(T (e5)) =
(−1,2) ∈ I . We can check that these three elements generate N3.

(3) The case n = 32. We have

(7.18) L ∼=
(

0 5
5 0

)
⊕

(
4 2
2 6

)
, d = −22 · 53.
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Since L2 contains U , we have J2 ⊂ I2 by Lemma 7.3(2). Since 4 is rep-
resented by L, we have (−1,4) = (−1,1) ∈ I5 by Lemma 7.3(1). By Lem-
ma 7.4(2), (−1, ±10) ∈ I . Since T (e3) ∈ O(L), we have f(T (e1)) = (−1,4) =
(−1,1) ∈ I . Let L′ = ( 4 2

2 6 ). By Lemma 7.4(1), f(−1L′ ) = (1,20) = (1,5) ∈ I .
Therefore, the images of I, I2, I5 contain the following elements:

Image in N2 × N5

I2 (1,Z×
2 /(Z×

2 )2) × (1,1), (−1,2) × (1,1)
I5 (1,1) × (−1,1)
I (−1, ±10) × (−1, ±10), (−1,1) × (−1,1), (1,5) × (1,5)

From this, we can check that I, I2, I5 generate N2 × N5.
(4) The case n = 33. We have

(7.19) L ∼=
(

0 7
7 0

)
⊕

(
2 1
1 4

)
, d = −73.

By Lemma 7.4(2), (−1, ±14) ∈ I . Since T (e3) ∈ O(L), we have (−1,2) ∈ I .
We can check that these three elements generate N7.

(5) The case n = 40. We have

(7.20) L ∼= 〈4〉 ⊕3 ⊕ 〈 −4〉 ⊕2, d = 210.

Let ϕ = T (e1)T (e1 + 2e2) ∈ O(L2). Then, modulo L2, we have

ϕ · e1

4
= T (e1) ·

(e1

4
− 2

20
(e1 + 2e2)

)
≡ T (e1) · 3

4
e1 ≡ e1

4
,(7.21)

ϕ · e2

4
= T (e1) ·

(e2

4
− 4

20
(e1 + 2e2)

)
≡ T (e1) · e2

4
=

e2

4
.(7.22)

Hence, ϕ ∈ O0(L2) and f2(ϕ) = (−1,4) · (−1,20) = (1,5) ∈ I2. Since T (e1),
T (e4), T (e1 + e2) ∈ O(L), we have (−1, ±4), (−1,8) ∈ I . We can check that
these four elements generate N2.

(6) The case n = 46. We have

(7.23) L ∼=
(

2 1
1 2

)
⊕ 〈6〉 ⊕ 〈 −18〉, d = −22 · 34.

Since L2 contains V , we have J2 ⊂ I2 by Lemma 7.3(3). By [6, Theo-
rem 3.14(i)], we have f2(O(L2)) = J2; thus, I2 = f2(O(L2)) = J2. Since
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T (e1), T (e3), T (e4) ∈ O(L), we have (−1,2), (−1,6), (−1, −18) ∈ I . From
this, we can check that I, I2 generate f2(O(L2)) × N3.

(7) The case n = 48. We have

(7.24) L ∼=
(

0 3
3 0

)
⊕

(
12 6
6 12

)
, d = −22 · 35.

Since L2 contains U , we have J2 ⊂ I2 by Lemma 7.3(2). By Lemma 7.4(2),
(−1, ±6) ∈ I . Since T (e3), T (e3 + e4) ∈ O(L), we have (−1,12), (−1,36) ∈ I .
Therefore, the images of I, I2 contain the following elements:

Image in N2 × N3

I2 (1,Z×
2 /(Z×

2 )2) × (1,1), (−1,2) × (1,1)
I (−1, ±6) × (−1, ±6), (−1,3) × (−1,3), (−1,1) × (−1,1)

From this, we can check that I, I2 generate N2 × N3.
(8) The case n = 56. We have

(7.25) L ∼= 〈4〉 ⊕3 ⊕ 〈 −8〉, d = −29.

By the argument in the case n = 40, ϕ = T (e1)T (e1 + 2e2) ∈ O0(L2) and
f2(ϕ) = (1,5) ∈ I2. Since T (e1), T (e4), T (e1 + e2) ∈ O(L), we have (−1,4),
(−1, −8), (−1,8) ∈ I . We can check that these four elements generate N2.

(9) The case n = 61. We have

(7.26) L ∼=
(

0 3
3 0

)
⊕

(
8 4
4 8

)
, d = −24 · 33.

Since L2 contains U , we have J2 ⊂ I2 by Lemma 7.3(2). By [6, Theo-
rem 3.14(i)], f2(O(L2)) = J2; thus, I2 = f2(O(L2)) = J2. Since T (e3) ∈ O(L),
(−1,8) = (−1,2) ∈ I . By Lemma 7.4(2), (−1, ±6) ∈ I . From this, we can
check that I, I2 generate f2(O(L2)) × N3.

Now we have proved Theorem 7.1.

§8. Uniqueness of symplectic actions on the K3 lattice

In this section, we use the results in the previous sections to prove the
main theorem.
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8.1. Case c(G) ≤ 18
Proposition 8.1. The natural map

(8.1)
{
G ∈ L

∣∣ c(G) ≤ 18
}
/conj →

{
(G,S) ∈ S

∣∣ c(G) ≤ 18
}
/isom

is bijective.

