
J. Aust. Math. Soc. 87 (2009), 101–127
doi:10.1017/S1446788708081020

ENDS FOR MONOIDS AND SEMIGROUPS

DAVID A. JACKSON ˛ and VESNA KILIBARDA

(Received 22 May 2007; accepted 11 September 2008)

Communicated by M. G. Jackson

Abstract

We give a graph-theoretic definition for the number of ends of Cayley digraphs for finitely generated
semigroups and monoids. For semigroups and monoids, left Cayley digraphs can be very different from
right Cayley digraphs. In either case, the number of ends for the Cayley digraph does not depend upon
which finite set of generators is used for the semigroup or monoid. For natural numbers m and n, we
exhibit finitely generated monoids for which the left Cayley digraphs have m ends while the right Cayley
digraphs have n ends. For direct products and for many other semidirect products of a pair of finitely
generated infinite monoids, the right Cayley digraph of the semidirect product has only one end. A
finitely generated subsemigroup of a free semigroup has either one end or else has infinitely many ends.
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1. Ends for graphs and digraphs

A digraph is a quadruple 0 = (V0, E0, ι0 , τ0 ) where V = V0 is a set of vertices,
E = E0 is a set of edges and ι0 , τ0 : E→ V are functions designating initial and
terminal vertices for each edge. A graph is a quintuple 0 = (V0, E0, ι0 , τ0 , inv0 )
where inv0 is a function E→ E and we require axiomatically, for each e ∈ E , that
e 6= inv0 (e), that inv0 (inv0 (e))= e, that ι0 (inv0 (e))= τ0 (e) and that τ0 (inv0 (e))=
ι0 (e). We omit the subscripts on the functions ι0 and τ0 whenever context makes
these unnecessary and we routinely write e−1 for inv0 (e).

When we imagine some geometric realization of a graph, we regard e and e−1 as
occupying the same arc of points, but traversing these arcs in opposite directions. In a
geometric realization for a digraph, each edge has an associated direction for traversal.
We allow loops and multiple edges in graphs and digraphs.

A graph (Vϒ , Eϒ , ιϒ , τϒ , invϒ ) is a subgraph of (V0, E0, ι0 , τ0 , inv0 ) if Vϒ and
Eϒ are subsets of V0 and E0 , respectively, and the functions ιϒ , τϒ and invϒ are
the respective restrictions of the functions ι0 , τ0 and inv0 to Eϒ . Subdigraphs of
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digraphs are defined analogously, but we will routinely use the word subgraph for
both subgraphs and subdigraphs.

If 0 is a digraph (V, E, ι, τ ) or a graph (V, E, ι, τ, −1) and V0 is a subset of
V , then the full subgraph of 0 on V0 is the digraph 00 = (V0, E0, ι, τ ) or the graph
00 = (V0, E0, ι, τ,

−1) where E0 consists of all of the edges in E having both vertices
in V0. If F is a subset of V , we write 0 − F for the full subgraph of 0 on V − F.

Suppose 0 = (V, E, ι, τ ) is a digraph and that E−1 is a set in one-to-one corre-
spondence with E , but disjoint from E . Then there is a graph

←→
0 = (V, E ∪ E−1,

ι, τ, −1)where we extend ι, τ and −1 to E ∪ E−1 by ι(e−1)= τ(e), τ (e−1)= ι(e) and
(e−1)−1

= e. If ξ : 01→ 02 is a morphism of digraphs, we obtain a graph morphism
←→
ξ :
←→
0 1→

←→
0 2 by setting

←→
ξ (e−1)= (ξ(e))−1. It is then easily seen that←→ is a

functor from the category of digraphs to the category of graphs.
Conversely, we obtain a digraph (V, E, ι, τ ) from a graph (V, E, ι, τ, −1) by

simply discarding the function −1
: E→ E . This extends to a functor U from the

category of graphs to the category of digraphs. The functor←→ is a left adjoint to this
functor U .

Suppose that 0 = (V, E, ι, τ ) is a digraph. A positive walk ω of length n in 0
is a sequence ω = (e1, . . . , en) of edges of 0 with τ(ei )= ι(ei+1) for 1≤ i < n.
Similarly, if 0 = (V, E, ι, τ, −1) is a graph, then a walk ω of length n in 0 is
a sequence ω = (e1, . . . , en) of edges of 0 with τ(ei )= ι(ei+1) for 1≤ i < n. If
ξ : 01→ 02 is a digraph morphism and ω = (e1, . . . , en) is a positive walk in 01,
then ξ(ω)= (ω(e1), . . . , ω(en)) is a positive walk in 02. Likewise, if ξ : 01→ 02 is
a graph morphism and ω is a walk in 01, then the sequence ξ(ω) is a walk in 02. It
is more convenient to write just e1e2 · · · en rather than (e1, e2, . . . , en) for a walk or
positive walk ω. We define a walk in the digraph 0 = (V, E, ι, τ ) to be a walk in

←→
0 :

that is, we allow edges to be traversed in either direction. The vertices of ω are the
vertices ι(ei ) and τ(ei ) such that ei is an edge of ω. The initial vertex of ω is ι(e1),
the initial vertex of e1, and the terminal vertex of ω is τ(en), the terminal vertex of
en . We allow at each vertex v of a digraph 0 or a graph 0 an empty walk of length 0
having v as both its initial and terminal vertex. A walk ω = e1e2 · · · en in a graph or in
a digraph is a trail if whenever ei = e for some i , then e j is neither e nor e−1 for j 6= i .
That is, identifying e with e−1, all of the edges on ω are distinct. A walk in a graph or
in a digraph is a path if all of its vertices are distinct. An interior vertex on a path ω is
any vertex on ω other than its initial and terminal vertices. We are largely concerned
with paths rather than walks or trails. The reader should be aware that these words
are not consistently defined in the literature and that the distinction between walks and
paths is sometimes important in this work. In a digraph, a positive walk is a positive
trail if all of its edges are distinct and is a positive path if all of its vertices are distinct.

A graph 0 is connected if there is a path in 0 from any vertex v1 to any vertex v2.
We define a digraph 0 to be connected if

←→
0 is connected. A component of a graph or

of a digraph 0 is a maximal connected subgraph of 0.
We write |X | for the cardinality of a set X . If v is a vertex in a graph or

in a digraph, then indegree(v), outdegree(v) and degree(v) are defined respectively
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by indegree(v)= |{e | τ(e)= v}|, outdegree(v)= |{e | ι(e)= v}| and degree(v)=
indegree(v)+ outdegree(v). A graph is locally finite if each vertex has finite degree.
It is usual practice to define the number of ends of a graph only for locally finite
graphs. For finitely generated semigroups and monoids we define the number of ends
for Cayley graphs which may have vertices with infinite indegree.

We state several possible definitions for the number of ends of a graph and
additional possible definitions for the number of ends of a digraph. For all of these
definitions, 0 is a graph or digraph, F a finite set of vertices of 0 and, for various
subscripts x , Cx = Cx (0 − F) is some set whose elements are infinite components, C ,
of 0 − F. For each subscript x , we define a number, ex (0), of ends of 0 by

ex (0)= max
F⊆V,F finite

|Cx (0 − F)|.

