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Large-eddy simulation of gusty wind turbulence
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Wind gustiness in the marine atmospheric boundary layer affects significantly the
dynamics of air–sea interaction. To understand the impacts of wind gust events, we
perform large-eddy simulation of wind turbulence over a travelling wave to investigate
the response of the wind field to an impulsive wind speed increase or decrease. It is
found that the turbulence fluctuations and the terms in the turbulent kinetic energy budget
equation have a delayed response to the change in the mean flow, while the response of the
wave-coherent motions is quasi-stationary. The wave-coherent motions are investigated
quantitatively through comparison with a viscous curvilinear model developed by Cao
et al. (J. Fluid Mech., vol. 901, 2020, A27) and Cao & Shen (J. Fluid Mech., vol. 919, 2021,
A38). We observe an asymmetric hysteresis between the growing wind and the decaying
wind in the evolution of the form drag and the viscous drag. We find further that the
variation of the wave growth rate during the wind gust is related closely to the contribution
from the out-of-phase component of the vertical velocity. Our discoveries provide evidence
for the necessity of improving non-equilibrium turbulence and wind input modelling to
account for the wind gustiness effect in future studies.

Key words: air/sea interactions, atmospheric flows, turbulent boundary layers

1. Introduction

Wind gustiness is a ubiquitous phenomenon in the atmospheric boundary layer. When
the gustiness is strong, the variation in the wind speed becomes comparable to the
average value, which has significant effects on air–sea interactions. In weather and climate
models, the wind gustiness parametrization is important because computations based on
the average wind speed can underestimate the air–sea fluxes significantly, especially when
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the mean wind speed is low (Zeng et al. 2002). Additionally, the wind gustiness may affect
the upper ocean temperature (Giglio et al. 2017) and the fluctuations in the electricity
power output generated by wind turbines (Stevens & Meneveau 2017).

For the interaction between wind and waves, the gustiness effect is often found to be
non-negligible. In a laboratory experiment, Waseda, Toba & Tulin (2001) investigated
wave evolution in a water tank by imposing a sudden change in wind speed. They identified
the deviation from the 3/2 power law (Toba 1972) that indicates a local wind–wave
equilibrium state, i.e. Hs ∝ (gu∗)1/2T3/2

s , where Hs is the significant wave height, u∗ is
the air friction velocity and Ts is the significant wave period. Their results also showed
hysteresis in the wave height responses to increasing and decreasing wind. Abdalla &
Cavaleri (2002) used a random sequence to model the wind speed fluctuations, which was
incorporated into the wind input source term in an operational phase-averaged wave model
(Komen et al. 1994). Abdalla & Cavaleri (2002) then performed a series of simulations,
including idealized runs based on prescribed physical conditions, and practical runs
based on historical data from meteorological observations. Their results showed that the
gustiness effects on slow waves are limited, while for fast waves, a gusty wind field
can enhance significantly the wave growth compared with that under constant winds.
Annenkov & Shrira (2011) investigated numerically the evolution of a nonlinear wave field,
and found that the integral wave properties under a gusty wind forcing are consistent with
those under an effective constant wind forcing. It should be noted that the sources of the
gustiness used in the above two modelling-based studies are different. Abdalla & Cavaleri
(2002) considered the variations in the observable wind speed. Annenkov & Shrira (2011)
modelled the gustiness by adjusting the wave energy growth rate, which is challenging,
generally, to measure directly from observations. In a field study, Hwang, García Nava &
Ocampo-Torres (2011) observed that the wave energy growth in unsteady wind forcing is
quantitatively different from that in a steady forcing. Their results also provide evidence
of the hysteresis effect of wave development, namely, a much slower rate of change of the
characteristic wave properties in decaying wind speed than in the growing wind. More
recently, Zavadsky & Shemer (2017) performed a laboratory experiment to investigate the
initial wave generation from a quiescent surface under impulsive wind forcing. Model
development for gustiness effect is still at an early stage. In the European Centre for
Medium-range Weather Forecasts (ECMWF) model (ECMWF 2020), the gustiness impact
is parametrized through a simple model mainly to enhance the wind energy input to waves.

While the past several decades saw a growing number of studies on wind–wave
interaction, most of the theoretical and numerical studies assumed that the wind turbulence
is statistically stationary. In the quasi-laminar model proposed by Miles (1957), the wind
field is simplified as the superposition of a prescribed mean profile and wave-induced
resonant motions, while the effects of turbulence and viscosity are neglected. The critical
layer was found to play a dominant role in wave growth, which has been substantiated by
field observations (Hristov, Miller & Friehe 2003). Belcher & Hunt (1993) considered the
turbulence impact on the wave growth through the non-separated sheltering mechanism,
which was found to be important for slow waves. Nikolayeva & Tsimring (1986) and Miles
& Ierley (1998) considered the effect of wind gustiness in the study of wave growth. But
in both studies, the mean wind velocity profiles were assumed to be slowly varying in
time, and the transient dynamics were neglected in the equivalent steady flow. In canonical
numerical configurations (e.g. Sullivan, Mcwilliams & Moeng 2000), the wind turbulence
field is simulated over a monochromatic travelling wave, and this framework has been used
widely to explore the steady-state features of turbulent flows in wind–wave interactions.

946 A8-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.577


Gusty wind turbulence over a travelling wave

For example, Kihara et al. (2007) studied the dependence of wave-coherent motions on the
wave age. Yang & Shen (2010) showed a significant impact of wave on the near-surface
coherent vortical structures. Based on the transformed Navier–Stokes equations on a
boundary-fitted grid, Hara & Sullivan (2015) derived a momentum balance equation and
elucidated the role of the wave-induced stresses. Recently, Åkervik & Vartdal (2019)
proposed an approach to split the wind field into a shear flow and a wave-induced part. The
linear solution obtained using this method was found to capture the main features of the
flow in the cases with high wave ages, but large deviations were observed at low wave ages.
They also found that the nonlinear solution, which takes account of turbulence forcing,
is in close agreement with the large-eddy simulation (LES) results in both cases. Cao,
Deng & Shen (2020) developed a viscous curvilinear model to predict the wave-coherent
motions based on the mean wind velocity profile and the wave orbital velocity. The model
shows excellent performance when applied to wind over opposing waves and wind over
fast following waves, while for wind over slow following waves, notable discrepancies
between the model prediction and the simulation results were observed (Cao et al. 2020;
Cao & Shen 2021). Husain, Hara & Sullivan (2022a,b) performed numerical experiments
of wind turbulence when the waves are travelling at an oblique angle to the wind direction,
and they identified a strong impact of the oblique angles on the air–sea momentum flux.
In the studies reviewed above, the wind field is typically driven by a constant pressure
gradient in the domain or a constant velocity or shear stress at the domain top, and the
resulting turbulence statistics are stationary in time. Therefore, the wind–wave energy
transfer is determined by the steady-state variables, such as the characteristic wind speed
and the characteristic wave properties.

Some recent simulation-based studies have also investigated more complex physical
processes by taking into account the spatial/temporal heterogeneity in the wind–wave
system. For example, Yang, Deng & Shen (2018) studied the wind turbulence over breaking
waves, and elucidated the transient and non-equilibrium features of the turbulence locally
in space and time. Irregular broadband wave fields have also been used in the problem
set-up of several studies (Sullivan, McWilliams & Patton 2014; Wang et al. 2020),
although the temporal variation of the mean profile was not considered. Dynamically
coupled wind–wave evolution was studied recently by Hao & Shen (2019). In that
study, the pressure gradient used to drive the wind field was constant, and because the
characteristic time scale of the nonlinear wave evolution was considerably larger than
the wave periods, the wind turbulence field was largely statistically stationary in time. In
experimental studies, it is also common practice to maintain a certain wind speed (e.g.
Liberzon & Shemer 2011; Grare et al. 2013; Yousefi, Veron & Buckley 2020). While
spatial heterogeneity may appear in the water tank because of wave evolution downstream
(Zavadsky & Shemer 2012) and airflow separation (Buckley, Veron & Yousefi 2020), the
wind turbulence field is statistically stationary.

In summary of the reviews above, our knowledge on the non-stationary turbulence
features in wind–wave interaction subject to wind gustiness is rather limited. In the present
study, we investigate the response of an initially steady wind field above a prescribed
wave to a growing/decaying wind gust event. Our objective is to elucidate the key airflow
transient processes, including the evolution of turbulence and wave-coherent motions. We
also study the change in the wind–wave energy transfer associated with the gust, and
explore the underlying mechanisms. To achieve this goal, we perform LES of the wind
turbulence on a wave-boundary-fitted grid, a numerical framework that has been validated
in various studies (e.g. Yang & Shen 2011a,b; Hao & Shen 2019; Cao et al. 2020). We do
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not consider the wave evolution during the wind gust because the time scale of the wind
gust is only a few wave periods, and it has been shown that the time scale for the wave
to have noticeable change is much larger (Annenkov & Shrira 2011). The remainder of
this paper is organized as follows. In § 2, we introduce the simulation configuration and
the case design. In § 3, we present results on the overall wind field evolution (§ 3.1), the
transient features of the turbulent stresses (§ 3.2), the wave-coherent motions (§§ 3.3 and
3.4) and the wave growth rate (§ 3.5). Finally, conclusions are given in § 4.