Proof. The surjectivity follows from the definition of S (see (4.1)). Let
(G,S) ∈ S such that c(G) ≤ 18. Suppose that Gi ∈ L and (Gi,ΛGi) ∼= (G,S)
for i = 1,2. To prove the injectivity, it is sufficient to show that G1 and G2

are conjugate in O(Λ). By Proposition 6.1, ΛG1 ∼= ΛG2 . By Theorem 7.1,
O(ΛG1) = O(q(ΛG1)). Therefore, a primitive embedding ΛG1 → Λ such that
(ΛG1)

⊥
Λ

∼= ΛG1 is unique up to isomorphism, and the restriction map

(8.2) π : O(Λ,ΛG1) → O(ΛG1)

is surjective by Lemma 1.2. Hence, we may assume that ΛG1 = ΛG2 by
replacing G2 by ϕG2ϕ

−1 for some ϕ ∈ O(Λ) if necessary. Since (G1,ΛG1) ∼=
(G2,ΛG2) ∼= (G,S), G1 and G2 are conjugate as subgroups of O(ΛG1). Since
π is surjective, G1 and G2 are conjugate in O(Λ).

8.2. Case c(G) = 19
Lemma 8.2. Let G1,G2 ∈ L such that [G1] = [G2], Clos(G1) = Clos(G2),

and c(Gi) = 19. If [Clos(Gi)] �= A4,4, F384, then G1 and G2 are conjugate in
Clos(Gi).

Proof. It is sufficient to consider the case Gi � Clos(Gi). By Tables 10.2
and 10.4, we find that H := [Clos(Gi)] = T48,H192, T192,M20. Using GAP
[12], we can check that there exists a unique subgroup G of H up to con-
jugacy in H such that G = [Gi] (see Appendix). The assertion follows from
this.

Now we consider subgroups G of A4,4 or F384 such that c(G) = 19. Mukai
[18] constructed K3 surfaces with maximal finite symplectic actions. We use
two K3 surfaces with symplectic actions of A4,4 or F384 from [18].

Let X be a surface in P5 defined by the following equations:

x2 + y2 + z2 =
√

3u2,(8.3)

x2 + ζy2 + ζ2z2 =
√

3v2,(8.4)

x2 + ζ2y2 + ζz2 =
√

3w2,(8.5)
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where ζ = exp(2π
√

−1/3) and where x, y, z, u, v,w are homogeneous coor-
dinates of P5. Since X is a smooth complete intersection of type (2,2,2)
in P5, X is a K3 surface. Let G denote a subgroup of PGL(6,C) generated
by

(x : y : z : u : v : w) → (−x : −y : z : u : v : w),(8.6)

(x : y : z : u : v : w) → (x : y : z : −u : −v : w),(8.7)

(x : y : z : u : v : w) → (y : z : x : u : ζv : ζ2w),(8.8)

(x : y : z : u : v : w) → (x : ζ2y : ζz : v : w : u),(8.9)

(x : y : z : u : v : w) → (−x : −z : −y : u : w : v).(8.10)

Then G acts on X symplectically, and [G] = A4,4. Moreover, let G̃ denote
the group generated by G and

(8.11) g : (x : y : z : u : v : w) → (u : v : w : x : z : y).

Then G̃ acts on X , and g∗ωX =
√

−1ωX . Using GAP, we can show the
following (see Appendix).

Lemma 8.3. Suppose that G ∈ G
symp
K3 is a subgroup of A4,4 and that c(G) =

19. Then there exists a unique subgroup K of G such that [K] = G up to
conjugacy in G̃.

Let Y be a surface in P3 defined by the following equation:

(8.12) x4 + y4 + z4 + t4 = 0,

where x, y, z, t are homogeneous coordinates of P3. Since Y is a smooth quar-
tic surface in P3, Y is a K3 surface. Let H denote a subgroup of PGL(4,C)
generated by

(x : y : z : t) → (ix : −iy : z : t),(8.13)

(x : y : z : t) → (y : −x : z : t),(8.14)

(x : y : z : t) → (y : z : t : −x),(8.15)

where i =
√

−1. Then H acts on Y symplectically, and [H] = F384. Moreover,
let H̃ denote the group generated by H and

(8.16) h : (x : y : z : t) → (ix : y : z : t).

Then H̃ acts on Y , and h∗ωY = iωY . Again using GAP, we can show the
following (see Appendix).
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Lemma 8.4. Suppose that G ∈ G
symp
K3 is a subgroup of F384 and that

c(G) = 19. Then there exists a unique subgroup K of H such that [K] = G

up to conjugacy in H̃.

Remark 8.5. We can show that the projective automorphism groups
of X and Y are G̃ and H̃ , respectively (see [13]). However, since X and Y

have Picard number 20, the automorphism groups of X and Y are infinite
groups by [27].

By considering induced actions on H2(X,Z) and H2(Y,Z), which are
isomorphic to Λ, we have the following.

Lemma 8.6. Consider G (resp., H) as a subgroup of O(Λ). Suppose that
G is a subgroup of A4,4 (resp., F384) such that c(G) = 19. Then there exists
a unique subgroup K of G (resp., H) up to conjugacy in O(Λ) such that
[K] = G.

We use the following lemma in the proof of Theorem 4.1.

Lemma 8.7. There exists an element G43 ∈ L which satisfies the follow-
ing.
(1) We have [G43] = G43.
(2) There exists a unique subgroup G58 of O0(ΛG43) such that [G58] = G58

up to conjugacy in O(ΛG43).

Proof. We fix an identification H2(Y,Z) = Λ. By Table 10.4, there exists
a subgroup G43 of H such that [G43] = G43. Since c(G43) = c(H) = 19, we
have ΛG43 = ΛH . Since [H] = F384 is a maximal element in G

symp
K3 , we have

[O0(ΛH)] = [H]. Since H � H̃ , we have H̃ ⊂ O(Λ,ΛH). By Lemma 8.4 and
Table 10.4, condition (2) is satisfied.

We have the following by the above lemmas.