When Cx and ex are defined for graphs rather than for digraphs, we extend the
definition for ex to digraphs by ex (0)= ex (

←→
0 ) for any digraph 0.

If v1, v2 are vertices in the graph 0, then the distance d0(v1, v2) between v1 and v2
in 0 is the length of the shortest path in 0 from v1 to v2. This distance is not defined
if v1 and v2 are in different components of 0. A path π having initial vertex v1 and
terminal vertex v2 is a geodesic in 0 if the length of π is d0(v1, v2). In a digraph 0,
a positive path π having initial vertex v1 and terminal vertex v2 is a digeodesic in 0 if
π is a positive path of minimal length in 0 from v1 to v2. There is a digeodesic in 0
from v1 to v2 if and only if there is a positive path in 0 from v1 to v2.

Suppose that8 is a subgraph of a graph 0 or a digraph 0. Then it is easy to see that
a path in 8 which is a geodesic or digeodesic in 0 is also a geodesic or digeodesic in
8. However, a geodesic or digeodesic in 8 need not be a geodesic or digeodesic in 0.

A graph 0 has unbounded paths (geodesics) if for every natural number n there
is a path (geodesic) of length n in 0. A digraph 0 has unbounded positive paths
(digeodesics) if for every natural number n there is a positive path (digeodesic) of
length n in 0. A vertex v in a graph 0 initiates unbounded paths (geodesics) if for
every natural number n there is a path (geodesic) of length n in 0 with initial vertex v.
A vertex v in a digraph 0 initiates unbounded positive paths (digeodesics) if for every
natural number n there is a positive path (digeodesic) of length n in 0 with initial
vertex v. A vertex v in a digraph 0 terminates unbounded positive paths (digeodesics)
if for every natural number n there is a positive path (digeodesic) of length n in 0 with
terminal vertex v.

To implement the definitions displayed above for ex (0), we need to define various
sets Cx (0 − F) where 0 is a graph or digraph and F is a finite set of vertices of 0. For
the sake of brevity and generality, we state these definitions for Cx (0) in terms of 0
rather than 0 − F. For a graph 0, we define

C∞(0) = {C | C is a component of 0 having infinitely many vertices},

Cp(0) = {C | C is a component of 0 having unbounded paths},
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Cg(0) = {C | C is a component of 0 having unbounded geodesics},

C∗(0) = {C | C contains a vertex which initiates unbounded paths},

C†(0) = {C | C contains a vertex which initiates unbounded geodesics}.

Similarly, for a digraph 0, we define

C+p(0) = {C | C is a component of 0 having unbounded positive paths},

Cδ(0) = {C | C is a component of 0 having unbounded digeodesics},

C−→
∗
(0) = {C | C contains a vertex which initiates unbounded positive paths},

C←−
∗
(0) = {C | C contains a vertex which terminates unbounded positive paths},

C−→
δ
(0) = {C | C contains a vertex which initiates unbounded digeodesics},

C←−
δ
(0) = {C | C contains a vertex which terminates unbounded digeodesics}.

LEMMA 1. Let 0 be a connected graph.

(1) If 0 has unbounded paths, then every vertex in 0 initiates unbounded paths.
(2) If 0 has unbounded geodesics, then every vertex in 0 initiates unbounded

geodesics.

PROOF. Let v̂ be an arbitrary vertex in 0. Write |π | for the length of a walk π .
(1) For each natural number n, we want to show the existence of a path πn in 0 with

ι(πn)= v̂ and |πn| = n. Let χn be a path in 0 with |χn| = 2n. Since 0 is connected,
the distance d0(u, v) is defined and finite for any two vertices u, v ∈ 0. Choose vn to
be a vertex v on χn for which d0(v̂, v) is minimized as v ranges over the vertices on
χn . Let γn be a path with length d0(v̂, vn) from v̂ to vn . Write χn as (αn)

−1βn where
ι(αn)= ι(βn)= vn . Since |χn| = 2n, either |αn| ≥ n or |βn| ≥ n. Assume, without
loss of generality, that |αn| ≥ n, so |γnαn| ≥ n. Observe that γnαn must be a path by
the minimality of d0(v̂, vn). Let πn be the initial subpath of γnαn having length n.

(2) For each natural number n, we want to show the existence of a geodesic πn in
0 with ι(πn)= v̂ and |πn| = n. Let χn be a geodesic in 0 with |χn| = 2n. Since 0 is
connected, we can find geodesics αn, βn in 0 with ι(αn)= ι(βn)= v̂, τ (αn)= ι(χn)

and τ(βn)= τ(χn). Then (αn)
−1βn is a walk in 0 from ι(χn) to τ(χn), hence

|(αn)
−1βn| ≥ 2n. But then either |αn| ≥ n or |βn| ≥ n. Without loss of generality,

assume |αn| ≥ n and let πn be the initial subpath of αn having length n. 2

COROLLARY 2. Let 0 be any graph.

(1) Cp(0)= C∗(0) and Cg(0)= C†(0).
(2) ep(0)= e∗(0) and eg(0)= e†(0).

PROOF. (1) It is clear that C∗(0)j Cp(0) and C†(0)j Cg(0). The reverse inclusions
follow by applying Lemma 1 to connected components of 0.

(2) By the first part, Cp(0 − F)= C∗(0 − F) and Cg(0 − F)= C†(0 − F) for any
finite subset F of vertices of 0. 2
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FIGURE 1. Some subset inclusions for C∞.

In the next six examples, the subscripts∞, p, g, ∗ and † are graph subscripts while
the subscripts+p, δ,−→∗ ,←−∗ ,

−→
δ and

←−
δ are digraph subscripts. The subscripts−→∗ and

−→
δ are initial subscripts while←−∗ and

←−
δ are terminal subscripts. For Cayley digraphs

of semigroups and monoids, we generally ignore the two terminal subscripts. The
following examples show that, except for the equalities in the corollary above, the
definitions in our list are all distinct. We do not claim to have included all possible
definitions.

Let 0 be a digraph and F a finite set of vertices in 0. Write just Cx for Cx (0 − F).
Every Cx is a subset of C∞ and we have illustrated some fairly obvious subset
inclusions in Figure 1.

Since, for example,

C−→
δ
(0 − F)⊆ C−→

∗
(0 − F)⊆ C∗(0 − F)⊆ C∞(0 − F),

we have e−→
δ
(0)≤ e−→

∗
(0)≤ e∗(0)≤ e∞(0), with similar inequalities following from

other inclusions. An important consequence is that, for nonterminal subscripts x , all
the numbers ex (0) have the same value if we have C−→

δ
(0 − F)= C∞(0 − F) for

every finite set F of vertices in 0. Similarly, for noninitial subscripts x , all the numbers
ex (0) have the same value if we have C←−

δ
(0 − F)= C∞(0 − F) for every finite set F

of vertices in 0.
When a digraph 0 has no multiple edges, it can be notationally very convenient to

write e = (vi , v j ) for the edge e which has ι(e)= vi and τ(e)= v j . We follow this
convention in the following six examples. If 0 is a digraph without multiple edges,
then the dual digraph 0op has the same vertices as 0 and (v j , vi ) is an edge in 0op

if and only if (vi , v j ) is an edge in 0. We write N for the natural numbers, Z for the
integers and Zn for the integers modulo n.

