Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10059

ICEDYS!

Dallas. TX

Al-Based Management and Generation Of
Non-Functional Requirements in Vehicle
Development and Integration

Mahmoud Bazzal ©-'»%3, Adriana Lungu?, Benjamin Kruse?, Ruslan Bernijazov “-' and
Roman Dumitrescu !

"Paderborn University, Paderborn, Germany, 2AUDI AG, Ingolstadt, Germany

X mahmoud.bazzal@hni.uni-paderborn.de

ABSTRACT: As modern technical systems grow in complexity, ensuring the quality of these systems during early
development phases becomes more challenging. This is particularly evident in the development of modern
passenger vehicles, where non-functional requirements (NFRs) play a critical role in ensuring that a vehicle
operates according to specified standards and expectations, especially across different vehicle configurations and
environmental conditions. The introduction of Artificial Intelligence (AI) in automotive engineering has
transformed the approach to vehicle system design and development. This paper presents a pipeline for analyzing
and generating NFRs for vehicle systems using generative Al-based methods. The pipeline categorizes NFRs,
explores their interdependencies with vehicle configurations and environmental conditions, and addresses the
completeness of NFRs in relation to specific vehicle use cases. The paper focuses on selecting appropriate NFR
types for various use cases, taking into account diverse configurations and environmental factors. Examples of
NFRs with varying parameters are provided for an electric vehicle under development at a leading car
manufacturer, illustrating the benefit as well as the challenges of applying generative Al to automotive engineering.

KEYWORDS: Vehicle Development, Systems Engineering, Non-Functional Requirements, Machine Learning,
Artifcial Intelligence

1. Introduction

With the increasing functionality of modern technical systems, especially in the automotive industry, the
complexity of these systems has grown rapidly. As a result, ensuring that these systems meet their quality
and performance expectations—such as safety, reliability, performance, and scalability—has become an
essential focus during their development (Ardagna and Bena, 2023). This focus on non-functional
aspects is evident in the development of modern vehicles (Shankar et al., 2020), following the steps
already established in the software engineering discipline (Olsina et al., 2024).

Non-Functional Requirements (NFRs) are defined as those that specify criteria that can be used to judge
the operation of a system, rather than specific behaviors (Board, 2024). Due to their importance, the
complete, consistent, and unambiguous definition and management of NFRs becomes critical in the early
stages of vehicle development. These requirements must be thoroughly described during the concept
phase, when the use cases of the vehicle are being determined. The definition of these requirements is
considered a criterion for the success of development project (Saroja and Haseena, 2023). Defining NFRs
at this stage ensures that the system will meet the desired standards across all intended operational
conditions, thus preventing the system from operating incorrectly, while risking undiscovered issues due
to failures in testing (Eckhardt et al., 2016). Therefore, ensuring that the entire spectrum of NFRs is

ICED25 449

https://doi.org/10.1017/pds.2025.10059
https://orcid.org/0000-0002-0364-7753
https://orcid.org/0000-0002-7465-7211
https://orcid.org/0009-0009-6877-740X
mailto:mahmoud.bazzal@hni.uni-paderborn.de

addressed at the conceptual level can stabilize system design and guide the integration of various
components into a cohesive and vehicle system that performs up to the expected standards.

1.1. Problem Description

Manually documenting and analyzing all potential NFRs for a given use case across different system
configurations and operational environments is a daunting task. As the number of system configurations
and external factors (e.g., environmental conditions, network connectivity, and interactions with external
systems) increases, the complexity of identifying and Defining NFRs escalates. Manual methods often
struggle to capture all these aspects comprehensively and accurately, leading to incomplete or ambiguous
requirements. Furthermore, given the dynamic nature of modern vehicle systems, these requirements
must be continuously updated and validated, adding another layer of difficulty to the process.

1.2. Solution

Recent advances in Generative Al (GenAl) - referring to Al systems that create new content by learning
patterns from large datasets - offer promising solutions in terms of the processing and analyzing natural
language. It can also help with generating text that includes complex interconnected information
(Vaswani et al., 2023; Brown et al., 2020).