Proposition 8.8. Set E = {S5,L2(7),A6} ⊂ G
symp
K3 . The natural map{

G ∈ L
∣∣ c(G) = 19, [G] /∈ E

}
/conj

(8.17)
→

{
(G,S) ∈ S

∣∣ c(G) = 19, [G] /∈ E
}
/isom

is bijective.

Proof. The surjectivity follows from the definition of S (see (4.1)). Let
(G,S) ∈ S such that c(G) = 19 and [G] /∈ E. Suppose that Gi ∈ L and
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(Gi,ΛGi) ∼= (G,S) for i = 1,2. To prove the injectivity, it is sufficient to
show that G1 and G2 are conjugate in O(Λ). By Proposition 6.1, ΛG1 ∼=
ΛG2 . By Theorem 5.1, O(ΛG1) = O(q(ΛG1)). Therefore, a primitive embed-
ding ΛG1 → Λ such that (ΛG1)

⊥
Λ

∼= ΛG1 is unique up to isomorphism by
Lemma 1.2. Hence, we may assume that ΛG1 = ΛG2 by replacing G2 by
ϕG2ϕ

−1 for some ϕ ∈ O(Λ) if necessary. Thus, [Clos(G1)] = [Clos(G2)].
(1) The case [Clos(Gi)] �= A4,4, F384. By Lemma 8.2, G1 and G2 are con-

jugate in Clos(Gi) (⊂ O(Λ)).
(2) The case [Clos(Gi)] = A4,4 (resp., F384). By the above argument, we

have ΛGi = ΛG (resp., ΛH) for some identification Λ = H2(X,Z) (resp.,
H2(Y,Z)). Hence, Clos(Gi) = G (resp., H). By Lemma 8.6, G1 and G2 are
conjugate in O(Λ).

Proposition 8.9. For G = S5,L2(7),A6, there exist exactly two elements
G1,G2 in L up to conjugacy in O(Λ) such that [Gi] = G. We have ΛG1

∼=
ΛG2 , q(ΛG1) ∼= q(ΛG2) and ΛG1 �∼= ΛG2 .

Proof. By Proposition 3.8 and Theorem 4.1, there exists a unique element
(G0, S) ∈ S up to isomorphism such that [G0] = G. Since G is a maximal
element in G

symp
K3 , we have O0(S) = G0. By Theorem 5.1, O(S) = O(q(S)).

By Lemma 1.2 and Proposition 6.1, there exist exactly two primitive sub-
lattices S1, S2 of Λ such that Si

∼= S up to O(Λ). The action of Gi := O0(Si)
on Si is extended to that on Λ such that ΛGi = Si (i = 1,2). Let G ∈ L such
that [G] = G. Then ΛG

∼= S. Hence, we may assume that ΛG = Si (i = 1,2)
by replacing G by ϕGϕ−1 for some ϕ ∈ O(Λ) if necessary. Then we have
G = Gi. This implies the assertion.

8.3. Proof of the main theorem
Theorem 8.10. Let G ∈ G

symp
K3 .

(1) If G = Q8, T24, there exist exactly two elements G1,G2 ∈ L such that
[Gi] = G up to conjugacy in O(Λ). We have the following table, by
changing the numbering of G1,G2 if necessary (see Corollary 4.7):

G n [Clos(G1)] disc(ΛG1) n [Clos(G2)] disc(ΛG2)
Q8 12 Q8 −512 40 Q8 ∗ Q8 −1024
T24 77 T192 −192 54 T48 −384

Here n is determined by ([Gi], q(ΛGi)) ∼ (Gn, qn).
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(2) If G = S5,L2(7),A6, there exist exactly two elements G1,G2 ∈ L such
that [Gi] = G up to conjugacy in O(Λ). We have ΛG1

∼= ΛG2 , q(ΛG1) ∼=
q(ΛG2), and ΛG1 �∼= ΛG2 .

(3) Otherwise, there exists a unique G ∈ L such that [G] = G up to conju-
gacy in O(Λ).

Proof. By Theorem 4.1, (G,S) ∈ S is determined uniquely by [G] and
q(S) up to isomorphism. Assertions (1) and (3) follow from Propositions 8.1
and 8.8 and Table 10.2. Assertion (2) is the same as Proposition 8.9.

§9. Applications

Combining Xiao’s result (Theorem 0.3), the following theorem is a con-
sequence of Theorem 8.10 and the global Torelli theorem for K3 surfaces
(see [20]).

Theorem 9.1. Let G be a group such that [G] ∈ G
symp
K3 (see Notation 2.2).

Set E1 = {Q8, T24}, E2 = {S5,L2(7),A6}.
(1) If [G] /∈ E1 ∪ E2, then the moduli space of K3 surfaces with faithful and

symplectic G-actions is connected.
(2) If [G] ∈ E1 ∪ E2, then the moduli space of K3 surfaces with faithful and

symplectic G-actions has exactly two connected components.
(3) If Xi is a K3 surface with a faithful and symplectic Gi-action for i = 1,2

such that [Gi] /∈ E2 and G1\X1,G2\X2 have the same A-D-E config-
uration of the singularities, then [G1] = [G2] =: G and X1,X2 are G-
deformable (see Section 0).

(4) If X is a K3 surface with a faithful and symplectic action of G of
type (G, q) ∈ Q, that is, ([G], q(H2(X,Z)G)) ∼ (G, q), then the action is
extended to that of type Clos(G, q) (see Section 4 and Table 10.4).

Assertion (4) for some cases was pointed out and studied in detail by
Garbagnati ([8], [9]).