EXAMPLE 1. For z = r, a, s, let 0z be the digraph (V, Ez, ι, τ ) where

V = {vi | i ∈ Z},
Er = {(vi , vi+1) | i ∈ Z},
Ea = {(v2 j , v2 j+1), (v2 j , v2 j−1) | j ∈ Z},
Es = {(vi , vi+1), (v2 j , v2 j+1), (v2k, v2k−1) | i ≤−1, j ≥ 0, k ≥ 1}.
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FIGURE 2. 0r , 0a and 0s .

The subscripts r, a, s are for right, alternating and split (see Figure 2). We
observe first that

←→
0 r =

←→
0 a =

←→
0 s , so that ex (0r )= ex (0a)= ex (0s) for any graph

subscript x and then that all of these have value 2. For 0r , we observe that
e+p(0r )= eδ(0r )= 2, while e−→

∗
(0r )= e−→

δ
(0r )= e←−

∗
(0r )= e←−

δ
(0r )= 1. Since no

positive path in 0a has length greater than 1, ex (0a)= 0 for every digraph subscript x .
Similarly, e+p(0s)= eδ(0s)= e←−

∗
(0s)= e←−

δ
(0s)= 1, while e−→

∗
(0s)= e−→

δ
(0s)= 0.

EXAMPLE 2. Let 0 be the digraph with vertex set V0 = {vi, j | i, j ∈ N} and edge set

E0 = {(v2i,1, v2i−1,1), (v2i,1, v2i+1,1), (vi,2 j , vi,2 j−1), (vi,2 j , vi,2 j+1) | i, j ∈ N}.

Then ex (0)=∞ for graph subscripts x while ex (0)= 0 for digraph subscripts x .

EXAMPLE 3. Let n ≥ 1 be any natural number. For distinct symbols h and si, j , let
V = {h} ∪ {si, j | 1≤ i ≤ n, j ≥ 1} be the set of vertices for a digraph Wn . Define the
set E of edges for Wn by E = {(h, si,1), (si, j , si, j+1), (si, j , h) | 1≤ i ≤ n, j ≥ 1}. It
is not difficult to see that ex (Wn)= n except when x is a terminal subscript, ←−∗ or
←−
δ . For those two cases, e←−

∗
(Wn)= 1 while e←−

δ
(Wn)= 0. Similarly, ex (W

op
n )= n for

noninitial subscripts x while e−→
∗
(W op

n )= 1 and e−→
δ
(W op

n )= 0.

EXAMPLE 4. Let n > 1 be a natural number. Let V = {c} ∪ {vi,k | i ∈ Zn, k ∈ N}
be the set of vertices for a digraph 0n . Define the set E of edges for 0n by
E = {(vi,k, vi+1,k), (v0,k, c) | i ∈ Zn, k ∈ N}. Since we can choose finite subsets F
of V which exclude c, we see that e∞(0n)= 1. For any other subscript x , ex (0n)= 0,
since any trail in

←→
0 n with length greater than 2n + 2 must pass through c at least

twice and thus cannot be a path.

EXAMPLE 5. Let V = {c} ∪ {v j,k | k ∈ N, k ≥ 3, j ∈ Zk} be the set of vertices for a
digraph Θ . Define the set E of edges for Θ by E = {(v j,k, v j+1,k), (v j,k, c) | k ∈ N,
k ≥ 3, j ∈ Zk}. Here e∞(Θ)= ep(Θ)= e∗(Θ)= e+p(Θ)= eδ(Θ)= e←−

∗
(Θ)= 1.

For the other five subscripts x , ex (Θ)= 0.

EXAMPLE 6. Let X be any infinite set. Let the set of all finite subsets of X be
the set, V = V0, of vertices for a digraph 0. Define the set E of edges for 0 by
E = {(A, B) | A, B ∈ V, B ⊆ A}. Then any positive path of length n with initial
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vertex A0 ∈ V corresponds to a chain of finite subsets An $ An−1 $ · · ·$ A2 $ A1
$ A0. Observe that there is a positive path in 0 from A to B if and only if B is a
subset of A, that the longest positive path having A as an initial vertex has length |A|
and that digeodesics in 0 have length 1.

Let F= {Aψ }ψ∈9 be any finite subset of V and define AF by AF =
⋃
ψ∈9 Aψ .

Then AF is also finite. Choose some element x = xF ∈ X − AF. Given
any two vertices B1, B2 ∈ 0 − F, let B = B1 ∪ B2 ∪ {x}. Then B ∈ 0 − F and
(B, B1), (B, B2) are both edges in 0 − F, so 0 − F is connected and geodesics in
←−−→
0 − F have length at most 2.

It is then clear that e∞(0)= ep(0)= e∗(0)= e+p(0)= e←−
∗
(0)= 1 while

ex (0)= 0 for the other six subscripts x .

A set X ⊆ M is a set of monoid generators for the monoid M if every nonidentity
element of M can be written as a product of elements of X . A set Y ⊆ M is a set of
semigroup generators for the monoid M if every element of M can be written as a
product of elements of Y .

For any semigroup S, we define S1 to be the monoid S ∪ {1} where 1 is a
new idempotent, not in S, and 1 · s = s = s · 1 for every s ∈ S. For a semigroup
homomorphism f : S→ T , we have a monoid homomorphism f 1

: S1
→ T 1,

extending f , if we define f 1(1)= 1. Then ( )1 is a functor from the category of
semigroups to the category of monoids and is the left adjoint to the forgetful functor
from the category of monoids to the category of semigroups. If 〈X : R〉 is a semigroup
presentation for S, then we can regard 〈X : R〉 as a monoid presentation for S1, by
allowing the empty word on X .

For a digraph 0 and a semigroup S, let φ be a function from S to E = E0 . Then the
pair (0, φ) is a diagram over the semigroup S, φ is the label, or labelling function for
the diagram and, for any edge e ∈ E, φ(e) ∈ S is the label of e. We extend the label
by concatenation to a label on positive paths in 0.

If S is any semigroup with a finite set X of generators and s ∈ S, we write L X (s) for
the smallest positive integer n such that s = xi1 xi2 · · · xin with xi j ∈ X for 1≤ j ≤ n.
Below, we will see that L X (s) is the length of a digeodesic from 1 to s in either the
right Cayley digraph 0r (S1, X) or the left Cayley digraph `0(X, S1). When M is a
monoid and X is a set of monoid generators for M , the identity 1 is the product of
0 elements from X and we define L X (1)= 0. For any nontrivial m ∈ M , we write
L X (m) for the smallest positive integer n such that m = xi1 xi2 · · · xin with xi j ∈ X for
1≤ j ≤ n. When X is a set of monoid generators for the monoid M and m ∈ M , we
will see that L X (m) is the length of a digeodesic from 1 to m in either the right Cayley
digraph 0r (M, X) or the left Cayley digraph `0(X, M).