2. Methodology and problem set-up

2.1. Large-eddy simulation on a boundary-fitted grid
Following our previous work (Hao & Shen 2019), the wind turbulence is simulated using
wall-resolved LES. The governing equations for the air motions are written as

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

−
∂τ d

ij

∂xj
+ ν

∂2ui

∂xj ∂xj
+ B(t) δi1, (2.2)

where ui(i = 1, 2, 3) = (u, v,w) denotes the filtered velocity in LES, p is the filtered
modified pressure, τ d

ij is the trace-free part of the subgrid-scale (SGS) stress tensor, ρ is
the air density, ν is the kinematic viscosity of air, B(t) denotes the driving force used
for the flow rate control, and x, y and z denote the streamwise, spanwise and vertical
coordinates, respectively. The domain sizes are denoted by Lx, Ly and Lz. The schematic
of the computational domain is shown in figure 1(a).

To account for the geometric deformation caused by the wave profile, the LES governing
equations are solved on a wave surface boundary-fitted grid via a transformation from the
physical space (x, y, z, t) to the computational space (ξ, ψ, ζ, τ ). The details of the grid
transformation and the numerical solver are provided in Appendix A. Here we give an
overview of the numerical scheme. Details can be found in Yang & Shen (2011a,b). At each
time step, the spatial derivatives in the horizontal directions are calculated using Fourier
transforms, and those in the vertical direction are calculated using second-order finite
differences. The SGS stress tensor is calculated using the dynamic Smagorinsky model
(Smagorinsky 1963; Germano et al. 1991; Lilly 1992). The momentum equation is first
advanced in time without the pressure term to obtain the interim velocity field. The Poisson
equation for the pressure is then solved, and the pressure field is used to correct the velocity
field to satisfy the continuity equation. The second-order Adam–Bashforth scheme is used
for time advancement. The simulation starts from randomly generated turbulent motions
imposed on a logarithmic mean velocity profile, with a flat bottom boundary initially
to expedite the simulation process. The wave kinematics are then incorporated into the
boundary condition through a relaxation process. More details and validations of the
numerical solver can be found in Yang & Shen (2011a,b), Cao et al. (2020) and Cao &
Shen (2021).

In previous studies on the steady state wind–wave interaction, the wind turbulence is
driven by a constant pressure gradient (e.g. Yang, Meneveau & Shen 2013; Åkervik &
Vartdal 2019; Wang et al. 2020), or by a constant velocity or shear stress at the top
boundary of the computational domain (Sullivan et al. 2000; Druzhinin, Troitskaya &
Zilitinkevich 2012; Cao et al. 2020; Cao & Shen 2021) to maintain a constant flow rate.
To model the wind gust event, we apply a time-varying pressure gradient ρB(t) to control
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B(t)

Q(t)
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Tg

Ly
Lz

Lx c
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z = η(x, y, t)

Tg

t t

t t

(a) (b) (c)

Figure 1. Sketch of (a) the computational domain, and the flow rate Q(t) response to the driving force B(t) in
(b) the growing wind and (c) the decaying wind.

the flow rate of the wind field. In the first stage of the simulation, this driving force is
set to guarantee a constant flow rate, which then varies linearly in a short time duration
0 < t < Tg. The expression for B(t) is

B(t) = dQ
dt

1
hLy

− τν(t)+ τp(t)
ρh

, (2.3)

where h = Lz is the vertical domain size, dQ/dt is the desired rate of change of the
volumetric flow rate Q, τν(t) is the total viscous drag at the top boundary and the wave
surface, and τp(t) is the form drag at the wave surface. Generally, the second term is
not a constant because τν(t) and τp(t) vary in time. However, its contribution to B(t)
is negligibly small compared with the first term in typical gust events. After the flow
rate has reached the designed value, the force is assigned a different value to maintain
the flow. For a growing wind, dQ/dt is positive (figure 1b), while for a decaying wind,
dQ/dt is negative (figure 1c). The flow rate control scheme used here is similar to that in
computational studies of transient turbulent channel flows (e.g. He & Seddighi 2015), and
is a close approximation to the wind speed control in laboratory studies (Waseda et al.
2001; Zavadsky & Shemer 2017).

The simulation parameters are summarized in table 1. To facilitate the decomposition
of the turbulence field, we adopt the canonical set-up of wind over a prescribed
monochromatic progressive wave. The wave steepness in our simulation is set to a
typical value ak = 0.05, where a is the wave amplitude, and k is the wavenumber.
A wide range of wave ages is selected for the initial wind–wave state, including both
slow waves (e.g. c/u∗ = 4.4 in case CU8) at the early stage of wind–wave generation
(Belcher & Hunt 1993; Janssen 2004), and fast waves (e.g. c/u∗ = 41.6 in case CU42)
that are typically found under swell-dominated sea conditions (Sullivan et al. 2008).
Following previous wind–wave studies (Henn & Sykes 1999; Calhoun, Street & Koseff
2001; Yang et al. 2013), we use a computational domain (Lx, Ly, Lz) = (2λ, λ, λ), where λ
is the wavelength. The domain size in the streamwise direction enables the simulation
of turbulence coherent motions larger than λ, and is sufficiently large to produce the
correct temporal correlation in the turbulence statistics (Hao, Cao & Shen 2021). The grid
number is Nx × Ny × Nz = 128 × 256 × 96. To capture accurately the turbulent motions
of the smallest eddies in the simulation, we choose the appropriate initial and final
Reynolds numbers such that the grid resolutions satisfy the criterion of wall-resolved LES
(Choi & Moin 2012). Note that the final Reynolds number in table 1 corresponds to the
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Case Gust event c+ = c/u∗ Reτ = u∗λ/ν (
ξ+,
ψ+,
ζ+
min)

CU8 Growing 8.3 → 4.4 2000 → 3805 (46.9, 11.7, 0.32) → (89.2, 22.3, 0.61)
Decaying 4.4 → 8.3 3805 → 2000 (89.2, 22.3, 0.61) → (46.9, 11.7, 0.32)

CU19 Growing 19.3 → 10.2 2000 → 3805 (46.9, 11.7, 0.32) → (89.2, 22.3, 0.61)
Decaying 10.2 → 19.3 3805 → 2000 (89.2, 22.3, 0.61) → (46.9, 11.7, 0.32)

CU42 Growing 41.6 → 21.9 2000 → 3805 (46.9, 11.7, 0.32) → (89.2, 22.3, 0.61)
Decaying 21.9 → 41.6 3805 → 2000 (89.2, 22.3, 0.61) → (46.9, 11.7, 0.32)

Table 1. Numerical parameters of the simulations. Here, c+ is the ratio of the wave phase velocity to the
instantaneous friction velocity u∗, also known as the wave age, Reτ is the Reynolds number based on the
friction velocity and the wavelength λ, (Nx,Ny,Nz) are the grid numbers, and (
ξ+,
ψ+,
ζ+

min) are
the sizes of the first grid above the wave surface, normalized in wall units. Note that 
ξ+ and 
ψ+ are
the effective values after accounting for de-aliasing in the Fourier spectral method.

Case Gust event Tg/T u∗Tg/h

CU8 Growing 0.44 0.053 → 0.10
Decaying 0.44 0.10 → 0.053

CU19 Growing 1.0 0.053 → 0.10
Decaying 1.0 0.10 → 0.053

CU42 Growing 2.2 0.053 → 0.10
Decaying 2.2 0.10 → 0.053

Table 2. Time duration of the wind gust event Tg, normalized by the wave period T and the largest eddy
turnover time h/u∗.

new equilibrium state of the wind turbulence after the simulations are performed for a
sufficiently long time after the wind gust ends. The simulations are performed in the fixed
frame of reference, and in the following analysis related to wave-coherent motions, a frame
translating with velocity (c, 0, 0) is considered.

The time scales of the wind gust are summarized in table 2. The wind gust duration
Tg is a few wave periods. Since there is no rigorous definition of a wind gust duration,
Tg is assumed equivalent to a dimensional time scale of O(1 − 10) s and therefore agrees
with the 20 s limit adopted by the U.S. National Weather Service and the 3 s standard
recommended by World Meteorological Organization (WMO) (2018). According to the
wave tank experiment of Waseda et al. (2001), the initial adjustment time of slow waves
(c/u∗ = 1 − 1.5) responding to the wind gust event is 15T–20T . They also showed that
for a field case (c/u∗ = 9), this time scale becomes 210T–420T . In the following analysis,
we focus on a short period during and after the wind gust event. Therefore, the changes in
the wave properties can be neglected.

For each case shown in table 1, the growing and decaying wind gust events are simulated
separately. We first perform the simulation at the initial Reynolds number, and after
a statistically stationary state is reached, we impose a gust event on the steady wind
turbulence field by varying the driving force B(t) as described in (2.3) and shown in
figure 1(b). Because of the rapid gust event, the wind turbulence field is non-stationary
and no longer ergodic. It is therefore inappropriate to approximate the Reynolds averaging
with the time averaging during this period. To address this issue, we perform 50 ensemble
runs for each simulation, so that the turbulence statistics can be calculated but with a
substantially increased computational cost. Note that for the above reason, some statistical
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results are less smooth compared to the steady setting where time averaging can be
performed, but this does not affect the conclusions of the analyses.