§10. Tables

10.1. Niemeier lattices
We give the list of Niemeier lattices N (see [5, Chapter 16]). Let Δ+ be

a set of positive roots of N . We denote by O(N,Δ+)1 the group which con-
sists of g ∈ O(N,Δ+) preserving each connected component of the Dynkin
diagram R(N,Δ+). We set O(N,Δ+)2 = O(N,Δ+)/O(N,Δ+)1. The group
O(N,Δ+)2 acts on the set of connected components of R(N,Δ+).
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Table 10.1

i Root type | O(Ni,Δ+
i )1| O(Ni,Δ+

i )2 | O(Ni,Δ+
i )|

1 D24 1 1 1
2 D16 ⊕ E8 1 1 1
3 E⊕3

8 1 S3 6
4 A24 2 1 2
5 D⊕2

12 1 S2 2
6 A17 ⊕ E7 2 1 2
7 D10 ⊕ E⊕2

7 1 S2 2
8 A15 ⊕ D9 2 1 2
9 D⊕3

8 1 S3 6
10 A⊕2

12 2 S2 4
11 A11 ⊕ D7 ⊕ E6 2 1 2
12 E⊕4

6 2 S4 48
13 A⊕2

9 ⊕ D6 2 S2 4
14 D⊕4

6 1 S4 24
15 A⊕3

8 2 S3 12
16 A⊕2

7 ⊕ D⊕2
5 2 S2 × S2 8

17 A⊕4
6 2 A4 24

18 A⊕4
5 ⊕ D4 2 S4 48

19 D⊕6
4 3 S6 2160

20 A⊕6
4 2 S5 240

21 A⊕8
3 2 F3

2 � GL(3,F2) 2688
22 A⊕12

2 2 M12 190080
23 A⊕24

1 1 M24 244823040

10.2. Abstract groups and discriminant forms
We give the list of a complete representative {(Gn, qn)} of Q/ ∼. Recall

that

Q =
{
(G, q)

∣∣ ∃G ∈ L such that G = [G], q ∼= q(ΛG)
}

=
{
(G, q)

∣∣ ∃(G,N) ∈ N such that G = [G], q ∼= q(NG)
}

and (G, q) ∼ (G′, q′) if and only if G = G′, q ∼= q′ (see Section 3.4). For
q : A(q) → Q/2Z, we denote the order of A(q) by |q|. We use the following
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notation (see [5]):

a+n = q
(p)
+ (a)⊕n, a−n = q

(p)
+ (a)⊕n−1 ⊕ q

(p)
− (a),

b+n
II = u(2)(b)

⊕n
, b−n

II = u(2)(b)
⊕n−1 ⊕ v(2)(b), bdr

t = q
(
L

(2)

r,d,t,I(b)
)
,

where p is an odd prime, a = pk, b = 2k, and L
(2)
r,d,t,e is a (unique) unimodular

lattice over Z2 which has the invariants r, d, t, e defined in Proposition 1.6
(see Section 1). For example,

A(q63) ∼= (Z/2)⊕3 ⊕ Z/3Z ⊕ Z/9Z,

q63
∼= 〈 −1/2〉 ⊕

(
1 1/2

1/2 1

)
⊕ 〈2/3〉 ⊕ 〈2/9〉.

In the list, for example, q5 is isomorphic to q16. The column i indicates the
catalog number of Gn in GAP (see Appendix).

Table 10.2

n |Gn| i Gn |qn| qn c(Gn)
1 2 1 C2 256 2+8

II 8
2 3 1 C3 729 3+6 12
3 4 2 C2

2 1024 2−6
II ,4−2

II 12
4 4 1 C4 1024 2+2

2 ,4+4
II 14

5 5 1 C5 625 �16 16
6 6 1 D6 972 2−2

II ,3+5 14
7 6 2 C6 1296 �18 16
8 7 1 C7 343 �33 18
9 8 5 C3

2 1024 2+6
II ,4+2

2 14
10 8 3 D8 1024 4+5

1 15
11 8 2 C2 × C4 1024 �22 16
12 8 4 Q8 512 2−3

7 ,8−2
II 17

13 8 4 Q8 512 �40 17
14 8 1 C8 512 �26 18
15 9 2 C2

3 729 �30 16
16 10 1 D10 625 5+4 16
17 12 3 A4 576 2−2

II ,4−2
II ,3+2 16

18 12 4 D12 1296 2+4
II ,3+4 16
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Table 10.2

n |Gn| i Gn |qn| qn c(Gn)
19 12 5 C2 × C6 1728 �61 18
20 12 1 Q12 432 �61 18
21 16 14 C4

2 512 2+6
II ,8+1

1 15
22 16 11 C2 × D8 1024 2+2

II ,4+4
0 16

23 16 3 Γ2c1 512 �39 17
24 16 13 Q8 ∗ C4 1024 �40 17
25 16 2 C2

4 1024 �75 18
26 16 8 SD16 512 2+1

7 ,4+1
7 ,8+2

II 18
27 16 12 C2 × Q8 256 �75 18
28 16 6 Γ2d 256 �80 19
29 16 9 Q16 256 �80 19
30 18 4 A3,3 729 3+4,9−1 16
31 18 3 C3 × D6 972 �48 18
32 20 3 Hol(C5) 500 2−2

6 ,5+3 18
33 21 1 C7 � C3 343 7+3 18
34 24 12 S4 576 4+3

3 ,3+2 17
35 24 13 C2 × A4 576 �51 18
36 24 8 C3 � D8 432 �61 18
37 24 3 T24 384 �77 19
38 24 3 T24 384 �54 19
39 32 27 24C2 512 2+2

II ,4+2
0 ,8+1

7 17
40 32 49 Q8 ∗ Q8 1024 4+5

7 17
41 32 6 Γ7a1 512 �56 18
42 32 31 Γ4c2 256 �75 18
43 32 7 Γ7a2 256 �80 19
44 32 11 Γ3e 256 �80 19
45 32 44 Γ6a2 256 �80 19
46 36 9 32C4 324 2−2