2. Cayley digraphs for semigroups and monoids

Suppose that X ⊆ T is a set of semigroup generators for the semigroup T or that
X ⊆ T is a set of monoid generators for the monoid T . The right Cayley digraph for
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T with respect to X is the digraph 0r (T, X)= (V, E, ι, τ ) where V = T ,

E = T × X = {(t, x) | t ∈ T, x ∈ X}, ι((t, x))= t, τ ((t, x))= t x .

Dually, the left Cayley digraph for T with respect to X is the digraph `0(X, T )=
(V, E, ι, τ ) where V = T ,

E = X × T = {(x, t) | x ∈ X, t ∈ T }, ι((x, t))= t, τ ((x, t))= xt.

The monoid Cayley digraphs are connected, but the semigroup Cayley digraphs
need not be. For example, if n is any natural number and Fn is the free semigroup on
the set Xn = {x1, . . . , xn} of generators, then both 0r (Fn, Xn) and `0(Xn, Fn) have
n components. For a given semigroup or monoid, these left and right Cayley digraphs
can be quite dissimilar and will not in general have the same number of ends. Given
a Cayley digraph 0, the graph

←→
0 is the Cayley graph. Any reference in this work

to a positive path in a Cayley graph will always mean a positive path in the Cayley
digraph. To define the corresponding right and left Cayley diagrams, we define a
label φ by φ(t, x)= x or φ(x, t)= x , respectively. We can regard this label as having
values in the semigroup or monoid T or as having values in the free semigroup or free
monoid on the set X of generators for T .

LEMMA 3. Suppose that X is a finite set of monoid generators for the monoid T . Let
0 be the right (left) Cayley digraph, 0r (T, X) (`0(X, T )). If F is any finite set of
vertices of 0 and C is an infinite component of 0 − F, then there is a vertex v̂ in C
which initiates unbounded digeodesics.

PROOF. The proof is the same for the right and left Cayley digraphs. We want to find
a vertex v̂ in C and, for each natural number n, a digeodesic πn ∈ C with ι(πn)= v̂

and |πn| = n.
Since C is infinite and there are only finitely many products of elements of X having

any fixed length, for each natural number N , we can find an element vN of C such that
L X (vN )≥ N . Select a digeodesic γN in 0 from 1 to vN .

Suppose first that, for infinitely many values of N , the digeodesic γN is contained
in C . Then 1 ∈ C . We let v̂ = 1 and, for each natural number n, we select a digeodesic
γN ∈ C with N ≥ n. Since |γN | = L X (vN )≥ N , the digeodesic γN has length at least
n and we let πn be the initial subpath of γN of length n.

Suppose then that γN is in C for only finitely many values of N . Then, for
some sufficiently large N0, the digeodesic γN contains some vertex aN ∈ F whenever
N ≥ N0. Let δF= {v ∈ 0 − F | there is an edge e of 0 with ι(e) ∈ F and τ(e)= v}.
Since F and X are finite, δF is finite. For N ≥ N0, we have aN ∈ F and vN ∈ C j
0 − F, so γN contains at least one vertex which is in δF. For N ≥ N0, define uN to be
the unique vertex u on γN such that u ∈ δF, but no vertex following u on γN is in δF.
Since δF is finite, there is at least one vertex v̂ in δF such that v̂ = uN for infinitely
many different values of N . This is the vertex v̂ required for the conclusion of the
lemma. For any natural number n, choose N so that uN = v̂ and N ≥ L X (v̂)+ n. Then
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the terminal subpath of γN from v̂ to vN has length at least n. Let πn be the subpath
of γN having length n and initial vertex v̂. Since πn is a subpath of a digeodesic, πn is
a digeodesic. 2

COROLLARY 4. Suppose that X is a finite set of monoid generators for the monoid
T . Let 0 be the right Cayley digraph, 0r (T, X). Then ex (0)= e∞(0) if x is any of
p, g, ∗, †,+p,−→∗ or

−→
δ . Similarly, ex (0)= e∞(0) if 0 is the left Cayley digraph

`0(X, T ) and x is any of these subscripts. 2

REMARK. The previous two results and arguments also hold for finitely generated
semigroups.

EXAMPLE 7. If X is a finite alphabet with |X |> 1, F is the free monoid generated by
X and 0 is the corresponding right Cayley digraph, then e∞(0)=∞, but e←−

∗
(0)=

e←−
δ
(0)= 0.

LEMMA 5.
(a) Suppose that M is a monoid with a finite set X of monoid generators, that 0 is

the right (left) Cayley digraph for M with respect to X and that F is any finite subset
of M. Then 0 − F has at most 1+ |X | |F| components.

(b) Suppose that S is a semigroup with a finite set X of generators, that 0 is the
right (left) Cayley digraph for S with respect to X and that F is any finite subset of S.
Then 0 − F has at most (1+ |F|)|X | components.

PROOF. The proof is the same for the right and left Cayley digraphs.
(a) One of the components of 0 − F might contain the identity element of M . We

regard this potential component as accounting for the ‘1’ in 1+ |X | |F|. Suppose that
C is a component of 0 − F which does not contain the identity element. Choose an
element m ∈ C for which L X (m) is minimal and, for the sake of notation, assume that
L X (m)= k. Choose a positive path of length k from the identity element to m in 0
and let v be the vertex occurring just before m on this path. Observe that we must have
v ∈ F: otherwise v ∈ 0 − F and the edge from v to m is in 0 − F, hence in C , but this
contradicts our choice of m ∈ C with L X (m) minimal. Then the edge from v to m is
one of the |X | edges having v as its initial vertex and we can have at most |X | |F| such
edges from vertices of F to components of 0 − F which do not contain the identity
of M .

(b) Suppose that S is a semigroup, that 0 = 0(S, X) and that F is a finite subset
of S. By part (a), 0(S1, X)− F has at most 1+ |X | |F| components. One of these
components contains the identity element of S1. With this identity element removed
in 0, the remaining elements of this component partition into at most |X | components
of 0 − F. Hence 0 − F has at most |X | + |X ||F| components. 2

It is not difficult to see that the bounds given in Lemma 5 are attained when we let
F be the set of all words of some fixed length on the free generators of a free monoid
or a free semigroup.

https://doi.org/10.1017/S1446788708081020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708081020


110 D. A. Jackson and V. Kilibarda [10]

The following three corollaries of Lemma 5 are useful, expected and easy. We state
and prove these for finitely generated monoids, but we remark that essentially the same
proofs hold for finitely generated semigroups.

COROLLARY 6. Suppose that X is a finite set of monoid generators for the monoid
T . Let 0 be the right (left) Cayley digraph, 0r (T, X) (`0(X, T )). If T is infinite, then
e∞(0)≥ 1.