2.2. Triple decomposition and normalization
In the following analyses, the turbulence field is decomposed into three parts (Hussain &
Reynolds 1972):

u = 〈u〉 + u′ = U + ũ + u′, (2.4)

where U denotes the mean profile, ũ denotes the wave-coherent motions, and u′ is the
‘pure’ turbulent motion. The operator 〈·〉 is defined by the phase average of all ensemble
simulations,

〈u〉(ξ, ζ, t) = 1
NNy

∑
n,j

un(ξ − ct, yj, ζ, t), (2.5)

where un is the instantaneous quantity in the nth simulation (n = 1, . . . ,N; N = 50). The
phase-shift operation can be calculated conveniently via Fourier transform.

At each constant ζ , a wave-coherent component (take ũ as an example) can be written
as

ũ(x, t) = Re[ũ](t) cos(kx)− Im[ũ](t) sin(kx), (2.6)

where Re[ũ] and Im[ũ] are the real and imaginary parts of the Fourier coefficient,
respectively. Traditionally, Re[ũ] cos(kx) and Im[ũ] sin(kx) are also called the
in-phase and out-of-phase components, respectively (e.g. Belcher & Hunt 1993). An
alternative form is ũ(x, t) = |ũ| cos(kx + φũ), where |ũ| = (Re[ũ]2 + Im[ũ]2)1/2 and φũ =
tan−1(Im[ũ]/Re[ũ]) are the amplitude and phase of ũ, respectively. With respect to
the wave profile, the real (imaginary) part, i.e. the in-phase (out-of-phase) component,
corresponds to the symmetry (anti-symmetry) on the two sides of the wave crest.

Because of the gust events, the near-wall turbulence states, including the wall stress
and the friction velocity, are non-stationary. In the following analyses, we use two types
of scaling for normalization. Quantities with the superscript ‘+’ are normalized in the
instantaneous time-variant wall units. In the second type of scaling, we introduce the
superscripts ‘+0’ to denote the time-invariant normalization under the initial turbulent
flow condition in the growing wind, and the corresponding friction velocity is denoted by
u∗,0.

3. Results

3.1. Overview of wind turbulence field evolution
In this section, we first give an overview of the wind field evolution with a focus on the
turbulent motion (u′, v′,w′) defined in (2.4). For the length consideration of the paper,
we present results in the growing wind of case CU8 when the flow dynamics are similar
among the different cases in table 1. Figure 2 shows u′ and w′ at the start and end of the
growing wind gust. The magnitude of u′ is generally stronger than w′ at both t = 0 and
t = Tg, as shown by their contours on the x–z and y–z planes. The streaks near the wave
surface, denoted by the isosurfaces of u′, are enhanced significantly after the impact of the
wind gust. On the other hand, the isosurfaces of w′ at t = 0 and t = Tg are qualitatively
similar. Explanations for these differences are provided from the analyses in § 3.2.

The mean wind profiles before, during and shortly after the gust event are plotted
in figure 3. During the gust event 0 < t/Tg < 1, the mean flow away from the wave
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4

–4

x

z
y

u′+0(t = 0) w′+0(t = 0)

u′+0(t = Tg) w′+0(t = Tg)

(a) (b)

(c) (d )

Figure 2. Turbulent motions at (a,b) t = 0 and (c,d) t = Tg for the growing wind in case CU8. Plotted are the
contours of u′ and w′ on the x–z and y–z planes, and the isosurfaces corresponding to u′+0 = ±7 in (a,b) and
w′+0 = ±3 in (c,d), where the superscript ‘+0’ denotes the normalization based on the wall unit at the initial
state (see table 1).

10–1

10–2

10–3

10–1

10–2

10–3

0 10 20 30 40 0 10 20 30 40 50

U +0 U +0

ζ/λ
t/Tg = 0

t/Tg = 0.5

t/Tg = 1.0

t/Tg = 1.5

(a) (b)

Figure 3. Evolution of the mean wind velocity profiles in (a) the growing wind and (b) the decaying wind,
in case CU8. The profiles are normalized in the initial wall unit and plotted during 0 ≤ t/Tg ≤ 1.5. The black
dashed line denotes U = c.

surface (ζ > 0.01λ) experiences a similar change and the velocity profiles are shifted
by a roughly constant value. The dominant mechanism can be understood through the
averaged streamwise momentum equation, which reduces to ∂U/∂t = B(t) to the leading
order. Since B(t) is nearly a constant, the time variation in the mean profile is linear and
uniform. While a logarithmic region remains in the mean profile at the end of the gust
t = Tg, the wind turbulence is in a non-equilibrium state. Therefore, the slope of the mean
profile is no longer determined only by the friction velocity, and the mean profile cannot
be used to calculate the wave growth rate in the same way as when the wind turbulence is
steady (Miles 1957; Belcher & Hunt 1993) or quasi-stationary (Miles & Ierley 1998). In the
region near the wave surface ζ < 0.01λ, the velocity gradient (i.e. the mean shear) changes
significantly during the gust because of the boundary condition constraint imposed by the
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Figure 4. Vertical distribution of the Reynolds stresses for (a–c) the growing wind and (d–f ) the decaying
wind, in case CU8.

wave surface (see Appendix B). After the gust event, the wind field continues to evolve
(comparing the profiles at t = Tg and t = 1.5Tg in figure 3) and a new equilibrium state
can be established after a sufficiently long time. Compared with the wind gust event, the
temporal variations in the wind field after O(2Tg–4Tg) are less drastic in the return to
equilibrium and therefore excluded from the following analysis.

The response of turbulence to the wind gust is in sharp contrast to that of the mean
velocity profile. Figure 4 shows the profiles of Reynolds stress components at several time
instants during and after the wind gust event in case CU8. Here, 〈v′v′〉 is not plotted
because its evolution is qualitatively similar to 〈w′w′〉. When the growing wind gust occurs
(0 < t < Tg), we observe a rapid increase in the streamwise velocity fluctuations 〈u′u′〉
(figure 4a), while 〈w′w′〉 (figure 4b) has relatively stable values, and the evolution speed
of 〈u′w′〉 (figure 4c) is between those of 〈u′u′〉 and 〈w′w′〉. At t = 1.5Tg, the magnitudes
of all these Reynolds stress components become significantly larger as the turbulence field
continues to evolve. In the decaying wind (figure 4d–f ), the responses of the turbulent
stress first appear near the wave surface and then extend to the outer region. These results
are similar to the pipe flow experiment of accelerating and decelerating turbulence (He
& Jackson 2000). The behaviours of the turbulent stresses are related closely to the
gust-induced change in the mean shear. As shown above, the mean velocity profile exhibits
a linear and uniform time variation such that the mean shear remains constant in the outer
region and changes drastically only near the wave surface.
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Figure 5. Time variation of the peak values of the turbulence variances in (a) the growing wind and
(b) the decaying wind, in case CU8. Also plotted is the mean flow energy U2(t) at ζ = 0.051λ. All terms
are normalized by their values at t = 0.

The evolution of the Reynolds stresses is also demonstrated by tracking their peak
values in time, shown in figure 5. Here, we also plot the time variation of the mean
flow energy U2(t)/U2(0) in the region ζ > 0.01λ. As expected, the mean flow sees a
real-time response with the onset of the gust. The peak streamwise turbulence variation
〈u′u′〉p = max 〈u′u′〉 changes rapidly after a short delay. When the wind is growing, an
overshoot appears in 〈u′u′〉p after the gust ends, and its temporal evolution is qualitatively
similar to the channel flow result (He & Seddighi 2015). The other two components,
〈w′w′〉p and 〈−u′w′〉p, experience relatively less change in the growing and decaying
wind gust. Compared with the evolution of the mean flow energy, the turbulence
peak values show a delayed response (also known as the memory effect) to the gust.
Because of this phase delay, the turbulent kinetic energy (TKE) relative to the mean
energy, i.e. 〈u′

iu
′
i〉/U2, decreases in the growing wind and increases in the decaying

wind. Detailed explanations are provided by the turbulence budget analysis in the next
subsection.

3.2. Transient behaviours of a Reynolds stress budget and wave-induced effect
We perform a Reynolds stress budget analysis in this subsection to investigate the
mechanism responsible for the turbulent stress evolution shown in § 3.1. In a previous study
by Yang & Shen (2010), the budget of the TKE under the steady wind–wave condition was
obtained. The detailed budget for the Reynolds stress components in unsteady wind fields
over waves, however, was rarely reported. Following the work of Xuan, Deng & Shen
(2020) on Langmuir turbulence under waves, we can write the Reynolds stress budget
equation of wind turbulence in the frame of reference moving with the wave as

∂〈u′
iu

′
j〉

∂t
= −(U − c) · ∇〈u′

iu
′
j〉︸ ︷︷ ︸

A

+ ν ∇2〈u′
iu

′
j〉︸ ︷︷ ︸

Dν

− 〈u′
iu

′
k〉
∂Uj

∂xk
− 〈u′

ju
′
k〉
∂Ui

∂xk︸ ︷︷ ︸
Pm

− 〈u′
iu

′
k〉
∂ ũj

∂xk
− 〈u′

ju
′
k〉
∂ ũi

∂xk︸ ︷︷ ︸
Pw
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Figure 6. Time variation of the integrated budget terms for 〈u′u′〉 for (a) the growing wind and (b) the
decaying wind in case CU8. All terms are normalized by P̆m

11(t = 0).