6 ,3+2,9−1 18
47 36 11 C3 × A4 432 �61 18
48 36 10 S3,3 972 2−2

II ,3+3,9−1 18
49 48 50 24C3 384 2−4

II ,8+1
1 ,3−1 17

50 48 3 42C3 256 �75 18
51 48 48 C2 × S4 576 2+2

II ,4+2
2 ,3+2 18

52 48 49 22(C2 × C6) 288 �78 19
(continued)
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Table 10.2

n |Gn| i Gn |qn| qn c(Gn)
53 48 30 22Q12 288 �78 19
54 48 29 T48 384 2+1

7 ,8−2
II ,3−1 19

55 60 5 A5 300 2−2
II ,3+1,5−2 18

56 64 138 Γ25a1 512 4+3
5 ,8+1

1 18
57 64 242 Γ13a1 256 �75 18
58 64 32 Γ22a1 256 �80 19
59 64 35 Γ23a2 256 �80 19
60 64 136 Γ26a2 256 �80 19
61 72 43 A4,3 432 4−2

II ,3−3 18
62 72 40 N72 324 4+1

1 ,3+2,9−1 19
63 72 41 M9 216 2−3

7 ,3−1,9−1 19
64 80 49 24C5 160 �81 19
65 96 227 24D6 384 2−2

II ,4+1
7 ,8+1

1 ,3−1 18
66 96 70 24C6 384 �76 19
67 96 64 42D6 256 �80 19
68 96 195 23D12 288 �78 19
69 96 204 (Q8 ∗ Q8) � C3 192 �77 19
70 120 34 S5 300 4−1

3 ,3+1,5−2 19
71 128 931 F128 256 �80 19
72 144 184 A2

4 288 �78 19
73 160 234 24D10 160 �81 19
74 168 42 L2(7) 196 4+1

1 ,7+2 19
75 192 1023 42A4 256 2−2

II ,8−2
6 18

76 192 955 H192 384 4−2
4 ,8+1

7 ,3−1 19
77 192 1493 T192 192 4−3

7 ,3+1 19
78 288 1026 A4,4 288 2+2

II ,8+1
1 ,3+2 19

79 360 118 A6 180 4−1
5 ,3+2,5+1 19

80 384 18135 F384 256 4+1
7 ,8+2

6 19
81 960 11357 M20 160 2−2

II ,8+1
1 ,5−1 19

10.3. Invariant lattices ΛG

For G ∈ L, there exists a number n such that ([G], q(ΛG)) ∼ (Gn, qn) (see
Table 10.2). Here we give the invariant lattices ΛG for each n. We set

r = rankΛG = 22 − c(G), d = discΛG, q = −qn
∼= q(ΛG).
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In the table, we set

U =

(
0 1
1 0

)
, A2 =

(
2 −1

−1 2

)
, D4 =

⎛⎜⎜⎝
2 0 0 −1
0 2 0 −1
0 0 2 −1

−1 −1 −1 2

⎞⎟⎟⎠ ,

and E8 denotes the root lattice of type E8, as usual. For abelian G ∈ L, the
Gramian matrices of ΛG were determined in [11].

Table 10.3

n r d q Gramian matrix

1 14 −256 2+8
II U ⊕3 ⊕ E8(−2)

2 10 −729 3+6 U ⊕ U(3)⊕2 ⊕ A2(−1)⊕2

3 10 −1024 2−6
II ,4−2

II U ⊕ U(2)⊕2 ⊕ D4(−2)
4 8 −1024 2+2

6 ,4+4
II U ⊕ U(4)⊕2 ⊕ 〈 −2〉 ⊕2

6 8 −972 2−2
II ,3−5 U(3) ⊕ A2(2) ⊕ A2(−1)⊕2

9 8 −1024 2+6
II ,4+2

6 U(2)⊕3 ⊕ 〈 −4〉 ⊕2

10 7 1024 4+5
7 U ⊕ 〈4〉 ⊕2 ⊕ 〈 −4〉 ⊕3

12 5 512 2−3
1 ,8−2

II

(
6 2 2
2 6 −2
2 −2 6

)
⊕ 〈 −2〉 ⊕2

16 6 −625 5+4 U ⊕ U(5)⊕2

17 6 −576 2−2
II ,4−2

II ,3+2 U ⊕ A2(2) ⊕ A2(−4)
18 6 −1296 2+4

II ,3+4 U ⊕ U(6)⊕2

21 7 512 2+6
II ,8+1

7 U(2)⊕3 ⊕ 〈 −8〉
22 6 −1024 2+2

II ,4+4
0 U(2) ⊕ 〈4〉 ⊕2 ⊕ 〈 −4〉 ⊕2

26 4 −512 2+1
1 ,4+1

1 ,8+2
II U(8) ⊕ 〈2〉 ⊕ 〈4〉

30 6 −729 3+4,9+1 U(3)⊕2 ⊕ ( 2 3
3 0 )

32 4 −500 2−2
2 ,5+3 U(5) ⊕ ( 4 2

2 6 )
33 4 −343 7−3 U(7) ⊕ ( 2 1

1 4 )
34 5 576 4+3

5 ,3+2 U ⊕ A2(4) ⊕ 〈 −12〉
39 5 512 2+2

II ,4+2
0 ,8+1

1 U(2) ⊕ 〈4〉 ⊕ 〈 −4〉 ⊕ 〈8〉
40 5 1024 4+5

1 〈4〉 ⊕3 ⊕ 〈 −4〉 ⊕2

46 4 −324 2−2
2 ,3+2,9+1 A2 ⊕ 〈6〉 ⊕ 〈 −18〉

48 4 −972 2−2
II ,3−3,9+1 U(3) ⊕ A2(6)