Given the nature of non-functional requirements, it is possible to use GenAl to streamline and automate
the management of NFRs in complex systems. GenAl can help accelerate the process of creating, refin-
ing, and validating non-functional descriptions of use cases. GenAl tools can also support the automatic
identification of missing or ambiguous NFRs, ensuring greater completeness and consistency across
different configurations and operational scenarios. In this paper, we show how leveraging GenAl
techniques for the management of NFRs can help during the development process of modern passenger
vehicles. We propose a GenAl-driven pipeline to (i) analyze and improve existing NFRs that describe
vehicle use cases early in vehicle development process, and (ii) generate missing NFRs to establish a
complete description of all relevant quality metrics of a vehicle use case. More concretely, this paper
aims to answer the following research questions:

* How to address issues such as the validity of NFRs under external conditions and system
configurations as well as their completeness

* How to apply these approaches specifically to vehicle development, which is yet to be addressed
by existing work.

Our approach automates the generation and validation of NFR descriptions for diverse system
configurations and environments, improving both the quality and completeness of the NFR management
process. Through a series of experiments, we demonstrate the potential of our approach in a real-world
development process at a leading automotive manufacturer, providing a novel solution to an increasingly
critical challenge in automotive engineering.

The remainder of this paper is structured as follows: section 2 discusses existing literature that addresses
the analysis of NFRs. Section 3 discusses the main contribution of this paper, namely, NFR management
using GenAl techniques. Section 4 discusses the implementation of the pipeline using various prompting
techniques. Section 5 discusses the results of applying the approach presented in this paper in the
development of a vehicle at a leading automobile manufacturer. Finally, Section 6 presents the
conclusion and results, and possible future contributions that build on it.

2. Related work

Given the recent advances in Machine Learning and GenAl, specifically the approaches of Natural
Language processing (NLP) and Large Language Models (LL.Ms), there have been a number of works in
recent years that focus on applying these technologies to requirements engineering, including Non-
Functional Requirements (Habibullah et al., 2023).

One prominent approach for the Al-enabled NFR analysis involves using machine learning models to
classify and prioritize NFRs. For example, (Li and Nong, 2022) used embedding models to classify
NFRs out of a given corpus of text by developing a neural network model called NFRNet. Other works

450 ICED25

have used supervised learning (Kurtanovic” and Maalej, 2017), semi-supervised learning (Casamayor
et al., 2010), transfer learning Hey et al., (2020) approaches for the identification, classification, and
clustering of NFRs (Baker et al., 2019).

Additionally, there have been a variety of attempts to standardize NFRs with approaches such as
structured english (for example with the help of LLMs (Norheim and Rebentisch, 2024)) or structured
syntax such as EARS (Mavin et al., 2009).

However, most of the existing work on NFRs concerns the identification and classification of NFRs, and
is mainly focused on applications in the software engineering discipline (Lopez-Hernandez et al., 2021).
In this paper, all the described processing steps are performed with the use of prompting an LLM. These
prompts are designed to simulate a conversation between a user and the LLM while stepping through the
process of managing requirement for the system under development (Vaswani et al., 2023). This
methodology has already been used in the literature, particularly for tasks such as data analysis,
summarizing information, and even writing assistance (Brown et al., 2020).

3. Non-Functional Requirement Management

This section provides a concise overview of the proposed pipeline and then details each step in depth. The
pipeline begins by processing and classifying the given requirements into functional and non-functional
ones. It then maps the identified non-functional requirements to relevant use cases, vehicle configura-tions,
and environmental conditions. Finally, it ensures that all relevant quality categories are covered by
generating missing NFRs and formalizes each requirement for easier verification and validation.