− 1
ρ

(
∂〈p′u′

i〉
∂xj

+
∂〈p′u′

j〉
∂xi

)
︸ ︷︷ ︸

Tp

+
〈

p′

ρ

(
∂u′

i
∂xj

+
∂u′

j

∂xi

)〉
︸ ︷︷ ︸

R

−
∂〈u′

iu
′
ju

′
k〉

∂xk
−
∂〈u′

iτ
d
jk〉

∂xk
−
∂〈u′

jτ
d
ik〉

∂xk︸ ︷︷ ︸
Tt

− 2ν

〈
∂u′

i
∂xk

∂u′
j

∂xk

〉
︸ ︷︷ ︸

ε

, (3.1)

where A is the advection, Dν is the viscous diffusion, Pm is the production by the mean
shear, Pw is the production by the wave-coherent motions, Tp is the pressure transport, R
is the pressure–strain correlation, Tt is the spatial flux associated with turbulence and SGS
stress, and ε is the dissipation. For the non-stationary turbulence field with the wind gust
over the wave, each budget term is a function of two spatial coordinates (i.e. ξ and ζ ) and
the time.

To investigate the time evolution of a budget term, we perform the integration along both
the ξ and ζ directions to evaluate its net contribution in the entire domain. For example,
with the dissipation, we define

ε̆ij(t) = 1
LxLz

∫
εij(ξ, ζ ) dξ dζ, (3.2)

where the integral, denoted by ˘( ), is performed in the whole computational domain (He
& Seddighi 2013); alternatively, it can be computed separately in part of the domain
(Lozano-Durán et al. 2020), e.g. in the buffer layer and the logarithmic layer. The net
contributions of the other budget terms (P̆m

ij , R̆ij, etc.) are calculated following (3.2).
The time history of the net contributions for 〈u′u′〉 is shown in figure 6, where the

dominant budget terms are plotted and the secondary terms are neglected for simplicity.
The rapid change in the production by the mean shear P̆m

11 is a key contributor to the time
variations of 〈u′u′〉. In both growing wind and decaying wind, there is a clear phase lag in
the pressure–strain correlation R̆11, compared with the production P̆m

11 and the dissipation
ε̆11. The net contribution of the normal components of the pressure–strain correlation
terms, R̆11, R̆22 and R̆33, to the TKE vanishes because their role is to redistribute the energy
among the different normal Reynolds stress terms through the pressure. The direction of
the energy transfer is predominantly from 〈u′u′〉 to 〈v′v′〉 and 〈w′w′〉, as indicated by the
negative R̆11 in figure 6. Therefore, the delay of R̆11 compared with P̆m

11 explains the phase
lag of 〈w′w′〉 with respect to 〈u′u′〉 (figure 5).
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Figure 7. Turbulence production by the mean shear for the growing wind at (a) t = 0 and (b) t = Tg, in case
CU8. Note that the contour magnitudes are different in (a) and (b).

To evaluate the wave-induced effect, we now examine the spatial distributions of the
turbulence production associated with the mean shear, Pm

11, and the wave-coherent shear,
Pw

11, defined in (3.1). As shown from comparison between figures 7(a) and 7(b), the
magnitude of Pm

11 increases drastically during the growing wind gust in case CU8, while
the spatial distributions are unaffected. In particular, the positive peak values of Pm

11 appear
on the leeward side of the wave crest, which is similar to the steady wind turbulence
in previous numerical studies (e.g. Yang & Shen 2010). A similar feature was observed
for the total turbulence production in the tank experiment by Yousefi, Veron & Buckley
(2021). Since the change in the turbulent stress is relatively small during the gust, the time
variation of Pm

11 is caused primarily by the mean shear evolution near the wave surface
(figure 22). In the decaying wind case, the qualitative features of Pm

11 are similar except
that its magnitude decreases during the gust (results not plotted).

Figure 8 shows the spatial distribution of the turbulence production by the
wave-coherent shear, Pw

11, in the growing wind. The wind gust induces a change in both the
magnitude and spatial patterns of Pw

11, because of the variation in the wave-coherent shear
∂ ũi/∂xj. The contours of Pw

11 then show a strong dependency on the wave age. While the
net contribution of Pw

11 integrated over a wavelength at a constant ζ is small, it has a local
magnitude of the same order as the mean-shear production Pm

11 (see e.g. figures 7b and
8b), which imposes a strong modulation on the local turbulence field by the wave. For the
decaying wind, the evolution of Pw

11 is qualitatively a time reversal of figure 8 (not plotted).
These transient features of Pw

11 are associated closely with those of the wave-coherent
velocity field, with more detailed analyses presented in § 3.3 below.

The locally axisymmetric turbulence hypothesis is an important aspect in the
characterization of turbulent flows. According to the theory developed by George &
Hussein (1991), one can validate the hypothesis by examining the relation between certain
components of the mean square velocity gradient(

∂u′
i

∂xj

)2

=
(
∂u′

l
∂xm

)2

, (3.3)

where ( ) denotes the (combined) ensemble and plane averaging, and (i, j, l,m) =
(1, 2, 1, 3), (2, 1, 3, 1), (2, 3, 3, 2), (2, 2, 3, 3). Here, we assume that x1 is the preferred
local axis. To facilitate analysis, we first perform an interpolation in the vertical direction
to transform the velocity field from the original boundary-fitted grid to a Cartesian grid
where x1, x2 and x3 correspond to the streamwise, spanwise and vertical directions.
The velocity gradients are then calculated in regions above the wave crest. The ratios
(∂u′

i/∂xj)2/(∂u′
l/∂xm)2 are qualitatively the same in all cases, and we present the results in
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Figure 8. Turbulence production by the wave-coherent motions for the growing wind in (a,b) case CU8,
(c,d) case CU19, and (e, f ) case CU42. Plotted are the normalized values Pw

11/ku3
∗,0 at t = 0 and t = Tg.

the growing wind for case CU8 as an example in figure 9. For an exact axisymmetric
turbulent flow, all these ratios should be unity. In our simulation, their profiles show
strong deviations from one below z ∼ O(0.1λ) (figure 9a). The time history of the ratios
at z ≈ 0.1λ is shown in figure 9(b). Because of the memory effect in the turbulence
response to the wind gust event, most (∂u′

i/∂xj)2/(∂u′
l/∂xm)2 are nearly unchanged at this

height, except for the one with (i, j, l,m) = (1, 2, 1, 3). We find that this phenomenon
is caused mainly by a rapid change in (∂u′

1/∂x3)2 that is associated closely with the
streamwise streak variation during the wind gust (see figure 2). The ratios corresponding
to (i, j, l,m) = (1, 2, 1, 3) and (2, 3, 3, 2) satisfy the locally axisymmetric turbulence
hypothesis with a 5 % error, while for (i, j, l,m) = (2, 1, 3, 1) and (2, 2, 3, 3), the errors
are larger (20 %–40 %). In general, the wind turbulence field shows a roughly local
axisymmetry away from the wave surface. We remark that for wind turbulence over waves,
the calculation of (∂u′

i/∂xj)2 is non-trivial because of the wave-coherent motions (in the
wind field) and the fluctuating surface, and therefore more systematic study is needed to
examine whether (3.3) is a good indicator of a streaky turbulence structure.

We next consider the ratio between the turbulent stress components in the inner layer,
which, according to Belcher & Hunt (1993), can be estimated from TD(zi) = TL(zi). Here,
zi is the top of the inner layer, TD(zi) = zi/u∗ is the eddy turnover time scale, and TL(zi) =
k/(U(zi)− c) is the advection time scale for wind flow past a wavelength. During the wind
gust, the inner layer thickness decreases from 0.076λ to 0.036λ for the growing wind, and
increases from 0.043λ to 0.087λ for the decaying wind, in case CU8. To ensure that the
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Figure 9. Ratios of the mean square velocity gradient in the growing wind for case CU8: (a) vertical profiles
at t = 0; (b) time variations at height z = 0.1λ.
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Figure 10. Time variations of the ratio of the turbulent normal stress to the turbulent shear stress at height
z = 0.036λ in case CU8. Also plotted are the values corresponding to an equilibrium boundary layer over a
wave (Belcher & Hunt 1993): −〈u′2〉/〈u′w′〉 = 6.3 and −〈w′2〉/〈u′w′〉 = 1.7, denoted by the black dashed line.

analysis is performed in the inner layer, here we choose the fixed height at z = 0.036λ,
which is close to the inner layer thickness found for wind turbulence at the wave age 6.5 in a
tank experiment (Buckley & Veron 2016). Figure 10 shows the time variation of the ratio of
the turbulent normal stress to the turbulent shear stress, which was assumed to be constant
in the inner layer by Belcher & Hunt (1993) in their study of steady wind over waves. Our
result, at the equilibrium state (t = 0), shows that the stress ratio is only slightly less than
their recommended value. Similar to the turbulent stress, the stress ratio has a delayed
response to the gust. While the time variation of −〈w′2〉/〈u′w′〉 is relatively small, the
wind gust impact is significant for −〈u′2〉/〈u′w′〉 (note the different scalings of the vertical
coordinates in figures 10a,b). In summary, we find that compared to statistically steady
wind, the gust induces appreciable differences to the turbulence, and the delayed response
to the gust event is a key feature of the transient behaviours of the turbulence field. The
properties of the mean square velocity gradient indicate that the local axisymmetry may
exist in the wind turbulence field away from the wave surface, while the (more restrictive)
conditions for local isotropy are less likely to be satisfied.