49 5 384 2−4
II ,8+1

7 ,3+1 U(2) ⊕ A2(2) ⊕ 〈 −8〉
(continued)
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Table 10.3

n r d q Gramian matrix

51 4 -576 2+2
II ,4+2

6 ,3+2 U(2) ⊕ 〈12〉 ⊕2

54 3 384 2+1
1 ,8−2

II ,3+1
(

2 0 0
0 16 8
0 8 16

)
55 4 −300 2−2

II ,3−1,5−2 U ⊕ A2(10)
56 4 −512 4+3

3 ,8+1
7 〈4〉 ⊕3 ⊕ 〈 −8〉

61 4 −432 4−2
II ,3+3 U(3) ⊕ A2(4)

62 3 324 4+1
7 ,3+2,9+1

(
6 0 3
0 6 3
3 3 12

)
63 3 216 2−3

1 ,3+1,9+1
(

2 0 0
0 12 6
0 6 12

)
65 4 −384 2−2

II ,4+1
1 ,8+1

7 ,3+1 A2(2) ⊕ 〈4〉 ⊕ 〈 −8〉

70 3 300 4−1
5 ,3−1,5−2

(
4 1 0
1 4 0
0 0 20

)
,
(

4 2 2
2 6 1
2 1 16

)
74 3 196 4+1

7 ,7+2
(

2 1 0
1 4 0
0 0 28

)
,
(

4 2 2
2 8 1
2 1 8

)
75 4 −256 2−2

II ,8−2
2

(
4 0 2 0
0 4 2 0
2 2 4 4
0 0 4 0

)
76 3 384 4−2

4 ,8+1
1 ,3+1

(
4 0 0
0 8 0
0 0 12

)
77 3 192 4−3

1 ,3−1
(

4 0 0
0 8 4
0 4 8

)
78 3 288 2+2

II ,8+1
7 ,3+2

(
8 4 4
4 8 2
4 2 8

)
79 3 180 4−1

3 ,3+2,5+1
(

2 1 0
1 8 0
0 0 12

)
,
(

6 0 3
0 6 3
3 3 8

)
80 3 256 4+1

1 ,8+2
2

(
4 0 0
0 8 0
0 0 8

)
81 3 160 2−2

II ,8+1
7 ,5−1

(
4 0 2
0 4 2
2 2 12

)

10.4. Trees of groups with common invariant lattices
We give the trees of

TS =
{
Gn | S(Gn, qn) ∼= S

}
=

{
Gn | qn

∼= q(S)
}

for TS with �TS ≥ 2. In the table below, �n denotes Gn. The maximal ele-
ment in each TS corresponds to an element in Qclos defined by (4.7). The
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extensions �5 − �16, �7 − �18, �11 − �22, and �15 − �30 are studied in detail
by Garbagnati ([8], [9]).

�16
|
�5

�18
|
�7

�33
|
�8

�22
|

�11

�26
|

�14

�30
|

�15

�39
|

�23

�48
|

�31

�51
|

�35

�54
|

�38

�56
|

�41

�76
|

�66

�40
|

�24
|

�13

�77
|

�69
|

�37

�81
|

�73
|

�64

�61
| �

�36 �47
| � |

�20 �19

�75
| �

�50 �57
| |
| �42
| � |

�25 �27

�78
| �

�68 �72
| � |

�53 �52

�80
� �

�67 �71
| � | �

| �58 �59 �60

| � � |
�44 �43 �45

� � |
�28 �29

��������

10.5. Extensions of G ∈ L
We give the list of possible extensions of G ∈ Lclos. For example, let G ∈ L

of type (G55, q55); that is, ([G], q(ΛG)) ∼ (G55, q55). Then, for i = 1,2, there
exists an element G′ ∈ Lclos of type (G79, q79) such that G ⊂ G′ and G′

is conjugate to Gi in Theorem 8.10(2). We omit the 11 maximal cases,
n = 54,62,63,70,74,76,77,78,79,80,81, for there is no proper extension.
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Table 10.5

n Extensions

1 3, 4, 6, 9, 10, 12, 16, 17, 18, 21, 22, 26, 30, 32, 34, 39, 40, 46, 48, 49,
51, 54, 55, 56, 61, 62, 63, 65, 70, 74, 75, 76, 77, 78, 79, 80, 81

2 6, 17, 18, 30, 33, 34, 46, 48, 49, 51, 54, 55, 61, 62, 63, 65, 70, 74, 75,
76, 77, 78, 79, 80, 81

3 9, 10, 17, 18, 21, 22, 26, 34, 39, 40, 48, 49, 51, 54, 55, 56, 61, 62, 65,
70, 74, 75, 76, 77, 78, 79, 80, 81

4 10, 12, 22, 26, 32, 34, 39, 40, 46, 51, 54, 56, 61, 62, 63, 65, 70, 74, 75,
76, 77, 78, 79, 80, 81

6 18, 30, 34, 46, 48, 51, 54, 55, 61, 62, 63, 65, 70, 74, 76, 77, 78, 79, 80, 81
9 21, 22, 39, 40, 49, 51, 56, 65, 75, 76, 77, 78, 80, 81