PROOF. For any finite F, T is the disjoint union of F and the components of 0 − F.
By Lemma 5, there are only finitely many components, so at least one of these must
be infinite. 2

COROLLARY 7. Suppose that X is a finite set of monoid generators for the monoid T .
Let 0 be the right (left) Cayley digraph, 0r (T, X) (`0(X, T )). If F and F̂ are finite
subsets of T with F j F̂, then |C∞(0 − F)| ≤ |C∞(0 − F̂)|.

PROOF. Observe that each component of 0 − F̂ must be contained in some component
of 0 − F. Since 0 − F̂ has only finitely many components, an infinite component,
C , of 0 − F can contain only finitely many components of 0 − F̂ and finitely many
elements of F̂, so at least one of the components of 0 − F̂ contained in C must also be
infinite. 2

EXAMPLE 8. The conclusion of Corollary 7 need not hold for arbitrary digraphs 0.
Let 0n be the digraph of Example 4, F any finite set of vertices of 0n which does not
include the vertex c and F̂= F ∪ {c}. Then |C∞(0n − F)| = 1 but |C∞(0n − F̂)| = 0.

COROLLARY 8. Suppose that X is a finite set of monoid generators for the monoid T .
Let 0 be the right (left) Cayley digraph, 0r (T, X) (`0(X, T )). For every natural
number n, define Fn to be {t ∈ T | L X (t)≤ n}. Then Fn is finite and e∞(0)=
limn→∞ |C∞(0 − Fn)|.

PROOF. It is clear that |Fn| ≤
∑n

j=0 |X |
j and that

max
Fn
|C∞(0 − Fn)| ≤ e∞(0)= max

F⊆V0,F finite
|C∞(0 − F)|.

If e∞(0) is finite, then, for some finite F⊆ T , |C∞(0 − F)| = e∞(0). Let
m =maxt∈F{L X (t)}. Then F⊆ Fn for n ≥ m, hence e∞(0)= |C∞(0 − F)| ≤
|C∞(0 − Fn)| by Corollary 7. It follows that limn→∞ |C∞(0 − Fn)| = e∞(0).

If e∞(0)=∞, then for every natural number k we can find a finite F⊆ T
with |C∞(0 − F)| ≥ k. Given such an F, let n =maxt∈F{L X (t)}. Then F⊆ Fn so
k ≤ |C∞(0 − F)| ≤ |C∞(0 − Fn)| and limn→∞ |C∞(0 − Fn)| =∞. 2

LEMMA 9. If X and Y are finite sets of semigroup generators for the semigroup S,
then e∞(0r (S, X))= e∞(0r (S, Y )) and e∞(`0(X, S))= e∞(`0(Y, S)).

If X and Y are finite sets of monoid generators for the monoid M, then
e∞(0r (M, X))= e∞(0r (M, Y )) and e∞(`0(X, M))= e∞(`0(Y, M)).
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PROOF. We state the argument in terms of the right Cayley digraphs for semigroups:
the argument for the left Cayley digraphs is dual and the monoid argument is
essentially the same as the semigroup argument. Observe first that, by symmetry,
it suffices to prove that e∞(0r (S, X))= e∞(0r (S, X ∪ Y )), and second that we can
reduce to the case of proving that e∞(0r (S, X))= e∞(0r (S, X ∪ {y})) where y ∈ Y
by using induction on |X ∪ Y | − |X |.

Suppose then that S is a semigroup, that X is a finite set of generators for S and that
y ∈ S − X . For brevity, write 0 for the right Cayley digraph 0r (S, X), and 0′ for the
right Cayley digraph 0r (S, X ∪ {y}). Then S = V0 = V0′ and E0 ⊂ E0′ , so we may
regard 0 as a proper subgraph of 0′.

We want first to show that e∞(0′)≤ e∞(0). Let F be any finite subset of S.
It suffices to show that each of the finitely many infinite components of 0′ − F
must contain one or more of the finitely many infinite components of 0 − F. Since
all of the edges in 0 − F are also edges in 0′ − F, every component of 0 − F is
entirely contained in some one component of 0′ − F. Since F is finite and 0 − F
has only finitely many finite components, the union of the infinite components of
0 − F contains all but finitely many of the vertices of 0 and hence the union of the
components of 0′ − F which contain infinite components of 0 − F contains all but
finitely many of the vertices in V0′ = V0 . Hence, every infinite component of 0′ must
be one of those which contains some infinite component of 0 − F.

Suppose next that e∞(0) is finite. Then there is a finite subset F1 of S such that
0 − F1 has exactly e∞(0) infinite components. Let F+ be the set of vertices in 0
which can be reached from some vertex of F1 by a positive path in 0 having length at
most L X (y). Observe that F+ is a finite set and let F2 = F1 ∪ F+. Then 0 − F2 also
has e∞(0) infinite components. Each infinite component, C , of 0 − F2 is contained
in some infinite component, D, of 0′ − F2. To show that 0′ − F2 has e∞(0) infinite
components it suffices to show that no two distinct infinite components of 0 − F2 are
contained in the same infinite component of 0′ − F2. To this purpose, observe also
that each infinite component, C , of 0 − F2 is contained in an infinite component,
Ĉ , of 0 − F1. Since F1 ⊆ F2, it follows from Corollary 7 that |C∞(0 − F1)| =

|C∞(0 − F2)| and hence that if C1, C2 are distinct infinite components of 0 − F2,
then Ĉ1, Ĉ2 are distinct infinite components of 0 − F1. For the sake of obtaining a
contradiction, suppose that two distinct infinite components, C1 and C2, of 0 − F2 are
contained in the same infinite component, D, of 0′ − F2. By choosing C1 and C2 to
minimize the length of a path in 0′ − F2 connecting them, we may assume that there
is an edge f in 0′ − F2, labelled by y, having its initial vertex in C1 and its terminal
vertex in C2. Write v1 for the initial vertex of f and v2 for the terminal vertex of f .
Then v1 is also in Ĉ1 and v2 is also in Ĉ2. Since the edge f of 0′ has v1 and v2 for its
endpoints, there is a path π f in 0 having length L X (y) from v1 to v2. If π f connects
Ĉ1 and Ĉ2 in 0 − F1, then Ĉ1 = Ĉ2 and C1 = C2, so there must be some vertex on π f
which occurs in F1. But then v2 ∈ F+ ⊂ F2, contradicting our assumption that v2 is in
a component of 0′ − F2.
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In the case where e(0) is infinite, we need to show that for every natural number N ,
there is a finite subset F of S such that 0′ − F has at least N infinite components. Let
F1 be a finite subset of S such that 0 − F1 has at least N distinct infinite components.
Use F1 and L X (y) to construct F2 just as in the preceding paragraph. Then 0 − F2
also has at least N infinite components and, moreover, we can select N of these which
are contained in N different components of 0 − F1. It suffices to show that no two
of these can be contained within the same component of 0′ − F2. For that, we may
repeat the argument above using some edge f and corresponding path π f . 2

For a finitely generated semigroup S, we define E r (S) and E`(S) by E r (S)=
e∞(0r (S, X)) and E`(S)= e∞(`0(S, X)) for any finite set X of semigroup generators
for S. It is clear that we can state analogous definitions for E r (M) and E`(M) when
M is a finitely generated monoid.