Requirement Processing Requirement Mapping i Ci

N

Use Cases

o

Input
requirements

/) Translate N\ /) I
{ A \ [Identify Missing |
/ N
{ Requr:r“::tS to) \ NFRs for Use Case /
N\ g / - ~ o /
(. N\ - -
/ Assign NFR to Use)
\ Case /

i

— ~ - ~ Categories of NFRs to Generate
,/Classwy Functional/
[Non-Functional |
N VVRequ\remen(s %

Use Case NFR Mapping

/. i
/ Generate Missing |

2 —>
\ NFRs for Use Case)
NFR List o /
World -
Descrinti

) - Generated Missing NFRs
V4 N\
(Classify Non-Functional) Vo
" Requirements | 3
\ 4 (Infer Envrionmental
N 4 (

\ Conditions for NFR /
AN /

e ™\
Display Results }
A ,,/

NFR-Environmental
conditions Mapping [

AN

Vehicle

Formalized Existing NFRs

‘,/ Infer Vehicle \\ Y — ~
> C"”ﬁg“’\;::”s for) [Formaiize existing '\
N 4 \ NFRs /
S A 4
Requirement-Category NFR-Vehicle
Mapping Configurations Mapping

Figure 1. An activity diagram describing the Non-Functional Requirement processing pipeline,
including requirement processing, mapping, and completion/formalization steps

Figure 1 provides an overview of the overall processing pipeline. It takes a Use Case List, and Input
Requirements as input, and is divided into three main phases: Requirement Processing, Requirement
Mapping, and Requirement Completion and Formalization. Moreover, it uses Vehicle Configurations
and Environmental Conditions as configuration parameters. The output is a consistently structured and

ICED25 451

Table 1. NFR Categories considered in this paper

NFR Category Description
Performance (Speed) Describes the speed or acceleration capability of the vehicle.
(Response Time) Quantifes the time required for an action to be executed.
(Throughput) Describes the amount of executions of a given action per time unit.
Effciency (Range) Describes the system’s power usage with regard to the vehicle’s range.
(Compute) Describes the system’s computational resource usage (e.g., processing
power, memory).
Reliability (Success) Quantifes the probability of the system producing the correct output
given correct input.
Stability Describes the system’s ability to execute actions consistently for a

defined duration under extreme or varying conditions.

testable set of NFRs, complemented by automatically generated NFRs to ensure the completeness of the
non-functional description for each use case.

In the following we describe the input parameters of the pipeline in Section 3.1, the processing steps
in Section 3.2, and provide an application example in Section 3.3 that also illustrates the final pipeline output.

3.1. Input Parameters

The pipeline’s input consists of three main components. First, a Use Case List describing the intended
operational scenarios of the vehicle is provided. These use cases define the context in which the
requirements will be evaluated, such as “Route Calculation” or “Visualize Map.” Second, Input
Requirements represent initial system specifications that may include functional and non-functional
aspects, potentially in various languages and formats. For instance, a given requirement might state: “Die
Berechnungszeit der Route zum Ziel bis zu 1000 km mit Ladepausen im Offline-Modus muss kleiner
oder gleich 0,2 Sekun-den sein.” (German text. Translation: The calculation time of the route to the
destination up to 1000 km with charging stops offline must be less than or equal to 0.2 seconds.)
Additionally, Vehicle Configurations detail known or assumed configurations such as battery size,
vehicle class, or drive type. If explicit configurations or environmental conditions are missing, default
assumptions are applied. Similarly, a set of representative environmental conditions in which the vehicle
is supposed to operate are defined.

The input parameters can thus be text documents or spreadsheets containing these requirements, use
cases, vehicle configurations, and environmental conditions. While formats may vary, the pipeline
assumes textual input and infers context and granularity from the provided data.

3.2. Processing Steps

3.2.1. Requirement Processing

The first phase of the pipeline focuses on translating and classifying requirements. Initially, the pipeline
translates all Input Requirements into English to ensure a uniform linguistic basis for further analysis. It
then performs an FR-NFR classification step, separating functional requirements (which describe what
the system should do) from non-functional requirements (which describe how well the system shoul
perform under certain conditions.)

Once NFRs are identified, the pipeline classifies each NFR into one of several predefined categories.
Table 1 shows the categories used in this paper. The Performance category covers aspects such as speed,
response time, and throughput. The Efficiency category addresses aspects like range and computational
resource usage. The Reliability category focuses on success probabilities, and the Stability category
ensures consistent operation under varying or extreme conditions. By the end of the Requirement
Processing phase, each NFR is clearly identified, assigned a category, and associated with an appropriate
NFR level, forming a robust foundation for subsequent steps.