3.3. Evolution of wave-coherent motions
This subsection focuses on the transient features of the wave-coherent streamwise velocity
ũ, vertical velocity w̃ and pressure p̃, which are useful for the quantitative analyses in the
following subsections. We first illustrate ũ and w̃ for the growing wind cases at the initial
steady state t = 0 and the end of the gust t = Tg, as plotted in figure 11. For all three cases,
the contour patterns of the wave-coherent motions under the unsteady wind condition are
qualitatively similar to those under the steady wind condition, as long as their wave ages
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Figure 11. Wave-coherent streamwise velocity and its phase angle relative to the surface elevation for the
growing wind in (a,b) case CU8, (c,d) case CU19, and (e, f ) case CU42. The results are plotted at (a,c,e) t = 0
and (b,d, f ) t = Tg. Also listed is the instantaneous wave age c/u∗. Here, ũ is normalized by u∗,0.

are in the same range. In the small wave age range (c/u∗ ∼ 10, see figures 11a,b,d), ũ shows
the non-separated sheltering feature, which corresponds to a phase shift of π/2 near the
wave surface. The distribution of ũ varies drastically with height near the wave surface.
Because the wave ages throughout the gust event in case CU8 are in the same range,
the contour shapes of ũ are qualitatively unchanged during the gust despite a significant
increase in its magnitude (comparing figures 11a,b). In case CU19, the wave-coherent
motions at t = 0 decrease rapidly with height, and overall their magnitudes are relatively
small in most of the domain. For the wave age in this case, the gust event has a profound
effect on both the magnitude and the contour pattern of the wave-coherent motions. Most
notably, the contours of ũ near the wave surface are tilted towards the −x direction at
t = 0, and the +x direction at t = Tg (figures 11c,d). In the intermediate wave age, i.e.
c/u∗ ∼ O(20), the contour patterns correspond to a phase shift of 2π with the height from
z = 0 to z = 0.05λ (see figures 11c, f ). Note that the discontinuity near z = 0.01λ–0.02λ
is due to the definition of the phase angle, which limits φũ between −π and π. For the
fast propagating wave at t = 0 in case CU42 (see figure 11e), ũ is nearly symmetric with
respect to the wave surface except for a thin layer near the wave surface (for a similar
pattern, see Cao & Shen 2021).

The distributions of w̃ in the growing wind are plotted in figure 12. Compared with
the streamwise velocity ũ with complex contour patterns, w̃ exhibits relatively simple
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Figure 12. Same as figure 11, but for the vertical wave-coherent velocity w̃.

spatial distributions. Regardless of the wave age and the time instant, the imaginary part of
w̃ always dominates, i.e. φw̃ ≈ ±π/2 in the entire domain. When the wave age is not large
(figures 12a,b,d), φw̃ changes from −π/2 to π/2, while for the relatively large wave ages
in figures 12(c,e, f ), φw̃ has a constant value close to −π/2 in the region z < 0.1λ. This
feature of w̃ agrees with the Miles (1957) theory based on the Rayleigh equation, which
predicts the phase change across the critical layer. A brief review of the critical layer at the
steady state can be found in Appendix C.

The evolution of the amplitudes of the wave-coherent motions in the growing wind is
shown in figure 13. The vertical coordinates for |ũ| and |w̃| are plotted on a logarithmic
scale to highlight the near-surface structures. In case CU8, |ũ| and |w̃| reach their peak
values around ζ ∼ O(10−2)λ. In case CU42, |ũ| and |w̃| decrease nearly monotonically
with the height except for |ũ| at early times. In case CU19, the vertical distribution of the
wave-coherent velocity amplitudes sees a transition from a monotonic function of height
to a more complex pattern during the gust. The pressure amplitudes |p̃| on the logarithmic
scale are nearly straight lines with the same slope in most cases, following an exp(−kζ )
decay with the height, especially when ζ is large. The only exceptions occur at t = 0 in
case CU19 and t = Tg in case CU42, where |p̃| is prominent only at the wave surface.
Away from the surface, the values of |p̃| are too small and may be subject to fluctuations
in the triple decomposition statistics. The velocity amplitudes show a similar exponential
decay above ζ ∼ O(10−2)λ. The exponential decay of the wave-coherent motions is a
well-known feature of the asymptotic inviscid solutions at large z (Belcher & Hunt 1993).
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Figure 13. Vertical distributions of the amplitudes of the wave-coherent motions ũ, w̃ and p̃ for the growing
wind in (a–c) case CU8, (d–f ) case CU19, and (g–i) case CU42. The exponential decay exp(−kζ ) is denoted
by the black dashed lines. The results are plotted at t/Tg = 0, 0.5, 1.0. All terms are normalized using the wall
unit at t = 0.

In contrast, a noticeable deviation from exp(−kζ ) may be observed in the distribution of
the pressure amplitude near the wave surface because of the wave geometry and the strong
gradient in the vertical velocity, as suggested by previous studies (e.g. Yang & Shen 2010;
Grare et al. 2013). As the mean velocity increases rapidly during the gust, the viscous
effect is enhanced mostly in the thin region near the wave surface, as shown in figure 3.
But the outer region remains approximately inviscid, and as a result, the exponential decay
still holds there.

To identify the wave boundary layer, we plot separately the profiles of the turbulent and
wave-coherent parts of the Reynolds shear stress (figure 14). The sign of −〈ũw̃〉 depends on
the instantaneous wave age. For slow waves in case CU8 (figures 14a,d), the wave-coherent
stress has an opposite sign to the turbulent part, which agrees with the findings of Hara
& Sullivan (2015). For fast waves in case CU42 (figures 14c, f ), their signs are the same.
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Figure 14. Turbulent and wave-coherent parts of the Reynolds shear stress for the growing wind at (a–c) t = 0
and (d–f ) t = Tg. All terms are normalized using the wall unit at t = 0. The instantaneous wave ages for (a–f )
are c/u∗ = 8.3, 19.2, 41.6, 4.5, 10.4, 22.3, respectively.

The transition between these two patterns occurs at the wave age c/u∗ ∼ 20, as indicated
by the results in case CU19 (figures 14b,e). When −〈ũw̃〉 is sufficiently large compared
with −〈u′w′〉 (figures 14c,d), the wave boundary layer is most distinguishable, with
thickness 0.008λ–0.02λ (see also the tank experiment by Buckley & Veron 2016).

To summarize, the wave-coherent motions can be identified clearly throughout our
simulations, which justifies the use of the triple decomposition in the transient wind–wave
process. Owing to page limits for the paper, the time series of the two-dimensional
distributions of all wave-coherent components in both growing wind and decaying wind
are depicted in the supplementary movies available at https://doi.org/10.1017/jfm.2022.
577. A key feature that we see from figures 11–13 is that while the turbulent stresses
exhibit the memory effect associated with the gust events (§ 3.2), the wave-coherent
motions have a quasi-stationary response to the wind gust and they are strongly
dependent on the instantaneous wave age. Furthermore, the growing wind gust has a
counterintuitive phenomenon in case CU42: the wave-coherent motions are suppressed,
i.e. their magnitudes at t = Tg (figures 11f and 12f ) are smaller than their values at
t = 0 (figures 11e and 12e), while in a decaying wind their amplitudes increase. This
phenomenon is explained in the following analysis based on the momentum equation.
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3.4. Analysis of the wave-coherent momentum equation
To understand further the mechanisms that govern the evolution of the wave-coherent
motions during wind gust, we perform more detailed analyses by resorting to the
momentum equation. While an energy budget equation for the wave-coherent motions
can also be derived in a way similar to the TKE equation (3.1), the phases of the source
terms would be complicated because of the product of trigonometric functions. The
momentum equation, on the other hand, has a simpler form and preserves directly the
phases of the wave-coherent motions. By performing the triple decomposition, the vertical
wave-coherent momentum equation can be written as

∂w̃
∂t

= −(U − c)
∂w̃
∂ξ︸ ︷︷ ︸

A

− ∂ ũ′w′

∂ξ︸ ︷︷ ︸
T

− 1
ρ

∂ p̃
∂ζ︸ ︷︷ ︸
P

+ ν ∇2w̃︸ ︷︷ ︸
V

, (3.4)

where A, T , P and V denote the effects of advection, turbulence, pressure gradient and
viscosity, respectively. The effect of the wave-coherent stresses ũiũj (i, j = 1, 3) is omitted
because they have a direct impact on the second harmonic wavenumber 4π/λ instead of the
primary wavenumber 2π/λ, and thus have little effect on the evolution of w̃. Apparently,
the advection term A and the pressure gradient term P have rapid responses to the wind
gust because they are determined by the mean velocity and the wave-coherent motions.
The turbulence term T , on the other hand, shares a similar memory effect with ũ′w′.

