SOME LOWER BOUNDS FOR DENSITY OF MULTIPLE PACKING

W.J. Blundon

(received January 10, 1964)

1. Introduction. A system of circles is said to form a k-fold packing of the plane if every point of the plane is an interior point of at most k circles. In this paper we consider only lattice packings, that is, we suppose that the centers of the circles form a lattice. We further restrict our consideration to circles of equal radius. Without loss of generality, the circles may have unit radius.

The least upper bound for fixed k of the density of such packings taken over every lattice in the plane is denoted by d_k and is called the closest k-fold lattice packing of equal circles in the plane. The determination of a general formula for d_k seems to be a difficult problem. In a recent survey of current developments in discrete geometry, L. Fejes Tóth [3] has remarked that final results in this direction are not to be expected. Even finding d_k for individual small k has proved to be at the least quite tedious.

A more tractable problem is the search for good lower bounds for d_{μ} . It is known that

(1)
$$d_1 = \pi/2\sqrt{3} = 0.9069...,$$

and it is easily proved [1] that

$$d_k/kd_1 \ge 1.$$

Canad. Math. Bull. vol. 7, no. 4, October 1964

Heppes [4] has proved that equality holds in (2) only for k < 5. Blundon [2] has proved that

(3)
$$d_k/kd_1 \ge (k^2 - 1)/k(k^2 - 4)^{1/2}, k \ge 5$$
.

The central idea of the proof is essentially due to Heppes, and makes use of a lattice which is the union of k congruent lattices, each of these lattices having a rhombus of side 2 as its fundamental parallelogram.

For large k the inequality (3) is very little better than (2). The purpose of this paper is to prove an inequality which is as good as (3) for $k \ge 5$ but much stronger than (3) for all $k \ge 10$. It may happen that the new inequality is best possible for several values of k. Blundon [1] has shown that this is the case for k = 5 and k = 6, thereby proving that $d_5/5d_1 = \frac{8}{35}\sqrt{21} = 1.0475...$ and that $d_6/6d_1 = \frac{35}{48}\sqrt{2} = 1.3012...$ However, the results stated in the theorems that follow are far from complete, since simple considerations of density show that, as $k \to \infty$, $d_k/kd_4 \to 1/d_4 = 1.1026...$

Note: Every plane lattice has a reduced basis consisting of two points (P and Q, say) such that $|P| \le |Q| \le |Q-P|$. With suitable coordinates we can take P = (a, 0) and Q = (g, h) such that a > 0, $0 \le g \le \frac{1}{2}a$, $g^2 + h^2 \ge a^2$.

THEOREM I. Let d_k represent the density of closest k-fold lattice packing of equal circles in the plane. Let $c = [k\theta]$, where $\theta = \frac{1}{13}(6 - \sqrt{10}) = 0.21828...$ Let $f(x) = (1 - x^2)/(1 - 4x^2)^{1/2}$. Then

(4)
$$\frac{d_k}{kd_1} \ge f(c/k), \quad \text{for } k \ge 5,$$

and a reduced basis for the lattice providing this packing is given by the points

(a, 0) and (0, h) for even k (a, 0) and $(\frac{1}{2}a, h)$ for odd k,

where $a^2 = \frac{12}{(k^2 - c^2)}$ and $h^2 = \frac{k^2 - 4c^2}{(k^2 - c^2)}$.

THEOREM II. For every $\varepsilon>0, \mbox{ there exist arbitrarily large positive integers k such that }$

(5)
$$d_k/kd_1 > f(\theta) - \varepsilon$$

where

(6)
$$f(\theta) = \frac{41\sqrt{5} + 20\sqrt{2}}{845} (5 + 16\sqrt{10})^{1/2} = 1.0585...$$

2. Construction of the lattice. Let \bigwedge_0 be a lattice with fundamental parallelogram ABCD having AB = BC = CD = DA = 2 and BD < 2. Then circles of unit radius centred at the vertices of ABCD cut the diagonal AC at points P,Q,R,S such that AP = BQ = BR = DQ = DR = CS = 1. Since QR/AC varies between 0 and 1/2 and since $k \ge 5$, the length of AC may be so chosen that k.QR/AC is an integer c. Let AC/k = a, so that AC = ka and QR = ca. The diagram below illustrates the case k = 14, c = 3. Let BD = 2h. Then $1 - (\frac{1}{2}ca)^2 = h^2 = 4 - (\frac{1}{2}ka)^2$, whence

(7)
$$a^2 = \frac{12}{k^2 - c^2}, h^2 = \frac{k^2 - 4c^2}{k^2 - c^2}.$$

The following lemma plays an important part in the proof of the theorems.

LEMMA. If $c < k\theta$, where $\theta = \frac{1}{13}(6 - \sqrt{10})$, then $PQ > \frac{1}{2}QR$.

<u>Proof.</u> We have 2AQ = (k - c)a, AP = 1, QR = ca, 2PQ = (k - c)a - 2. Now $c < k\theta$ implies that $13c^2 - 12ck + 2k^2 > 0$, which may be put in the form

Figure 1

568

 $3(k - 2c)^2 > k^2 - c^2 = 12/a^2$. Since k - 2c is clearly positive, this gives k - 2c > 2/a, that is, (k - c)a - 2 > ca. Thus 2PQ > QR and the lemma is proved.