3.2.2. Requirement Mapping

After classifying the requirements, the second phase maps each NFR to a specific use case, ensuring
that the identified non-functional qualities are tied to a realistic operational context. For instance,a

452 ICED25

Table 2. Environmental conditions that could apply to given NFRs

Environmental Condition Possible Conditions Default Condition
Road Tilt [—25%, +25%] 0%
Road Conditions Off Road, Highway, Dry, Snow Dry
Weather Conditions Rain, Heavy Rain, Fog, Wind, Heat, Normal
Extreme Heat, Cold, Extreme Cold, Normal
Network Conditions 5G, 4G/LTE, GSM, No Service 5G
Road Infrastructure Electronic Road Signs, Smart Traffic Lights, Electronic Road Signs

Highway with Construction Works

Table 3. Pre-defined vehicle configurations that could apply to given NFRs

Vehicle Configuration Possible Configurations Default Configuration
Vehicle Class Basic, Main Class, Sport, Offroad Main Class

Vehicle Trim Basic Edition, Limited Edition Basic Edition

Battery Size 80,95,110 KWh 80 KWh

Drive Profile Normal, Eco, Performance, Performance+ Normal

Drive Type Rear Wheel Drive, All Wheel Drive Rear Wheel Drive
Wheel Size 18,19,21,22 inch 18 inch

performance-related NFR mentioning route calculation (either implicitly or explicitly) is mapped to the
“Route Calculation” use case. This ensures that each NFR is not only defined in the abstract but it is
grounded in a scenario the vehicle must handle and can be tested and validated under this scenario. In
addition to linking NFRs to use cases, this phase infers environmental conditions and vehicle
configurations required for testing or validating the NFR. If a requirement does not specify certain
conditions—such as weather or road type—default conditions from Table 2 are applied. Similarly, if no
vehicle configuration is given, a default configuration from Table 3 is chosen (e.g., “Main Class” vehicle,
“Normal” drive profile). By the end of the Requirement Mapping phase, each NFR is fully
contextualized with both operational scenarios and technical parameters, reflecting the complexity and
variability of the vehicle’s operating environment. Note that the configurations and environmental
conditions used here will also be used to quantify requirements generated to describe extreme vehicle
configurations and environmental conditions.

3.2.3. Requirement Completion and Formalization

In the final phase, the pipeline ensures completeness and clarity of the NFR set. It checks for missing
NFR categories for each use case scenario. If some categories are absent—for example, if only
performance requirements are defined but no reliability or efficiency requirements exist—the pipeline
generates additional NFRs using a generative Al approach. These newly created requirements ensure that
all critical quality dimensions are addressed, resulting in a comprehensive and complete requirements
specification. For example, the “Generate Missing NFRs for Use Case” step in Figure 2 shows an
example of two generated NFRs for the use case “route calculation,” that are generated to cover the
“reliability (success)” and “performance (compute)” NFR categories.

Once the complete set of NFRs is established, the pipeline formalizes all requirements using standardized
templates, similar to the EARS syntax (Mavin et al., 2009). This step ensures consistency and testability,
allowing for straightforward integration into verification and validation activities. Each formalized NFR
includes references to its category, its assigned NFR level, and its associated environmental conditions
and vehicle configurations, providing a structured and easily interpretable representation of the non-
functional qualities that the vehicle must fulfill.

3.3. Application Example with Integrated Pipeline Output

In figure 2 we consider an initial requirement and a set of use cases being used as the inputs to the
pipeline. Furthermore, we provide a simplified version of the world model and vehicle configurations as

ICED25 453

described in Section 3.2.2. The figure shows how the pipeline processes these given inputs and
configura-tion parameters by translating the requirement to english, classifying it as a use-case related
requirement, and also as a Performance (Response Time) requirement, then mapping it to the use case
“Route Calculation” which is more relevant than “Visualize Map”. The pipeline then infers that the
requirement applies when there is no network service (text mentions offline). The default configuration
for vehicle configurations is then inferred and the requirements is then formalized according to the given
template. Finally, the pipeline assumes the further need for ‘“Reliability (Success)” and ‘“Performance
(Compute)” requirements, that are then generated.