Similar to the decomposition of the wave-coherent motions shown in (2.6), the real
part and the imaginary part of each term in the vertical momentum equation (3.4) can be
calculated. Figure 15 shows the results for the real parts at t = 0.5Tg. Note that the viscous
term is found to be negligibly small and has been omitted. In all three cases, the pressure
gradient and the advection terms are significant in balancing the real part of (3.4). The
turbulence effect nearly vanishes in case CU42. For cases CU8 and CU19, the effect of the
turbulence term Re[T ] is relatively strong in the decaying wind, while in the growing wind
it is relatively weak. This phenomenon is similar to the time variation of the turbulence
intensity discussed in § 3.1, and is also associated with the memory effect of the turbulent
stress, which leads to a phase lag in Re[T ] with respect to the rapidly varying Re[A] and
Re[P]. The temporal growth rate Re[∂w̃/∂t] is negligibly small in all cases, suggesting
that the real parts are largely balanced regardless of the gust event.

In contrast to the relatively simple distributions of the real parts of the terms in (3.4),
the distributions of the imaginary parts are more complex, as shown in figure 16. The
imaginary part of the viscous term, compared with its real part, is important in the
vertical momentum equation near the wave surface, because Im[V] = ν ∇2Im[w̃], and
Im[w̃] dominates over Re[w̃] (figure 12). In general, for the imaginary part, the values of
different terms in (3.4) are of the same order, especially in case CU8. Unlike Re[∂w̃/∂t],
which is close to zero, Im[∂w̃/∂t] becomes positive in the growing wind and negative
in the decaying wind. Hence Im[∂w̃/∂t] is the main contributor to the contour pattern
changes presented in figure 12. In particular, for the growing wind in case CU42, Im[w̃] at
t = 0 is negative, noticing that Im[w̃] = |w̃| sinφw̃ < 0 when φw̃ ≈ −π/2 (see figure 12e).
The positive ∂Im[w̃]/∂t then causes a magnitude reduction in Im[w̃] during the growing
wind event, which is confirmed in figures 12(e, f ).

While the time variation in w̃ is dominated by Im[∂w̃/∂t], the real and imaginary parts of
the momentum equation (3.4) are not independent of each other but dynamically coupled
through the differential operator ∂/∂ξ . For the advection term and the turbulence term, we
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Figure 15. Real part of the terms in the vertical wave-coherent momentum equation for (a–c)
the growing wind and (d–f ) the decaying wind, at t = 0.5Tg. The instantaneous wave ages are
c/u∗ = 5.1, 11.7, 25.2, 7.1, 16.6, 35.2 in (a–f ), respectively. All terms are normalized by ku2

∗,0.

have

Re[A] = k(U − c) Im[w̃], (3.5)

Im[A] = −k(U − c)Re[w̃], (3.6)

Re[T ] = k Im[ũ′w′], (3.7)

Im[T ] = −k Re[ũ′w′]. (3.8)

In case CU42, for instance, Re[A] (figures 15c, f ) is much larger than Im[A]
(figures 16c, f ) because the wave-coherent vertical velocity is dominated by the
out-of-phase imaginary part Im[w̃] (see figure 12).

Next, we perform a quantitative analysis of the wave-coherent motions by utilizing
and comparing with the viscous curvilinear model proposed by Cao et al. (2020). The
model originates from the triple decomposition of the Navier–Stokes equations for wind
turbulence over a monochromatic wave under the steady wind–wave condition. In their
derivation, the nonlinear terms associated with the turbulent stress and the second-order
terms of O((ka)2) related to the grid transformation are neglected. The governing equation
for the vertical wave-coherent velocity w̃ reads

− ν

ik

(
d4

dζ 4 − 2k2 d2

dζ 2 + k4
)
F [w̃] +

[
(U − c)

(
d2

dζ 2 − k2
)

− d2U
dζ 2

]
F [w̃]

= F
[
∂

∂t

(
∂ ũ
∂ζ

− ∂w̃
∂ξ

)]
+ ν F [η]

d2

dζ 2

[(
ζ

h
− 1

)
d2U
dζ 2

]
, (3.9)
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Figure 16. Same as figure 15, but for the imaginary parts.

where F denotes the Fourier transform operator. For completeness, we keep the time
derivative term that was neglected by Cao et al. (2020). But its actual value is also found
to be insignificant compared with the other terms in the present wind gust cases. The mean
profile U(ζ ) is provided by the simulation, and the boundary conditions are

w̃(ζ = 0) = ws, w̃(ζ → ∞) = 0, (3.10a,b)

dw̃
dζ

∣∣∣∣
ζ=0

= −dus

dξ
+ dU

dζ
dη
dξ
,

dw̃
dζ

∣∣∣∣
ζ→∞

= 0, (3.11a,b)

where us and ws are the streamwise and vertical wave orbital velocities, respectively (see
Appendix A).

Here, the Dirichlet boundary condition for w̃ at ζ = 0 is prescribed by the wave orbital
velocity, and its derivative dw̃/dζ is obtained from the continuity equation. In practice, the
top boundary condition (ζ → ∞) can be evaluated at a height where the magnitude of w̃
is sufficiently small, say ζ = 0.5λ (Cao et al. 2020). Near the wave surface, the imaginary
part of the vertical wave-coherent velocity dominates over the real part because of the π/2
phase difference between the vertical wave orbital velocity and the surface elevation (see
(A6)).

In figure 17, we present Im[w̃] at three instants in the growing wind gust. The evolution
of Im[w̃] dominates the qualitative features shown in figure 12. For example, the phase
change of π in the vicinity of the wave surface in case CU8 (figure 12a) corresponds to the

946 A8-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.577


X. Hao and L. Shen

Im|w̃|+0 Im|w̃|+0 Im|w̃|+0

0.3

0.2

0.1

0

0.3

0.2

0.1

0

0.3

0.2

0.1

0
0 0.25 0.50 –0.50 –0.25 –1.0 –0.5 00 0.25

ζ/
λ

t/Tg = 0

t/Tg = 0.5

t/Tg = 1.0

(a) (b) (c)

Figure 17. Imaginary part of the vertical wave-coherent velocity for the growing wind in (a) case CU8, (b) case
CU19, and (c) case CU42. Also plotted are the corresponding results computed from the viscous curvilinear
model, denoted by the black solid lines.
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Figure 18. Real part of the vertical wave-coherent velocity for the growing wind in (a) case CU8, (b) case
CU19, and (c) case CU42. The results computed from the viscous curvilinear model are denoted by the black
solid lines.

sign reversal at small ζ/λ in figure 17(a). Consistent with the positive ∂Im[w̃]/∂t shown
in figure 17, Im[w̃] increases with the growing wind in all cases (figure 12). In general,
the LES result agrees well quantitatively with the model prediction at both the steady
state (t = 0) and the non-equilibrium state (t = 0.5Tg and t = Tg). Hence the quasi-linear
mechanism (Cao et al. 2020) that governs the response of Im[w̃] to the mean velocity
profile U is effective even under the gusty condition.

For Re[w̃], on the other hand, the difference between the model prediction and the
LES result is noticeable. In figure 18, we plot the instantaneous result at t = 0.5Tg as
an example. Qualitatively, the result predicted by the model has a shape similar to the LES
result, in which Re[w̃] first increases with the height and then decreases after reaching
a positive peak value. The modelling of Re[w̃] is challenging because it has a small
magnitude compared with Im[w̃]. At t = 0.5Tg, the peak value of Re[w̃] is approximately
one-fifth of the corresponding value of Im[w̃] in case CU8 (comparing figures 17a and
18a). At larger wave ages in case CU42, the difference between the magnitudes of
Im[w̃] and Re[w̃] can be as large as two orders of magnitude (figures 17c and 18c). The
viscous curvilinear model fails to predict the weak Re[w̃] because the impacts of the
turbulence and second-order terms omitted in the derivation of the model are no longer
negligible.
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Figure 19. Evolution of form drag and viscous drag during the wind gust (0 < t < Tg). The start (t = 0) and
end (t = Tg) of the gust are denoted by dash marks (–) and circles, respectively, and the arrows denote the
direction of time increase.

From the analyses in this subsection, we obtain a clear picture of the wave-coherent
motions. First, compared with the turbulent stress, the wave-coherent motions respond
instantly to the gust event and show strong dependency on the wave age. Besides, the
gust event leads to a drastic change in the out-of-phase component Im[w̃], and has
little impact on the in-phase component Re[w̃]. In the next subsection, we investigate
whether these phenomena are responsible for producing the drag hysteresis that has
been observed in laboratory and field experiments (Waseda et al. 2001; Hwang et al.
2011) and how the change in Im[w̃] contributes to the variation in wind–wave energy
transfer.