We observe that when M is a finitely generated monoid, the values for E r (M) and
E`(M) do not change if we consider M as a semigroup rather than as a monoid. By
Lemma 9, we may assume that our set X of monoid generators for M includes the
identity element of M . Then X is also a set of semigroup generators for M . When we
regard M as a semigroup, we obtain the same right (left) Cayley digraph for M with
respect to X that we obtain when we regard M as a monoid.

If G is a finitely generated group with a finite set X of group generators, then
X ∪ X−1 is a finite set of monoid generators for G. It is usual to consider a
Cayley graph rather than a Cayley digraph for a group. Typically, this is the right
Cayley graph, but it is isomorphic to the left Cayley graph. All vertices in the
Cayley graph 0(G, X) have degree 2|X |, so 0(G, X) is locally finite. There are
numerous equivalent definitions for the number of ends of a finitely generated group
(see [2, 3, 10–12]). One of these (see [10]) is to define the number of ends of
G to be limn→∞ |C∞(0(G, X)− Fn)| where Fn = {g ∈ G | L X∪X−1(g)≤ n}. By
Corollary 8, when a group G is considered as a monoid, then its number of ends
(considered as a group) is equal to both of the monoid values E r (G) and E`(G).

A function ψ from a semigroup S1 to a semigroup S2 is an anti-homomorphism
(see [1, Volume 1, p. 9]) if ψ(ab)= ψ(b)ψ(a) for all a, b ∈ S1. It is easy to see
that the composition of two anti-homomorphisms is a homomorphism. An anti-
homomorphism is an anti-automorphism if S1 = S2 and ψ is a bijection.

For any semigroup (S, ·)with associative multiplication · the dual semigroup Sop
=

(S, ∗) has the same set of elements as S and has associative multiplication ∗ defined
by s1 ∗ s2 = s2 · s1. Then the identity function on the set S is an anti-automorphism
between the semigroup S and the semigroup Sop. Using this and composition, we may
regard any anti-homomorphism from S1 to S2 as either a homomorphism from Sop

1
to S2 or else as a homomorphism from S1 to Sop

2 . In particular, anti-automorphisms
of S correspond to isomorphisms between S and Sop. Any set of generators for S is
also a set of generators for Sop and whenever X is a finite set of generators for S,
then 0r (S, X)= `0(X, Sop), so E r (S)= E`(Sop) and E`(S)= E r (Sop). It is worth
observing that op is a functor from the category of semigroups to itself. If S1 and S2 are
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semigroups and f : S1→ S2 is a homomorphism, then we may define f op
: Sop

1 → Sop
2

by f op(s)= f (s) for s ∈ S1. It is easy to verify that f op is a homomorphism.
Generally, it is notationally convenient to suppress the distinction between f and f op.

PROPOSITION 10. If the semigroup S is isomorphic to Sop, then E r (S)= E`(S).

A semigroup S is an inverse semigroup if for every element s ∈ S there is a unique
element, denoted s−1, in S such that ss−1s = s and s−1ss−1

= s−1. A monoid is an
inverse monoid if it is an inverse semigroup when regarded as a semigroup. It is easy
to see that ss−1 and s−1s are idempotent elements in any inverse semigroup, and it is
very well known (see [1] or [8]) that idempotents in an inverse semigroup commute
with each other. From these, it follows easily that for s, t ∈ S, (st)−1

= t−1s−1 and
hence that ()−1 is an anti-automorphism.

COROLLARY 11. If T is a finitely generated inverse semigroup or a finitely generated
inverse monoid, then E r (T )= E`(T ).

PROOF. As noted, the inversion operation is an anti-automorphism. 2

3. Some constructions and examples

We give three equivalent descriptions for the construction of a useful monoid M̂
followed by some comments about the corresponding semigroup construction.

Suppose that M and T are monoids and that M = S1 for some semigroup S, or
equivalently that the identity element of M is the only element of M that is a left unit
or a right unit. Define a multiplication ∗ on the set T × M by

(t1, m1) ∗ (t2, m2)=

{
(t1t2, m2) if m1 = 1,

(t1, m1m2) otherwise.

We need the assumption that M = S1 to prove that ∗ is associative. It is easy to see
that (1, 1) is an identity element, so (T × M, ∗) is a monoid. We use M̂ as a succinct
notation for this monoid. If T is also a monoid in which the identity element is the
only left or right unit, then this assumption also holds for M̂ .

For the sake of notation, let 〈A : R1〉 be a monoid presentation for T and 〈X : R2〉 a
monoid presentation for M . Then the monoid M̂ has monoid presentation

〈A ∪ X | R1 ∪ R2 ∪ {(xa, x) | a ∈ A, x ∈ X}〉.

We want to identify the ordered pair (t, m) with the word tm where t is a word on A
and m is a word on X . It is easy to show that every element of the presentation can
be written in the form tm. It is more tedious to show that tm = t ′m′ in M̂ implies that
t = t ′ in T and that m = m′ in M : the assumption that M = S1 for some semigroup S
is necessary for this uniqueness result.

Later in this paper we provide a more elaborate discussion of semidirect products
of monoids. Define θT ∈ End(T ) to be the monoid endomorphism of T which
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takes every element of T to the identity element 1T and write ιT for the identity
automorphism of T . Define a monoid homomorphism 80 : M→ End(T ) to be
the monoid homomorphism which takes 1M to ιT and takes every other element
of M to θT . Here, we need the assumption that M = S1 to ensure that 80 is a
homomorphism. Then the multiplication ∗ above and the monoid presentation above
are the multiplication and a presentation for the monoid semidirect product T o80 M .
This approach to describing M̂ has the notational advantage that we can conveniently
describe different M̂s for different choices of M and T . We utilize this notation in
some examples.

If S and T are semigroups with semigroup presentations 〈X : R2〉 and 〈A : R1〉,
respectively, then we can define a semigroup Ŝ having semigroup presentation

〈A ∪ X | R1 ∪ R2 ∪ {(xa, x) | a ∈ A, x ∈ X}〉

which is clearly analogous to the monoid presentation for M̂ given above. We could
also describe this semigroup Ŝ by defining the obvious multiplication on the set
(T × S) ∪ T ∪ S or by recognizing Ŝ as the subsemigroup of nonidentity elements
of the monoid semidirect product T 1 o80 S1. We will not need the semigroup version
of the following lemma.

LAYER LEMMA. Let T be a finite monoid and M a finitely generated monoid.
Assume that M = S1 for some semigroup S. Then E r (T o80 M)= |T |E r (M) and
E`(T o80 M)= E`(M).

PROOF. Let X be a finite set of monoid generators for M and let A be a finite set of
monoid generators for T . We write x or x j for elements of X and a or ak for elements
of A. Write T = {1T = t1, t2, . . . , tn} for some fixed ordering of the |T | = n elements
of T . We use m, m1, m2 as notation for arbitrary elements of M and use t, ti , ti1, ti2 as
notation for arbitrary elements of T . We use M̂ as an abbreviation for T o80 M . We
write just tm, t and m for elements (t, m), (t, 1M ) and (1T , m) of M̂ and we similarly
identify X with {1T } × X and A with A × {1M }.