Requirement
ing i Mapping i 4

Use Cases:
> - Route Calculation
Die Berechnungszeit der Route zum e - Visuailze Map P
Ziel bis zu 1000 km mit Ladepausen ranslate " \
im Offline-Modus muss kleiner oder Requirementﬁ > R Mlssg;gseNFRs for Use /

gleich 0,2 Sekunden sein. to English Y,

Assign NFR to Use Case
Reliability (Success), Performance (Compute)

Route C: ion i

Generate Missing NFRs for Use Case

fassify Functionall Non-Functional w World Description:
Requirements J - Weather Conditions - The success rate of use case "Route

- Network Conditions calculation" shall be above 97%.
- During use case "Route calculation" the
/ n vehicle shall use at most 50 MIPS.
NFR_UC < Infer Envrionmental
- . Conditions for NFR

The calculation time of the route to the destination
up to 1000 km with charging stops offline must be
less than or equal to 0.2 seconds.

{

Display Results)

Classify Non-Functional Requiremen(s> Network Conditions: No Service —
The response time of use case "Route
calculation” shall be less than 0.2 seconds for
calculating the route to the destination up to
1000km with charging stops offline

Vehicle Configurations:
~Vehicle Class
- Wheel Size |

|}

e f/ ~
Performance (Response Time) Infer Vehicle 5 . N .
[— Configurations for NFR j—>| Vehicle Class: Main Class r\Formahze existing NFRs
~ -

Figure 2. An activity diagram illustrating an example of the pipeline being applied for a given input
requirement, and a list of use cases. Note that the elements colored as yellow are the outputs of
each processing steps

The Pipeline Output for this example would be a finalized set of NFRs that not only includes the original
performance-oriented requirement, but also newly generated NFRs that ensure a balanced coverage of all
relevant quality categories. Each resulting NFR is expressed in a standardized, testable form, similar to
the EARS requirement syntax, referencing its applicable category, NFR level, environmental conditions,
and vehicle configurations. This structured output can then be used in subsequent verification and
validation processes, ensuring a comprehensive and context-aware quality specification for the vehicle’s
operational scenarios.

4. Implementation

The solution presented in this paper is implemented through a series of chained and structured prompts,
orchestrated within Azure Promptflow, utilizing a company-specific deployment of the GPT-40 Large
Language Model (LLM).

A prompt typically comprises three main parts: the system, the assistant, and the user. The system serves
as the framework or context in which the Al operates. It defines the environment, including the rules,
guidelines, and limitations that the assistant must follow. The assistant interprets the user’s input and acts
according to the parameters defined by the system. The user is the individual who interacts with the Al
system, providing input in the form of questions, requests, or instructions.

The implementation follows a standardized prompt design, with each prompt adhering to a predefined
template. The template for each prompt includes the following components:

* Input Definition: This section specifies the data or context provided to the LLM, establishing the
basis for generating relevant and appropriate responses.

* Requirement Engineering Task: This component defines the specific task or objective to be
performed by the LLM, guiding it in executing the desired actions based on the provided input.

454 ICED25

* Output Definition: This describes the expected structure and content of the LLM’s output,
providing a clear framework for the desired result.

» Examples: For prompts using single-shot (Kojima et al., 2023) or few-shot (Brown et al., 2020)
prompting techniques, examples of inputs and corresponding outputs are provided. These
examples demonstrate the expected approach the LLM should follow, facilitating effective task
execution.

The following listing shows the the prompt used to map a each NFR in a given list to one or multiple use
cases as described in Section 3.2.2:

system:
[Input Definition]
You are a requirements Engineer working in the automobile industry.
You are given a list of non-functional requirements.
Each non-functional requirement describes the quality, performance,
reliability, stability, or throughput of the system in a certain
use case context.
You are also given a list of use cases which describe the functional
capabilities of the vehicle system.
[Requirement Engineering Task]
You will associate each non-functional requirement to a use case from
the provided use case list.
[Output Definition]
You shall produce your output as a Json array with the following format:
[Format omitted for brevity]
Where “requirement_text” is the requirement being considered, and
“associated_use_case” is the english name of a use case from the use case
list you decided to assign to this requirement.
You will always translate the use case name to english.
It is possible to associate a requirement with multiple use cases.
If you cannot find an appropriate use case for a given requirement, you will
assign it to “N/A”
You will produce the output similar to the following example:
[Example omitted for brevity]
You shall ONLY produce a valid Json.
user:
Perform the described requirements engineering task on the following
information:
non-functional requirements: {{filtered_nfr_list}} use cases:
{{use_case_list} }