10 22, 26, 34, 39, 40, 51, 54, 56, 61, 62, 65, 70, 74, 75, 76, 77, 78, 79, 80, 81
12 26, 54, 63, 75, 80, 81
16 32, 55, 70, 79, 81
17 34, 49, 51, 55, 61, 65, 70, 74, 75, 76, 77, 78, 79, 80, 81
18 48, 51, 54, 61, 62, 70, 76, 77, 78
21 39, 49, 56, 65, 75, 76, 77, 78, 80, 81
22 39, 40, 51, 56, 65, 75, 76, 77, 78, 80, 81
26 54, 80
30 46, 48, 61, 62, 63, 78, 79
32 70
33 74
34 51, 61, 65, 70, 74, 76, 77, 78, 79, 80, 81
39 56, 65, 75, 76, 77, 78, 80, 81
40 56, 76, 77, 80
46 62, 63, 79
48 62
49 65, 75, 76, 78, 80, 81
51 76, 77, 78
55 70, 79, 81
56 76, 77, 80
61 78
65 76, 78, 80, 81
75 80, 81

10.6. Root types of NG

We give the type of the root sublattice of NG, which is generated by
vectors v ∈ NG with 〈v, v〉 = −2, for each (G,N) ∈ N such that [G] = Gn

and q(NG) ∼= qn (see Table 10.2). In the list, elements in N ′ are enclosed
by boxes (see Proposition 3.10), and the number of vectors v ∈ NG with
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〈v, v〉 = −4 or −6 are given for the cases n = 32,41,56,63. For Niemeier
lattices N = Ni, see Table 10.1.

Table 10.6

n = 1:

i 3 6 7 8 9

Type E8 A⊕9
1 ⊕ E7 D9 A⊕8

1 ⊕ D8 D8

i 11 12 12 13 14

Type A⊕6
1 ⊕ D4 ⊕ D6 D⊕4

4 D4 ⊕ E6 A⊕10
1 ⊕ D6 D⊕2

5

i 15 16 16 16 18

Type A8 A⊕8
1 ⊕ D⊕2

4 A⊕4
1 ⊕ A7 D4 ⊕ D5 A⊕12

1 ⊕ D4

i 18 19 19 20 21

Type A⊕3
1 ⊕ A3 ⊕ A5 A⊕4

3 D⊕2
4 A⊕2

4 A⊕16
1

i 21 22 23

Type A⊕4
1 ⊕ A⊕2

3 A⊕4
2 A⊕8

1

n = 2:
i 12 14 17 18 19 19 21 22 23

Type E6 D6 A6 A2 ⊕ A5 A⊕6
2 D4 ⊕ A⊕2

2 A⊕2
3 A⊕3

2 A⊕6
1

n = 3:
i 12 16 16 18 19 19 21

Type D⊕2
4 A⊕8

1 D⊕2
4 A⊕6

1 ⊕ A3 A⊕2
3 D⊕2

4 A⊕4
1

i 21 21 21 22 23 23

Type A⊕8
1 A3 ⊕ A⊕6

1 A⊕2
3 A⊕2

2 A⊕4
1 A⊕8

1

n = 4:
i 13 18 19 20 21 22 23

Type D5 D4 A⊕2
3 A⊕2

1 ⊕ A4 A⊕2
1 ⊕ A3 A⊕2

1 ⊕ A⊕2
2 A⊕4

1

(continued)
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n = 5,16:

i 19 20 22 23

Type D4 A4 A⊕2
2 A⊕4

1

n = 6:
i 12 12 14 18 18 19

Type D4 E6 D5 A⊕3
1 ⊕ A2 A2 ⊕ A5 A⊕4

2

i 19 19 21 22 22 23

Type A⊕2
2 ⊕ A3 D4 A⊕2

1 ⊕ A3 A2 A⊕3
2 A⊕4

1

n = 7,18:

i 12 18 19 19 21 22 23

Type D4 A⊕3
1 ⊕ A2 A⊕2

2 A3 A⊕4
1 A2 A⊕2

1

n = 8,33:

i 21 23

Type A3 A⊕3
1

n = 9:
i 21 21 23 23 23

Type A⊕4
1 A⊕8

1 A⊕2
1 A⊕4

1 A⊕8
1

n = 10:
i 18 19 21 21 22 23 23

Type A3 A⊕2
3 A⊕4

1 A⊕2
1 ⊕ A3 A⊕2

2 A⊕2
1 A⊕4

1

n = 11,22:

i 21 23 23

Type A⊕4
1 A⊕2

1 A⊕4
1

n = 12:
i 18 22 23

Type D4 A⊕3
1 ⊕ A2 A⊕4

1

n = 13,24,28,29,37,40,43,44,45,59,60,67,69,71,77,80:

i 23

Type A⊕2
1
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n = 14,26:

i 18 22 23

Type A3 A1 ⊕ A2 A⊕2
1

n = 15,30:

i 19 22 23

Type A⊕3
2 A⊕3

2 A⊕3
1

n = 17:
i 19 19 21 21 22 23 23 23

Type A⊕2
2 A2 ⊕ D4 A3 A⊕2

3 A⊕2
2 A⊕2

1 A⊕4
1 A⊕5

1

n = 19,20,36,47,61:

i 19 23

Type A⊕2
2 A⊕2

1

n = 21:
i 23 23

Type A⊕4
1 A⊕8

1

n = 23,39:

i 23 23 23

Type A⊕2
1 A⊕4

1 A⊕4
1

n = 25,27,42,50,57,75:

i 23

Type A⊕4
1

n = 31:
i 19 19 22 23

Type A2 A2 A2 A1

n = 32:
i 19 20 20 22 23

Type A3 A⊕2
1 A4 A1 ⊕ A2 A⊕2

1

�{v ∈ NG | 〈v, v〉 = −4} 14 22

(continued)
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n = 34:

i 19 19 21 21 21 22 23 23 23 23

Type A⊕2
2 A2 ⊕ A3 A⊕2

1 A⊕2
1 ⊕ A3 A3 A⊕2

2 A⊕2
1 A⊕2

1 A⊕3
1 A⊕4

1

n = 35,51:

i 21 21 23 23 23

Type A⊕2
1 A⊕4

1 A1 A⊕2
1 A⊕2

1

n = 38,54:

i 18 22 23

Type A2 A2 A1

n = 41:
i 23 23 23

Type A⊕2
1 A⊕2

1 A⊕2
1

�{v ∈ NG | 〈v, v〉 = −4} 26 26 42

n = 46:
i 22 22 23

Type A⊕2
1 ⊕ A2 A1 ⊕ A⊕2

2 A⊕3
1

n = 48:
i 19 22 23

Type A2 A2 A1

n = 49:
i 23 23 23

Type A1 A⊕4
1 A⊕5

1

n = 52,53,68,72,78:

i 23 23

Type A1 A⊕2
1

n = 55:
i 19 22 22 23 23

Type D4 A2 A⊕2
2 A⊕3

1 A⊕4
1
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n = 56:
i 23 23

Type A⊕2
1 A⊕2

1

�{v ∈ NG | 〈v, v〉 = −4} 26 42

n = 58:
i 23 23

Type A⊕2
1 A⊕2

1

n = 62:
i 22 23

Type A2 A1

n = 63:
i 22 22 23

Type A⊕3
1 A⊕2

1 ⊕ A2 A⊕3
1

�{v ∈ NG | 〈v, v〉 = −6} 14 26

n = 64,73,81:

i 23 23

Type A⊕3
1 A⊕4

1

n = 65:
i 23 23 23 23

Type A1 A⊕2
1 A⊕3

1 A⊕4
1

n = 66,76:

i 23 23 23

Type A1 A1 A⊕2
1

n = 70:
i 19 22 23 23

Type A3 A2 A1 A⊕2
1

n = 74:
i 21 23 23

Type A3 A⊕2
1 A⊕3

1

(continued)
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n = 79:
i 22 23 23

Type A⊕2
2 A⊕2

1 A⊕3
1

Appendix: computations using GAP

In this appendix, we briefly explain how to check Lemmas 8.2–8.4 using
GAP [12].

For Lemma 8.2, consider the case H = T192 (= G77). By Table 10.4, it
is sufficient to check that there exists only one conjugacy class of sub-
groups of T192 which are isomorphic to T24 = G37 (resp., (Q8 ∗ Q8) � C3 =
G69). GAP has the catalog of all groups of small orders, and the command
SmallGroup(k, i) returns the ith group of order k in the catalog (see [2]). For
example, SmallGroup(192,1493) returns T192 by Table 10.2. The command
IsomorphicSubgroups(G,H) enumerates all conjugacy classes of subgroups
of G which are isomorphic to H . Hence, we can check the assertion as fol-
lows.*

gap> h:=SmallGroup(192,1493);;

gap> g1:=SmallGroup(24,3);;

gap> g2:=SmallGroup(96,204);;

gap> Size( IsomorphicSubgroups( h , g1 ) );

1

gap> Size( IsomorphicSubgroups( h , g2 ) );

1

Here the command Size(a) returns the size of the object a. The cases
H = T48,H192,M20 are similar.

For Lemma 8.3, we realize G,G̃ as quotient groups of subgroups of S36.
For example, the linear transformations

(x, y, z, u, v,w) → (e2πi/6x, y, z, u, v,w),

(x, y, z, u, v,w) → (y,x, z, u, v,w)

correspond to

(1 2 3 4 5 6),

(1 7)(2 8)(3 9)(4 10)(5 11)(6 12),

respectively. We can check Lemma 8.3 as follows.

*A command terminated by two semicolons does not show the result.
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a1:=(1,2,3,4,5,6);

a2:=(7,8,9,10,11,12);

a3:=(13,14,15,16,17,18);

a4:=(19,20,21,22,23,24);

a5:=(25,26,27,28,29,30);

a6:=(31,32,33,34,35,36);

a123456:=a1*a2*a3*a4*a5*a6;

b123:=(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)*

(6,12,18);

b456:=(19,25,31)(20,26,32)(21,27,33)(22,28,34)*

(23,29,35)(24,30,36);

b23:=(7,13)(8,14)(9,15)(10,16)(11,17)(12,18);

b56:=(25,31)(26,32)(27,33)(28,34)(29,35)(30,36);

b14:=(1,19)(2,20)(3,21)(4,22)(5,23)(6,24);

b2536:=(7,25,13,31)(8,26,14,32)(9,27,15,33)*

(10,28,16,34)(11,29,17,35)(12,30,18,36);

g0:=Group(

a1^3*a2^3,

a4^3*a5^3,

a5^2*a6^4*b123,

a2^4*a3^2*b456,

a1^3*a2^3*a3^3*b23*b56,

a123456

);

gg0:=ClosureGroup(gg0, b14*b2536 );

n:=Group(a123456);

f:=NaturalHomomorphismByNormalSubgroup(gg0,n);

g:=Image(f,g0);

gg:=Image(f);

list:=[[48,49],[48,30],[96,195],[144,184]];

for nn in list do

subgrps:=IsomorphicSubgroups(gg,SmallGroup(nn));

subgrps:=Filtered(subgrps,x->IsSubgroup(g,Image(x)));

Display(Size(subgrps));

od;

Here, for example, a1^3*a2^3 corresponds to the transformation (8.6).
The quotient groups g, gg by the group n, which corresponds to the subgroup
of homothetic transformations, are G,G̃, respectively. By Table 10.4, it is
sufficient to check that there exists only one conjugacy class of subgroups
of G̃ which are isomorphic to Gn and contained in G for n = 52,53,68,72.
This is done in the last paragraph of the above program. The result is the
following:
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1

1

1

1

Thus, Lemma 8.3 has been checked. Lemma 8.4 is similarly checked.
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