SOME LOWER BOUNDS FOR
 DENSITY OF MULTIPLE PACKING

W.J. Blundon

(received January 10, 1964)

1. Introduction. A system of circles is said to form a k -fold packing of the plane if every point of the plane is an interior point of at most k circles. In this paper we consider only lattice packings, that is, we suppose that the centers of the circles form a lattice. We further restrict our consideration to circles of equal radius. Without loss of generality, the circles may have unit radius.

The least upper bound for fixed k of the density of such packings taken over every lattice in the plane is denoted by d_{k} and is called the closest k-fold lattice packing of equal circles in the plane. The determination of a general formula for d_{k} seems to be a difficult problem. In a recent survey of current developments in discrete geometry, L. Fejes Tóth [3] has remarked that final results in this direction are not to be expected. Even finding d_{k} for individual small k has proved to be at the least quite tedious.

A more tractable problem is the search for good lower bounds for d_{k}. It is known that

$$
\begin{equation*}
d_{1}=\pi / 2 \sqrt{3}=0.9069 \ldots \tag{1}
\end{equation*}
$$

and it is easily proved [1] that

$$
\begin{equation*}
d_{k} / k d_{1} \geq 1 \tag{2}
\end{equation*}
$$

Canad. Math. Bull. vol. 7, no. 4, October 1964

Heppes [4] has proved that equality holds in (2) only for $k<5$. Blundon [2] has proved that

$$
\begin{equation*}
d_{k} / k d_{i} \geq\left(k^{2}-1\right) / k\left(k^{2}-4\right)^{1 / 2}, \quad k \geq 5 \tag{3}
\end{equation*}
$$

The central idea of the proof is essentially due to Heppes, and makes use of a lattice which is the union of k congruent lattices, each of these lattices having a rhombus of side 2 as its fundamental parallelogram.

For large k the inequality (3) is very little better than (2). The purpose of this paper is to prove an inequality which is as good as (3) for $k \geq 5$ but much stronger than (3) for all $k \geq 10$. It may happen that the new inequality is best possible for several values of k. Blundon [1] has shown that this is the case for $k=5$ and $k=6$, thereby proving that
$d_{5} / 5 d_{1}=\frac{8}{35} \sqrt{21}=1.0475 \ldots$ and that $d_{6} / 6 d_{1}=\frac{35}{48} \sqrt{2}=1.3012 \ldots$ However, he results stated in the theorems that follow are far from complete, since simple considerations of density show that, as $k \rightarrow \infty, d_{k} / \mathrm{kd}_{1} \rightarrow 1 / \mathrm{d}_{1}=1.1026 \ldots$

Note: Every plane lattice has a reduced basis consisting of two points (P and Q, say) such that $|P| \leq|Q| \leq|Q-P|$. With suitable coordinates we can take $P=(a, 0)$ and $Q=(g, h)$ such that $a>0,0 \leq g \leq \frac{1}{2} a, g^{2}+h^{2} \geq a^{2}$.

THEOREM I. Let d_{k} represent the density of closest k -fold lattice packing of equal circles in the plane. Let $c=[k \theta]$, where $\theta=\frac{1}{13}(6-\sqrt{10})=0.21828 \ldots$ Let $f(x)=\left(1-x^{2}\right) /\left(1-4 x^{2}\right)^{1 / 2}$. Then

$$
\begin{equation*}
d_{k} / k d_{1} \geq f(c / k), \quad \text { for } k \geq 5, \tag{4}
\end{equation*}
$$

and a reduced basis for the lattice providing this packing is given by the points

$$
\begin{aligned}
& (a, 0) \text { and }(0, h) \text { for even } k \\
& (a, 0) \text { and }\left(\frac{1}{2} a, h\right) \text { for odd } k,
\end{aligned}
$$

where $a^{2}=12 /\left(k^{2}-c^{2}\right)$ and $h^{2}=\left(k^{2}-4 c^{2}\right) /\left(k^{2}-c^{2}\right)$.
THEOREM II. For every $\varepsilon>0$, there exist arbitrarily large positive integers k such that

$$
\begin{equation*}
\mathrm{d}_{\mathrm{k}} / \mathrm{kd}{ }_{1}>\mathrm{f}(\theta)-\varepsilon, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
f(\theta)=\frac{41 \sqrt{5}+20 \sqrt{2}}{845}(5+16 \sqrt{10})^{1 / 2}=1.0585 \ldots \tag{6}
\end{equation*}
$$

2. Construction of the lattice. Let \wedge_{0} be a lattice with fundamental parallelogram $A B C D$ having $A B=B C=C D$ $=D A=2$ and $B D<2$. Then circles of unit radius centred at the vertices of $A B C D$ cut the diagonal $A C$ at points P, Q, R, S such that $A P=B Q=B R=D Q=D R=C S=1$. Since $Q R / A C$ varies between 0 and $1 / 2$ and since $k \geq 5$, the length of $A C$ may be so chosen that k. QR/AC is an integer c. Let $A C / k=a$, so that $A C=k a$ and $Q R=c a$. The diagram below illustrates the case $k=14, c=3$. Let $B D=2 h$. Then $1-\left(\frac{1}{2} c a\right)^{2}=h^{2}=4-\left(\frac{1}{2} k a\right)^{2}$, whence

$$
\begin{equation*}
a^{2}=12 /\left(k^{2}-c^{2}\right), \quad h^{2}=\left(k^{2}-4 c^{2}\right) /\left(k^{2}-c^{2}\right) . \tag{7}
\end{equation*}
$$

The following lemma plays an important part in the proof of the theorems.

LEMMA. If $c<k \theta$, where $\theta=\frac{1}{13}(6-\sqrt{10})$, then $P Q>\frac{1}{2} Q R$.