Given the choice that all prompts utilize the GPT-40 LLM, a key parameter influencing the behavior of
the LLM is the temperature setting, which controls the randomness and creativity of the model’s outputs.
The temperature parameter ranges from 0 to 2. A low temperature (e.g., 0.2) generates more deterministic
outputs, suitable for tasks requiring precision, consistency, and factual accuracy, such as data retrieval,
summarization, or structured tasks Vaswani et al. (2023); Brown et al. (2020). On the contrary, a high
temperature (e.g., 1.5) encourages greater randomness and diversity in the outputs, which is suitable for
tasks that benefit from varied responses, such as ideation, content generation, or problem-solving.
Table 4 outlines the specific prompting techniques and LLM temperature settings used in the
implementation.

As shown in the table, we have used the default temperature value for most prompts, which have been
observed to keep the the generation of undesired tokens to a minimum. In addition, we observed that
tasks depending on the standard knowledge of the LLM have performed well with zero-shot prompting
without the need to provide examples. Which is in line with the findings in (Kojima et al., 2023), while
prompts requiring a specific knowledge about the form of the given requirements and use cases per-
formed better with few-shot and single-shot prompting. Note that the assignment of NFRs to use cases

ICED25 455

Table 4. The configurations and prompting techniques of prompts implementing the
pipelineshown in figure 1

Processing Step Prompting Technique LLM Temperature
Translate Requirements to English Zero-Shot 1.0
Classify Functional/ Non-Functional Requirements Zero-Shot 1.0
Classify Non-Functional Requirements Few-Shot 1.0
Assign NFR to Use Case Single-Shot 1.2
Infer Environmental Conditions for NFR Single-Shot 1.0
Infer Vehicle Configurations for NFR Single-Shot 1.0
Identify Missing NFRs for Use Case Single-Shot 1.0
Generate Missing NFRs for Use Case Zero-Shot 1.0
Formalize Existing NFRs Zero-Shot 1.2

as well as NFR formalization are performed while adjusting the LLM temperature to 1.2 to allow for
more diversity in the formalized NFR text, as well as ensuring that NFRs are assigned to the correct use
case, even if the requirement text doesn’t explicitly mention the use case name, or the use case lacks a
proper description.

5. Evaluation

The evaluation of the NFR management pipeline presented in this paper was conducted by generating
outputs based on a set of 442 input requirements, which were divided into two distinct sets. The first set
comprised relatively simple requirements that had already been partially formalized, while the second set
consisted of more sophisticated and heterogeneous requirements. These complex requirements described
a comprehensive range of vehicle configurations and environmental conditions, relevant to the
development of a fictional vehicle.

The inputs used for the evaluation describe use cases corresponding to four distinct features of the
vehicle: navigation, sound, digital assistance (all three belonging to the first requirement set), and
acceleration (belonging to the second requirement set.) These features were specifically selected to reflect
the relevant aspects of the pipeline that are being validated, ensuring that the pipeline could handle a
variety of requirements with varying levels of complexity.

The outputs were subjected to an evaluation process conducted by a panel of six experts in vehicle
functional and system architecture, of the evaluated vehicle features at a major car manufacturer. These
experts assessed the relevance, coherence, and technical soundness of the generated outputs, by either
accepting or rejecting each part of the output for each NFR in their corresponding area of expertise. Their
feedback focused on the alignment of the generated responses with the associated vehicle features, as
well as their practical applicability to the development process. For example, the NFRs generated by the
requirement formalization step have been evaluated on their conformance with an internal set of
requirement templates for the respective NFR category.