Write 0 for the right Cayley digraph 0r (M, X) and 0̂ for the right Cayley
digraph 0r (M̂, A ∪ X). Here, it will be useful to regard 0 and 0̂ as diagrams with
labelled edges. For 1≤ i ≤ n, we define the i th layer in 0̂ to be the subdiagram 0i of 0̂
having vertices Vi = {ti m | m ∈ M} and edges Ei = { f | f ∈ E

0̂
, ι( f )= ti m, τ ( f )=

ti mx, x ∈ X}. Then, for each i with 1≤ i ≤ n, there is a diagram isomorphism
φi : 0→ 0i , defined on vertices and edges by φi (m)= ti m, and φi ( f ) is the edge
from ti m to ti mx with label x if f is the edge from m to mx having label x . Since
ti mak = ti m in M̂ if m 6= 1M , the edges of 0̂ having labels in A are loops at the given
vertex except for the edges from ti to ti ak . We build 0̂ from the n layers by constructing
the finite right Cayley digraph 0r (T, A), identifying the vertex ti in this digraph with
the vertex ti 1 in 0i and adding loops labelled by each element of A at each vertex
ti m, m 6= 1 of 0i .
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Suppose first that E r (M) is finite and choose a finite subset F⊆ M such that 0 − F
has E r (M) infinite components. We may assume by Corollary 7 that 1 ∈ F. For
1≤ i ≤ n, let Fi = {ti m | m ∈ F} ⊆ Vi and let F̂=

⋃n
i=1 Fi . Observe that F̂ is finite.

Since 0i − Fi has E r (M) infinite components for each i and the edges of 0̂ − F̂ having
labels in A are all loops, 0̂ − F̂ has nE r (M) infinite components. This shows that 0̂
has at least nE r (M) ends. Suppose that F̄ is an arbitrary finite subset of M̂ . Let

F= F1 = {m | ti m ∈ F̄ for some i with 1≤ i ≤ n}, Fi = {ti m | m ∈ F},

for 1≤ i ≤ n and F̂=
⋃n

i=1 Fi . Observe again that F̂ is finite. Because F̄⊆ F̂, we
know that 0̂ − F̂ has at least as many infinite components as 0̂ − F̄. It suffices to
prove that 0̂ − F̂ has at most nE r (M) infinite components. If this were not the case,
then by the pigeonhole principle, we would have more than E r (M) infinite components
in some 0i − Fi . Since all of these are isomorphic to 01 − F1, we would then have
the contradiction that 0 − F has more than E r (M) infinite components.

The argument when E r (M) is infinite is similar. For every natural number h we can
find a finite subset F of M such that 1 ∈ F and 0 − F has at least h infinite components.
Then, with F̂, as above, 0̂ − F̂ has at least hn infinite components.

Now write 0 for the left Cayley digraph `0(X, M) and 0̂ for the left Cayley digraph
`0(A ∪ X, M̂). Write ϒ for the left Cayley digraph `0(A, T ). For any m ∈ M , define
the tower at m to be the the subdiagram ϒm of 0̂ having vertex set Vm = {tm | t ∈ T }
and edge set Em = { f | f ∈ E

0̂
, ι( f )= tm, τ ( f )= atm, a ∈ A}. Then, for every

m ∈ M , there is a diagram isomorphism φm : ϒ→ ϒm defined on vertices and edges
by φm(t)= tm, and φm( f ) is the edge from tm to atm if f is the edge from t to at in
ϒ having label a. We can think of constructing 0̂ from the set of towers by identifying
each vertex 1T m in the towerϒm with the vertex m in 0 and for each x ∈ X and m 6= 1
in M adjoining an edge from tm in ϒm to xm in 0 having label x .

Corresponding to any finite subset F of M , we define F̂ to be the finite subset
F̂= {ti m | 1≤ i ≤ n, m ∈ F} of M̂ . Corresponding to any finite subset F̄ of M̂ , let
F= F1 = {m | tkm ∈ F̄ for some 1≤ k ≤ n}. Since F̄⊆ F̂, we obtain e∞(0̂)= e∞(0)
if we show that 0 − F and 0̂ − F̂ have the same number of infinite components for any
finite F. After discussing some technical details, we construct a bijection ̂ between
infinite components C of 0 − F and infinite components Ĉ of 0̂ − F̂.

If, for some x ∈ X , the edge f̂ ∈ E
0̂

has label x , ι( f̂ )= tm and τ( f̂ )= xm, define
the projection of f̂ to be the edge f = π( f̂ ) in E0 having label x , ι( f )= m and
τ( f )= xm. If the edge f̂ ∈ E

0̂
has label a for a ∈ A, ι( f̂ )= tm and τ( f̂ )= atm,

define the projection, π( f̂ ), of f̂ to be the empty path in 0 at the vertex m. We
regard the inverse of an empty path at any vertex to be the same empty path. If
ω = f̂ ε1

1 f̂ ε2
2 · · · f̂ εk

k , where ε j =±1 and f̂ j ∈ E
0̂

for 1≤ j ≤ k, is a walk in 0̂ − F̂

from ι(ω) to τ(ω), then by induction on k, (π( f̂1))
ε1(π( f̂2))

ε2 · · · (π( f̂k))
εk is a walk

in 0 − F from ι((π( f̂1))
ε1) to τ((π( f̂k))

εk ). Denote this walk by π(ω). In this
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paragraph and the next, walks and paths (allowing negative edges) in a digraph are
to be interpreted as walks in the corresponding graph.

If C is an infinite component of 0 − F, define Ĉ by Ĉ = {tm | t ∈ T, m ∈ C}. Then
Ĉ is an infinite set, since {1m | m ∈ C} ⊆ Ĉ . To see that Ĉ is connected in 0̂ − F̂,
suppose that ti1m1, ti2m2 ∈ Ĉ . Then m1, m2 ∈ C , so there is a path from m1 to m2

in 0 − F and hence a corresponding path from 1m1 to 1m2 in 0̂ − F̂. There are also
paths, with all edges labelled by elements of A in 0̂ − F̂, from 1m1 to ti1m1 and from
1m2 to ti2m2. We compose paths and their inverses to find a path from ti1m1 to ti2m2.
If C∗ is the component of 0̂ − F̂ which contains Ĉ , let t∗m∗ be any vertex in C∗, t̂ m̂
any vertex in Ĉ and ω a path in 0̂ − F̂ from t∗m∗ to t̂ m̂. Then π(ω) is a walk in
0 − F from m∗ to m̂, hence m∗ ∈ C , t∗m∗ ∈ Ĉ and C∗ = Ĉ . That is, Ĉ is always a
component of 0̂ − F̂. If C1 and C2 are any two infinite components of 0 − F and ω is
a path in 0̂ − F̂ from some vertex in Ĉ1 to some vertex in Ĉ2, then π(ω) is a walk in
0 − F from ι(π(ω)) ∈ C1 to τ(π(ω)) ∈ C2, hence C1 = C2.