Proof. We have $2 A Q=(k-c) a, A P=1, \quad Q R=c a$, $2 P Q=(k-c) a-2$. Now $c<k \theta$ implies that $13 c^{2}-12 c k+2 k^{2}>0$, which may be put in the form

$3(k-2 c)^{2}>k^{2}-c^{2}=12 / a^{2}$. Since $k-2 c$ is clearly positive, this gives $k-2 c>2 / a$, that is, $(k-c) a-2>c a$. Thus $2 P Q>Q R$ and the lemma is proved.
3. Proof of Theorem I. The union of the k lattices $\Lambda_{i}=\Lambda_{0}+\frac{i}{k} \overrightarrow{A C}(i=0,1,2, \ldots, k-1)$ is itself a lattice Λ. By the definition of Λ_{0}, it follows that Λ is generated by the points

$$
\begin{array}{ll}
(a, 0) \text { and }(0, h) & \text { for even } k \\
(a, 0) \text { and }\left(\frac{1}{2} a, h\right) & \text { for odd } k,
\end{array}
$$

where a, h are given by (7) and the diagonals of $A B C D$ are taken as the coordinate axes. The relations $k \geq 5$ and
$c / k<\theta=\frac{1}{13}(6-\sqrt{10})$ give
$4 h^{2} / 3 a^{2}=\frac{1}{9} k^{2}\left(1-4 c^{2} / k^{2}\right)>\frac{25}{9}\left(1-4 \theta^{2}\right)=\frac{25}{507}(16 \sqrt{10}-5)>1$,
so that $h / a>\sqrt{3} / 2$. Hence the stated generating points form a reduced basis.

We prove next that Λ does in fact provide a k-fold packing of the plane. No point of the rhombus $A B C D$ can be covered by more than two circles of Λ_{0}, namely, those centred at B and D. The only other possibility is that the circle centred at D may be overlapped by a circle centred at $2 B+\frac{i}{k} A \vec{C}$. A necessary condition for such an overlapping is that $3 h<2$. Since $h^{2}=\left(k^{2}-4 c^{2}\right) /\left(k^{2}-c^{2}\right)$, this would give $c^{2} / k^{2}>5 / 32>1 / 9$ so that $\theta>c / k>\frac{1}{3}$, which contradicts the definition of θ.

It follows that the only points of $A B C D$ covered by exactly two circles of Λ_{0} are those in the intersection of the interiors of the circles centred at B and D. No circle of Λ_{0} contains any point of $P Q$ or RS. The Lemma ensures
that any point of $A B C D$ covered twice by circles with centres in Λ_{i} is not covered by circles with centres in Λ_{i-c} or Λ_{i+c}. Therefore, no point of $A B C D$ (and consequently by symmetry no point of the plane) can be covered by more than k circles with centres in Λ. Thus the lattice Λ provides a k-fold packing of the plane.

The determinant Δ of the lattice Λ is given by $\Delta=a h=2 \sqrt{\left(3 k^{2}-12 c^{2}\right)} /\left(k^{2}-c^{2}\right)$. Now $d_{k} \geq \pi / \Delta$ and $d_{1}=\pi / 2 \sqrt{3}$. Therefore $d_{k} / k d_{1} \geq\left(k^{2}-c^{2}\right) / k\left(k^{2}-4 c^{2}\right)^{1 / 2}$ $=f(c / k)$, and the proof of the theorem is complete.
4. Proof of Theorem II. Let $f(x)=\left(1-x^{2}\right) /\left(1-4 x^{2}\right)^{1 / 2}$, with $0<x<1 / 2$, so that f is continuous at every point. Then $f^{\prime}(x) / f(x)=2 x\left(1+2 x^{2}\right) /\left(1-x^{2}\right)\left(1-4 x^{2}\right)>0$, so that $f(x)$ increases with x. Since θ is irrational, a rational fraction can always be found less than θ and arbitrarily close to θ. Take the denominator of this fraction as k and the numerator as c. Then it is clearly possible to find integers c and k such that $f(c / k)$ is less than $f(\theta)$ and arbitrarily close to $f(\theta)$. Hence for every positive ε, there exist integers c, k such that $0<f(\theta)-f(c / k)<\varepsilon$. Thus, by Theorem I, $d_{k} / k d_{1} \geq f(c / k)>f(\theta)-\varepsilon$. (6) follows by straightforward computation. This completes the proof of Theorem II.
5. Remarks. A graph (for $k \leq 25$) of lower bounds for $d_{k} / k d_{1}$ as given by the preceding theorems appears below. Suitable values for c, k in Theorem II can be found by expressing θ as a continued fraction and selecting those convergents less that θ. From $\theta=\frac{1}{13}(6-\sqrt{10})=[4, i, 1,2]$ we obtain the following table.

c	1	5	12	43	191	456	1633	\ldots
k	5	23	55	197	875	2089	7481	\ldots

Note that the restriction on k in (4) is made for convenience. Actually (4) holds for all $k \geq 1$, since, for $1 \leq k \leq 4$,

we have $c=0$ so that $f(0)=1$. The inequality for the se values then reduces to (2).

REFERENCES

1. W.J. Blundon, Multiple packing of circles in the plane, J. London Math. Soc. 38(1963), 176-182.
2. W.J. Blundon, Note on a paper of Heppes, Acta Math. Acad. Sci. Hung. 14(1963), 317.
3. L. Fejes Tóth, Neuere Ergebnisse in der diskreten Geometrie, Elemente der Math. 15(1960), 25-36.
4. A. Heppes, Mehrfache gitterförmige Kreislagerungen in der Ebene, Acta Math. Acad. Sci. Hung. 10(1959), 141-148.

Memorial University of Newfoundland