Based on the experts’ assessment, the accuracy of each step in the pipeline was calculated as shown in
Table 5. Accuracy in this context is considered as the ratio of results accepted by the experts responsible
for a given feature to the overall number of results produced by the pipeline.

The results in table 5 reveal that the NFR classification step performed better with the requirement set 2.
This is because the complex set had requirements at a consistent level of granularity, aligning well with
the pipeline’s capabilities to process sophisticated vehicle configurations and environmental conditions.
In contrast, the simple set (requirement set 1) contained many vague or imprecise requirements, such as
those describing features as “comfortable” to passengers, which the pipeline struggled to handle due to
their lack of clear definition.

Other steps in the pipeline performed better in the requirement set 1 because many of the included
requirements resembled the provided templates, which the pipeline could more easily process. However,
miscalculation of NFRs in the early stages led to inaccuracies in later steps, particularly during NFR
formalization and vehicle configuration/environmental condition mapping. These misclassified
requirements resulted in incorrect outputs, highlighting an area for improvement in the pipeline’s
initial classification process.

456 ICED25

Table 5. Individual Prompt accuracy

Prompt Total Results Rejected Results Accuracy
Requirement Set 1: Navigation, Sound, Digital Assistant

FR-NFR Classification 328 53 84%
NFR Classification 50 4 92%
Use Case Mapping 50 0 100%
Environmental Conditions Mapping 50 1 98%
Vehicle Configurations Mapping 50 1 98%
Existing NFR Formalization 50 3 96%
New NFR Generation 40 2 95%
Requirement Set 2: Acceleration

FR-NFR Classification 114 9 92%
NFR Classification 12 3 75%
Use Case Mapping 12 0 100%
Environmental Conditions Mapping 12 1 92%
Vehicle Configurations Mapping 12 0 100%
Existing NFR Formalization 12 6 50%
New NFR Generation 28 7 75%

Additionally, the generation of new NFRs worked better for the simpler use cases in navigation, sound,
and digital assistance, as these involved fewer vehicle configurations and environmental conditions. This
simplicity allowed the pipeline to more easily generate relevant NFRs. In contrast, the complex use cases
introduced greater variability, challenging the pipeline’s ability to produce reasonable combinations of
vehicle configurations and environmental conditions for new requirements that reflect both nominal and
corner cases in terms of the use case being considered.

Finally, while the pipeline automates the entire process described in this paper, preparing the inputs is
still done manually. For example, describing the environmental conditions and possible vehicle
configurations is currently done manually, and could be automated.

6. Conclusion and Outlook

In this paper, we presented a generative Al-based pipeline for analyzing and generating non-functional
requirements (NFRs) for vehicle systems, particularly focusing on their interdependencies with vehicle
configurations and environmental conditions. By automating the categorization and generation of NFRs,
our approach addresses a critical challenge in modern automotive engineering, ensuring that complex
vehicle systems meet quality standards across diverse use cases and operational environments. Through a
series of examples, we demonstrated the practical benefits of applying this pipeline to an vehicle under
development, illustrating both its potential and the challenges of adapting generative Al to this domain.
The results show that generative Al can significantly improve the completeness of the NFR management
process, providing a structured and scalable approach to handling the increasing complexity of modern
vehicle systems during early development phases. However, the application of Al in this context also
reveals challenges, particularly in accurately identifying and dealing with more heterogeneous or
ambiguous sets of NFRs, as well as analyzing requirements that concern different levels of granularity in
the system. As such, there remains considerable potential for refi nement in the pipeline, particularly in
enhancing the accuracy of NFR generation for more dynamic and complex configurations. Additionally,
the discussed results’ evaluation by the vehicle architecture experts showed a general acceptance of this
pipeline as a tool to improve the effciency of NFR management, where all the existing information
regarding NFRs were structured in an efficient manner. All interviewed experts showed high acceptance
for integrating this pipeline in their workflows.