3.5. Wind gust impact on wave growth
It is well recognized that the wave-coherent motions play a critical role in the wind–wave
momentum and energy transfer. In this subsection, we investigate how their time variations
affect these processes. We first examine the evolution of the form drag τp and viscous drag
τν . In the present study, we use the sign convention such that the drags are positive when
the direction of the momentum flux is from the wind to the wave, such as at small wave
ages. As shown in figure 19, the viscous drag τν changes continuously during the gust and
remains positive. In all cases, τν at the end of the growing wind gust is slightly larger than
that at the start of the decaying wind gust, while at the end of the decaying gust, τν nearly
vanishes and is significantly smaller than its initial value in a growing wind. This hysteresis
effect exhibited by τν is associated primarily with the evolution of the mean velocity profile
and the mean shear. As discussed in § 3.1, the uniform change in the mean velocity caused
by the external force occurs mainly in the outer region where the mean shear is expected
to be roughly unchanged during the gust. The near-wall region is dominated by viscosity
such that the mean velocity and its gradient are affected by their past states.

The form drag τp sees an abrupt change at the start and end of the gust. During the wind
gust, the variations in τp are relatively small at first, and this feature is shared in all cases.
Near the end of the gust, there is a substantial change in τp for cases CU8 and CU19, while
in case CU42 the change in τp is trivial. To understand the behaviours of τp, we consider
its definition:

τp = 1
Lx

∫ Lx

0

pηx

ρ
dx = ka Im[p̃]|ζ=0

ρ
. (3.12)
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Figure 20. Contributions of the advection and gustiness terms to the form drag in (a) the growing wind and
(b) the decaying wind. All terms are calculated by taking the time average during 0 < t < Tg.

The pressure at the wave surface can be obtained by integrating the imaginary part of
the vertical momentum equation (3.4). Keeping only the dominant terms, we can rewrite
(3.12) as

τp = ka
∫ λ

0
k(U − c)Re[w̃] dζ + ka

∫ λ
0

∂

∂t
Im[w̃] dζ. (3.13)

The contribution to the form drag is then decomposed into two parts, the advection of
Re[w̃] and the time variation of Im[w̃] caused by the wind gust. For a wind turbulence
field at the steady state, only the advection term needs to be included in the calculation,
while the gustiness term reduces to zero (see e.g. Cao et al. 2020).

When the wind is unsteady, the gustiness term becomes important. In figure 20, we
plot the time-averaged contributions from the advection and gustiness terms to the form
drag during 0 < t < Tg. For the advection term, the contribution varies with the wave age,
which determines the advection velocity U − c. For the contribution by the gustiness,
however, the wave age has less influence because the magnitudes of ∂Im[w̃]/∂t are
comparable in different cases (see figure 16). Figure 20 shows that in all cases, the
gustiness term is comparable to (cases CU8 and CU19) or stronger than (case CU42) the
advection term. Therefore, the out-of-phase component Im[w̃] that changes rapidly during
the gust plays an at least equally important role as the in-phase component Re[w̃] in the
wind–wave momentum transfer.

We now revisit figure 19 to explain the behaviour of τp based on the decomposition
(3.13). The abrupt change immediately after t = 0 and before t = Tg is caused by the
contribution of the gustiness term. During 0 < t < Tg, cases CU8 and CU19 have a
noticeable change in τp because the advection term itself is changing with the mean
velocity, and its contribution is comparable to that of the gustiness term (figure 20).
For case CU42, although the mean velocity and the advection term change substantially
during the wind gust, the magnitude of the advection term is much smaller than that of
the gustiness term, as shown in figure 20. Therefore, the value of τp is relatively invariant
during this process.

To quantify the amount of wind energy transferred to wave, we calculate the wave
growth rate β (Miles 1957) and the temporal energy growth rate γ (Donelan & Pierson
1987):

β = 2τp

(aku∗)2
, (3.14)

γ =
(u∗

c

)2
β = 2τp

(akc)2
. (3.15)
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Case Gust event β̄ = (2/a2k2)(τ p/u2∗) γ̄ = 2τ p/(akc)2 |
U/U|/ωTg

CU8 Growing 46.9 1.7 0.31
Decaying 9.6 0.27 0.38

CU19 Growing 36.6 0.25 0.13
Decaying −3.0 −0.0089 0.16

CU42 Growing 23.5 0.034 0.06
Decaying −51.0 −0.040 0.07

Table 3. Time-averaged β and γ during 0 < t < Tg. Here, ( ) is the time-averaging operator. Also listed is
the strength of the gust event |
U/U|/ωTg, where 
U/U = [U(0.02λ,Tg)− U(0.02λ, 0)]/U(0.02λ, 0.5Tg)

is the relative change in the mean profile, and ω is the wave frequency.

In table 3, we list the time-averaged results of β and γ during the wind gust (0 < t <
Tg). We follow Miles & Ierley (1998) to obtain β̄ by calculating separately the mean form
drag and the average of the square of the friction velocity, and then using them to calculate
β̄. For both β̄ and γ̄ , there is a distinct difference between the growing wind result and
the decaying wind result. The primary reason for this difference is due to the hysteresis
phenomenon in the variation of the form drag and the viscous drag (figure 19).

We plot β as a function of the wave age c/u∗ in figure 21(a). The results denoted by
the light grey and dark grey symbols are instantaneous values at t = 0, while those during
the gust, denoted by coloured symbols, are calculated as the time-averaged values (see
table 3). At the steady state before the gust event occurs, β varies with the wave age and
is in general consistent with the results in the literature (Sullivan et al. 2000; Kihara et al.
2007; Yang & Shen 2010; Druzhinin et al. 2012; Åkervik & Vartdal 2019). When the wind
gust starts, there is an immediate change in the wave age associated with the time-varying
friction velocity u∗ (see the evolution of the friction drag in figure 19). The shift in the
wave age has been incorporated into the wind input source terms in phase-averaged wave
models to account for the gustiness effect on the wave energy growth (Janssen 2004). For
atmospheric variability with a time scale much larger than the wave period and the wind
turbulence in a quasi-equilibrium state, this simple approximation is likely appropriate.
But more generally, especially for a rapidly changing wind field, this is not the case. Our
result in figure 21(a) shows a noticeable deviation of β̄ from the steady state value. The
strength of the wind gust can be measured roughly by |
U/U|/ωTg (table 3), or, more
generally, (∂U/∂t)/ω|U| (see Miles & Ierley 1998). Note that while by this definition the
wind gust event is the weakest in the high wave age case CU42, the deviation of β from
the steady-state values is most significant in this case because the gustiness effect has the
largest relative contribution to the form drag (see figure 20).

In figure 21(b), we plot γ using an alternative scaling based on Uλ/2, the characteristic
mean velocity at ζ = λ/2 (Donelan et al. 2006). The steady-state values are consistent
with the parametrization proposed by Donelan et al. (2006), γ = 0.17. While this
parametrization is effective in reducing the scattering compared with the scaling based
on u∗ shown in figure 21(a), it underestimates γ in the growing wind and overestimates γ
in the decaying wind. The deviation, which can be up to several orders of magnitude,
is a consequence of the change in the mean velocity Uλ/2 and γ itself. Therefore,
the non-stationary effect associated with the wind gust cannot be incorporated into
such parametrized wind input models by simply using a shift in the wave age c/Uλ/2.
More research on the model development, which is beyond the scope of this work, is
called for in future studies.
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Figure 21. (a) Wave growth rate β scaled with the friction velocity u∗. (b) Temporal growth rate γ scaled with
the mean wind velocity at the height of half-wavelength Uλ/2. In (a), the results in cases CU8, CU19 and CU42
are denoted by triangles, squares and pentagons, respectively. The symbols with the filled colours light grey and
dark grey denote the initial steady-state results, and those with the colours gold and blue are the time-averaged
values β̄ during the growing wind and the decaying gust, respectively. Also plotted are the steady-state results
with similar wave steepness (ak < 0.1) obtained using direct numerical simulation (Sullivan et al. 2000; Kihara
et al. 2007; Yang & Shen 2010; Druzhinin et al. 2012) and LES (Åkervik & Vartdal 2019), denoted by circles.
In (b), only those results with positive values of γ and Uλ/2/c − 1 are plotted. The black dashed line denotes
the parametrization proposed by Donelan et al. (2006): γ = 0.17(Uλ/2/c − 1)|Uλ/2/c − 1|.

4. Concluding remarks

In this study, we have performed high-resolution wall-resolved LES of wind turbulence
over a travelling wave, where the wind field is subject to an impulsive growing and
decaying gust event. Multiple wave speeds are designed to cover representative wave
ages. Compared with the vast majority of current research that assumes a stationary or
quasi-stationary state for the wind–wave interaction, we investigate the non-stationary state
of wind turbulence, which exists widely in the atmospheric boundary layer above ocean
waves. This study focuses on the transient features of the turbulent and wave-coherent
motions as well as their impact on the momentum and energy transfer.