3. <u>Proof of Theorem I.</u> The union of the k lattices $\Lambda_i = \Lambda_0 + \frac{i}{k} \overrightarrow{AC}$ (i = 0, 1, 2, ..., k-1) is itself a lattice Λ . By the definition of Λ_0 , it follows that Λ is generated by the points

> (a, 0) and (0, h) for even k (a, 0) and $(\frac{1}{2}a, h)$ for odd k,

where a, h are given by (7) and the diagonals of ABCD are taken as the coordinate axes. The relations $k \ge 5$ and $c/k < \theta = \frac{1}{13}(6 - \sqrt{10})$ give

$$4h^{2}/3a^{2} = \frac{1}{9}k^{2}(1 - 4c^{2}/k^{2}) > \frac{25}{9}(1 - 4\theta^{2}) = \frac{25}{507}(16\sqrt{10} - 5) > 1$$

so that $h/a > \sqrt{3}/2$. Hence the stated generating points form a reduced basis.

We prove next that \wedge does in fact provide a k-fold packing of the plane. No point of the rhombus ABCD can be covered by more than two circles of \wedge_0 , namely, those centred at B and D. The only other possibility is that the circle centred at D may be overlapped by a circle centred at $2B + \frac{i}{k}\overrightarrow{AC}$. A necessary condition for such an overlapping is that 3h < 2. Since $h^2 = (k^2 - 4c^2)/(k^2 - c^2)$, this would give $c^2/k^2 > 5/32 > 1/9$ so that $\theta > c/k > \frac{1}{3}$, which contradicts the definition of θ .

It follows that the only points of ABCD covered by exactly two circles of \bigwedge_0 are those in the intersection of the interiors of the circles centred at B and D. No circle of \bigwedge_0 contains any point of PQ or RS. The Lemma ensures

that any point of ABCD covered twice by circles with centres in \bigwedge_{i} is not covered by circles with centres in \bigwedge_{i-c} or \bigwedge_{i+c} . Therefore, no point of ABCD (and consequently by symmetry no point of the plane) can be covered by more than k circles with centres in \bigwedge . Thus the lattice \bigwedge provides a k-fold packing of the plane.

The determinant \triangle of the lattice \bigwedge is given by $\triangle = ah = 2\sqrt{(3k^2 - 12c^2)}/(k^2 - c^2)$. Now $d_k \ge \pi/\triangle$ and $d_1 = \pi/2\sqrt{3}$. Therefore $d_k/kd_1 \ge (k^2 - c^2)/k(k^2 - 4c^2)^{1/2}$ = f(c/k), and the proof of the theorem is complete.

4. <u>Proof of Theorem II.</u> Let $f(x) = (1-x^2)/(1-4x^2)^{1/2}$, with 0 < x < 1/2, so that f is continuous at every point. Then $f'(x)/f(x) = 2x(1+2x^2)/(1-x^2)(1-4x^2) > 0$, so that f(x)increases with x. Since θ is irrational, a rational fraction can always be found less than θ and arbitrarily close to θ . Take the denominator of this fraction as k and the numerator as c. Then it is clearly possible to find integers c and k such that f(c/k) is less than $f(\theta)$ and arbitrarily close to $f(\theta)$. Hence for every positive ε , there exist integers c, k such that $0 < f(\theta) - f(c/k) < \varepsilon$. Thus, by Theorem I, $d_k/kd_1 \ge f(c/k) > f(\theta) - \varepsilon$. (6) follows by straightforward computation. This completes the proof of Theorem II.

5. <u>Remarks</u>. A graph (for $k \le 25$) of lower bounds for d_k/kd_1 as given by the preceding theorems appears below. Suitable values for c, k in Theorem II can be found by expressing θ as a continued fraction and selecting those convergents less that θ . From $\theta = \frac{1}{13}(6 - \sqrt{10}) = [4, 1, 1, 2]$ we obtain the following table.

с	1	5	12	43	191	456	1633	• • •
k	5	23	55	197	875	2089	7481	

Note that the restriction on k in (4) is made for convenience. Actually (4) holds for all $k \ge 1$, since, for $1 \le k \le 4$,

we have c = 0 so that f(0) = 1. The inequality for these values then reduces to (2).

REFERENCES

- W. J. Blundon, Multiple packing of circles in the plane, J. London Math. Soc. 38(1963), 176-182.
- W.J. Blundon, Note on a paper of Heppes, Acta Math. Acad. Sci. Hung. 14(1963), 317.
- 3. L. Fejes Tóth, Neuere Ergebnisse in der diskreten Geometrie, Elemente der Math. 15(1960), 25-36.
- A. Heppes, Mehrfache gitterförmige Kreislagerungen in der Ebene, Acta Math. Acad. Sci. Hung. 10(1959), 141-148.

Memorial University of Newfoundland

.