Looking forward, the integration of generative Al into the development of vehicle systems extend
beyond NFR management to include using these NFRs to support decisions taken during the system
architecture phase of development as well as automated testing. Future work will focus on improving the
pipeline’s ability to handle a wider variety of vehicle configurations and environmental factors, as well as
incorporating feedback mechanisms that allow continuous learning and adaptation of the Al models.
As a next step, we plan to further use the results of this pipeline when specifying the logical and physical
vehicle architecture, in order to enhance the overall quality and safety of modern vehicles.

ICED25 457

Acknowledgements
The authors would like to thank AUDI AG for supporting and funding the research project.

References

Ardagna, C. A. and Bena, N. (2023). 2. non-functional certification of modern distributed systems: A research
manifesto.

Baker, C., Deng, L., Chakraborty, S., and Dehlinger, J. (2019). Automatic multi-class non-functional software
requirements classification using neural networks. In 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), volume 2, pages 610-615.

Board, S. E. (2024). The guide to the systems engineering body of knowledge (sebok), v. 2.11. Hoboken, NJ: The
Trustees of the Stevens Institute of Technology. Accessed 11.12.2024. www.sebokwiki.org.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, 1., and Amodei, D. (2020). Language models are few-shot learners.

Casamayor, A., Godoy, D., and Campo, M. (2010). Identification of non-functional requirements in textual
specifications: A semi-supervised learning approach. Information and Software Technology, 52(4):436—445.

Eckhardt, J., Vogelsang, A., and Fernindez, D. M. (2016). Are ‘“non-functional” requirements really
nonfunctional? an investigation of non-functional requirements in practice. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, page 832-842, New York, NY, USA.
Association for Computing Machinery.

Habibullah, K., Gay, G., and Horkoff, J. (2023). Non-functional requirements for machine learning: understanding
current use and challenges among practitioners. Requirements Engineering, 28.

Hey, T., Keim, J., Koziolek, A., and Tichy, W. F. (2020). Norbert: Transfer learning for requirements
classification.ln 2020 IEEE 28th International Requirements Engineering Conference (RE), pages 169-179.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. (2023). Large language models are zero-shot
reasoners.

Kurtanovic’, Z. and Maalej, W. (2017). Automatically classifying functional and non-functional requirements
using supervised machine learning. In 2017 IEEE 25th International Requirements Engineering Conference
(RE), pages 490-495.

Li, B. and Nong, X. (2022). Automatically classifying non-functional requirements using deep neural
network.Pattern Recognition, 132:108948.

Lopez-Hernandez, D. A., Octavio Ocharan-Hernandez, J., Mezura-Montes, E., and Sanchez-Garcia, A. J. (2021).
Automatic classification of software requirements using artifcial neural networks: A systematic literature
review. In 2021 9th International Conference in Software Engineering Research and Innovation
(CONISOFT),pages 152-160.

Mavin, A., Wilkinson, P., Harwood, A., and Novak, M. (2009). Easy approach to requirements syntax (ears). In
2009 17th IEEE International Requirements Engineering Conference, pages 317-322.

Norheim, J. J. and Rebentisch, E. (2024). Structuring natural language requirements with large language models.In
2024 IEEE 32nd International Requirements Engineering Conference Workshops (REW), pages 68-71.
Olsina, L., Becker, P., Papa, M. F., and Rossi, G. (2024). Concepts and applicability of non-functional requirements

for particular and universal things. In 2024 L Latin American Computer Conference (CLEI),pages 1-10.

Saroja, S. and Haseena, S. (2023). Functional and non-functional requirements in agile software development.

Shankar, P., Morkos, B., Yadav, D., and Summers, J. D. (2020). 2. towards the formalization of non-functional
requirements in conceptual design. Research in Engineering Design.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2023).
Attention is all you need.

458 ICED25

	AI-Based Management and Generation Of Non-Functional Requirements in Vehicle Development and Integration
	1.. Introduction
	1.1.. Problem Description
	1.2.. Solution
	2.. Related work
	3.. Non-Functional Requirement Management
	3.1.. Input Parameters
	3.2.. Processing Steps
	3.2.1.. Requirement Processing
	3.2.2.. Requirement Mapping
	3.2.3.. Requirement Completion and Formalization
	3.3.. Application Example with Integrated Pipeline Output
	4.. Implementation
	5.. Evaluation
	6.. Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