We show that the turbulence fluctuations have a delayed response to the mean shear,
similar to classical channel flow results. We find that this memory effect is caused mainly
by the phase delay in the production induced by the mean shear, the pressure–strain
correlation and the dissipation. On the other hand, the wave-coherent motions and the
associated production are found to have a quasi-stationary response to the gust: the
qualitative features of the wave-coherent motions during the wind gust are similar to
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those in a steady wind turbulence with the same instantaneous wave age. By evaluating
the terms in the wave-coherent vertical momentum equation, we find that the component
of the vertical wave-coherent velocity w̃ out of phase with the surface elevation, Im[w̃],
dominates the change in w̃, while the in-phase component, Re[w̃], has a much smaller
temporal growth rate. We show that as a result of the quasi-stationary response, Im[w̃] can
be predicted by the viscous curvilinear model developed originally for steady state, even
during the wind gust event, while Re[w̃] cannot be predicted, owing to the relatively small
amplitude.

We have also investigated the effect of wind gust on wind–wave momentum and energy
transfer. The evolution of the form drag and the viscous drag demonstrates a hysteresis
phenomenon and presents a distinct difference between the growing and decaying wind.
We have identified ∂Im[w̃]/∂t as a key contributor to the form drag (and thus the
wave growth) during wind gust. Our result also shows that this contribution from the
out-of-phase component Im[w̃] is comparable to that caused by the advection of the
in-phase component Re[w̃] at low and intermediate wave ages, and much stronger at a
high wave age.

A major implication of the discovery of the transient behaviours of turbulence in wind
gust is associated with the closure model of the Reynolds stress. The local turbulence
equilibrium assumption used in the classical wind–wave growth theories is no longer
valid. Therefore, the wind gustiness effect poses significant challenges to the modelling
of the non-equilibrium turbulent stresses, for which more research is needed. From a
more practical perspective, our discovery shows the necessity to incorporate the transient
features of the wind field into the wind input models in operational wave models. Such
improvement may also be helpful in reducing the large scattering found in the wave growth
rate from field observations, which is plotted against the wave age alone, typically, but
without considering the transient effect. Finally, we remark that the simulation set-up in the
present study is relatively simple, limited by the computational cost needed for resolving
the viscous sublayer and performing the ensemble runs. More realistic marine conditions,
such as irregular waves and dynamical coupling between wind and waves, should be taken
into consideration in future studies.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.577.
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Appendix A. Wind turbulence solver

The numerical solver developed originally by Yang & Shen (2011a,b) has been used
extensively and validated in studies on wind–wave interaction (e.g. Yang et al. 2013;
Hao & Shen 2019; Cao et al. 2020; Cao & Shen 2021). The filtered Navier–Stokes
equations (2.1) and (2.2) are transformed from the physical domain into the computational
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domain by

τ = t, ξ = x, ψ = y, ζ = z − η(x, y, t)
h − η(x, y, t)

h, (A1a–d)

where ξ , ψ , ζ and τ are respectively the space and time coordinates in the computational
domain, and h = Lz is the mean domain height. The Jacobian matrix corresponding to the
transformation (A 1) is

J =

⎡⎢⎢⎢⎢⎢⎣
∂ξ

∂x
∂ξ

∂y
∂ξ

∂z
∂ψ

∂x
∂ψ

∂y
∂ψ

∂z
∂ζ

∂x
∂ζ

∂y
∂ζ

∂z

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0
0 1 0

ζ − h
h − η

∂η

∂x
ζ − h
h − η

∂η

∂y
h

h − η

⎤⎥⎥⎥⎦ . (A2)

Then the governing equations (2.1) and (2.2) become

Jji
∂ui

∂ξj
= 0, (A3)

∂ui

∂τ
+ δj3

∂ζ

∂t
∂ui

∂ξj
+ Jkj

∂(uiuj)

∂ξk
= −Jji

ρ

∂p
∂ξj

+ Jkj
∂τ d

ij

∂ξk

+ νJnj
∂

∂ξn

(
Jkj
∂ui

∂ξk

)
+ B(t) δi1, (A4)

where the time derivative in the physical space is calculated by
∂

∂t
= ∂

∂τ
+ ζ − h

h − η

∂η

∂t
. (A5)

In the above equation, the pressure p is calculated at each time step by solving the
Poisson equation, while B(t) is prescribed by (2.3). The wave surface boundary conditions
are provided by the Airy wave solution (Dean & Dalrymple 1991)

η(x, t) = a cos(kx − ωt), (A6)

us(x, t) = ωa cos(kx − ωt), (A7)

ws(x, t) = ωa sin(kx − ωt), (A8)

where us and ws are the horizontal and vertical orbital velocities at the wave surface,
respectively, and a is the wave amplitude. The angular frequency ω and the wavenumber k
satisfy the dispersion relation for deep water ω2 = gk.

Appendix B. Normalized mean wind velocity defect

We examine the initial evolution of the mean profile in the near surface region by using a
different scaling of the velocity. Following He & Seddighi (2013), we define

Û(ζ, t) = U(ζ, t)− U(ζ, 0)
U(Lz, t)− U(Lz, 0)

, (B1)

where U(Lz, t) is the mean velocity at the top boundary of the computational domain.
The results are plotted in figure 22. The temporal evolution of the (velocity) boundary
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Figure 22. Evolution of the normalized mean wind velocity profiles Û(ζ, t) defined in (B1) in (a) the growing
wind and (b) the decaying wind, in case CU8. The velocity profiles are plotted during 2.65 < t+0 < 130, and
the time interval between two consecutive velocity profiles is
t+0 = 15.9. Our numerical result and the Stokes
problem solution are denoted by the solid lines and dashed lines, respectively. Also plotted is the boundary layer
thickness δ99, denoted by the black dash-dotted line.

layer thickness δ99 is similar to a boundary layer developing in space. When the wind
gust starts (t ≈ 0), this normalized velocity is constant, i.e. Û(ζ > 0) = 1, except at the
surface, i.e. Û(ζ = 0) = 0. For laminar flows over a flat plate, the mean profile then yields
the solution to the Stokes problem: Û(ζ, t) = erf(ζ )/

√
νt, where erf is the error function.

For the present flow over a travelling wave, the distribution of Û(ζ, t) is also similar to
the Stokes solution (figure 22) because the viscosity dominates this high-shear region.
However, the deviation of the LES result from the Stokes solution is slightly larger than
that in a transient channel flow (He & Seddighi 2015) because of the wave geometry and
wave orbital velocity.

Appendix C. Critical layer at steady state

The critical layer, at which height the mean wind speed equals the wave phase velocity,
corresponds to a singular point in the inviscid Rayleigh equation and thus plays a
significant role in the Miles (1957) wave-growth mechanism. In case CU8, the critical
layer at t = 0 is close to the surface (figure 3), in the buffer layer, owing to the small wave
age. In case CU42, ζc is larger than the computational domain height (not plotted). At
such a height ζ > O(λ), the wave-coherent motions are much weaker than the turbulence
motions (Sullivan & McWilliams 2010). Therefore, the critical layers in both case CU8
and case CU42 have little dynamic effects on wave growth. On the other hand, in case
CU19, ζc is sufficiently large that the critical layer is in the logarithmic region, but not too
large so that the wave-coherent motions can still be identified at this height. In figure 23,
we plot the phase-averaged velocity at the steady state in the wave-following frame for case
CU19 to illustrate the qualitative feature of the critical layer. As shown, across the critical
layer height ζc, there is a change in the sign of 〈u〉 − c, resulting in the closed loops of
the streamlines. This phenomenon, also known as the cat-eye structure (Lighthill 1962),
is consistent with the observations in previous studies (e.g. Sullivan et al. 2000; Yang &
Shen 2010).

Appendix D. Calculation of form drag

Here, we outline the calculation of the form drag in (3.12) and (3.13). Following (2.6), we
can rewrite the wave-coherent pressure at the wave surface as

p̃(x, ζ = 0) = Re[p̃](ζ = 0) cos(kx)− Im[p̃](ζ = 0) sin(kx). (D1)
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Figure 23. Streamlines of the phase-averaged velocity in the moving frame of reference in case CU19 for
growing wind at t = 0. The streamwise velocity magnitude is denoted by the contour colour. Also plotted is
the critical layer height, denoted by the black dashed line.

In the moving frame, the surface elevation is fixed, η(x) = a cos(kx), where a is the wave
amplitude, thus ηx(x) = −ka sin(kx). Substituting this into the definition of the form drag
and noting that only the wave-coherent part of pressure can contribute to wave growth, we
can obtain

τp = 1
Lx

∫ Lx

0
pηx dx = ka

Lx

∫ Lx

0

(
Im[p̃] sin2(kx)

− Re[p̃] sin(kx) cos(kx)
)

dx. (D2)

Note that the integral of the second part is zero. Therefore, the calculation of the form
drag is simplified to

τp = ka Im[p̃]|ζ=0 . (D3)

The information of Im[p̃] is connected to w̃ by taking the imaginary part of the
wave-coherent momentum equation (3.4) and rearranging the terms:

1
ρ

d Im[p̃]
dζ

= −k(U − c)Re[w̃] − ∂Im[w̃]
∂t

+ Im[T ] + Im[V]. (D4)

The above equation can be integrated, and after neglecting the higher-order terms, we
can obtain

Im[p̃]|ζ=0

ρ
=
∫ λ

0
k(U − c)Re[w̃] dζ +

∫ λ
0

∂Im[w̃]
∂t

dζ. (D5)
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