To see that ̂ is onto, suppose that C̄ is some infinite component of 0̂ − F̂. Define
C by C = {m | tm ∈ C̄ for some t ∈ T }. It is then routine to verify that C is an infinite
set, that C is connected, that C is a component of 0 − F and that Ĉ = C̄ . 2

It is well known that, for any finitely generated group G and finite set X of
generators for G, the left and right Cayley graphs for G with generating set X are
isomorphic, and that such a Cayley graph has 0, 1, 2 or else infinitely many ends
(see [2, 3, 10–12]). The next six examples illustrate that these conclusions do not
hold for left and right Cayley graphs for semigroups and monoids.

EXAMPLE 9. For n ≥ 2, define An to be the monoid semidirect product T o80 M
where M is the infinite cyclic monoid having generator x and T is the monogenic
monoid having monoid presentation 〈t : tn

= tn−1
〉. It is apparent that M = S1 where

S is the infinite cyclic semigroup having generator x . It is easy to see that the left and
right Cayley digraphs for M have one end. By the Layer Lemma, E r (An)= n and
E`(An)= 1.

To greatly generalize, let S1 be any semigroup with E r (S1)= E`(S1)= 1 and let
S2 be any semigroup with n − 1 elements. With M = S1

1 and T = S1
2 , we have

E r (T o80 M)= n and E`(T o80 M)= 1. The monoid An is arguably the most
elementary example of this construction. Another elementary possibility is to replace
T = 〈t : tn

= tn−1
〉 by a cyclic group of order n having generator t . This has the

disadvantage that the element (t, 1) ∈ T o80 M is then a left and right unit, preventing
us from using this T o80 M as the monoid Mop in the next example.

EXAMPLE 10. For arbitrary natural numbers m, n ≥ 2, let M = Aop
n and let T = Tm

now be the the monogenic monoid having monoid presentation 〈t : tm
= tm−1

〉. Then
by the Layer Lemma, E r (T o80 M)= m and E`(T o80 M)= n. For later reference,
denote this monoid T o80 M by Jn,m .
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EXAMPLE 11. Let B be the monoid having monoid presentation 〈a, b : ba = a2
〉. We

want to show that the right Cayley digraph 0r (B, {a, b}) has one end while the left
Cayley digraph `0({a, b}, B) has infinitely many ends. Every element of B can be
uniquely written in the form a j bk where j, k ≥ 0. For either the right or the left
Cayley digraph for B, we place the vertex a j bk at the lattice point ( j, k) in the first
quadrant of the real plane. It is easy to show that a j bk

· a = a j+k+1 and it is clear that
a j bk
· b = a j bk+1. Similarly, a · a j bk

= a j+1bk , while b · bk
= bk+1 when j = 0, but

b · a j bk
= a j+1bk when j > 0.

Suppose first that 0 is the right Cayley digraph 0r (B, {a, b}) and let F be a finite
set of vertices in B. Let t =max{ j + k | a j bk

∈ F} and define Ft by Ft = {a j bk
|

j + k ≤ t}. The graph 0 has one end by Corollary 7 if 0 − Ft is connected. Let
a j1bk1, a j2bk2 be vertices in 0 − Ft and assume without loss of generality that
j1 + k1 ≤ j2 + k2. Then we have a positive or empty path in 0 − Ft from a j1+k1+1 to
a j2+k2+1, with edges labelled by a and edges with label a from a j1bk1 to a j1+k1+1 and
from a j2bk2 to a j2+k2+1.

Now suppose that 0 is the left Cayley digraph `0({a, b}, B). For every natural
number h, define the subset Fh of B by Fh = {bi

: 0≤ i < h}. We then observe
that 0 − Fh has h + 1 infinite components Ci where Ci has vertices {a j bi

: j > 0}
if 0≤ i < h and Ch has vertices {a j bk

: j ≥ 0, k ≥ h}.

EXAMPLE 12. We have remarked earlier that a Cayley digraph for a semigroup need
not be connected. Let B be the monoid from Example 11 and S the subsemigroup of
nontrivial elements in B. We observe that the right Cayley digraph 0r (S, {a, b}) is
connected, but the left Cayley digraph `0({a, b}, S) has two components.

EXAMPLE 13. Let B be the monoid of Example 11 and observe that the identity
element is the only left or right unit in B. Let T = Tm again be the the monogenic
monoid having monoid presentation 〈t : tm

= tm−1
〉. Then by the Layer Lemma,

E r (T o80 B)= m and E`(T o80 B)=∞.

An element t in a semigroup or a monoid T is a regular element if there is
an element x ∈ T such that t xt = t . The semigroup or monoid T is regular if
every element of T is regular. An element t in a semigroup or a monoid T is
completely regular if there is an element x ∈ T such that t xt = t and xt = t x . A
semigroup or monoid T is completely regular if every element of T is completely
regular. There are several other equivalent characterizations of completely regular
semigroups. For example, a semigroup is completely regular if and only if it is a union
of groups. In [9], this is part of Theorem II.1.4, which the authors there describe as the
fundamental theorem for the global structure of completely regular semigroups.

EXAMPLE 14. We know by Corollary 11 that E r (I )= E`(I ) for any finitely generated
inverse monoid I . In this example and the next, we show that this equality need not
hold for completely regular monoids.

Let G1 be any finitely generated group having one end. There are many of these,
and G1 = Z× Z is a standard example. Regard G1 as a semigroup with a finite set X
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of semigroup generators and form the monoid M = (G1)
1. Then X is a finite set of

monoid generators for M and M is both a completely regular monoid and an inverse
monoid. For a natural number n > 1, let G2 be any completely regular semigroup with
n − 1 elements. For example, we might take G2 to be any group or any semilattice
with n − 1 elements. Let T = (G2)

1. Then T is a completely regular monoid with n
elements. A routine argument by cases shows that T o80 M is a (completely) regular
monoid whenever M and T are (completely) regular. By the Layer Lemma, we have
that E r (T o80 M)= n and E`(T o80 M)= 1. To have one explicit example of this
for later reference, let Dn be T o80 M when G1 = Z× Z and G2 is the cyclic group
with n − 1 elements.

EXAMPLE 15. Let M = Dop
n where Dn is the completely regular monoid from

Example 14. Then E r (M)= 1 and E`(M)= n. For a natural number m > 1,
let G3 be any completely regular semigroup with m − 1 elements and T = (G3)

1.
Then T o80 M is a completely regular monoid and we have E r (T o80 M)= m and
E`(T o80 M)= n by the Layer Lemma.

We now embark upon a second, more common, construction that will allow us to
present some interesting examples of commutative and inverse monoids.

Let 3 be an index set and (Sλ, ∗λ) be a semigroup for each λ ∈3. Assume that
Sλ1 ∩ Sλ2 = ∅ if λ1 6= λ2 and that 0 is a new element not in ∪Sλ. Define ∨Sλ to be
{0} ∪

( ⋃
λ∈3 Sλ

)
and define a multiplication ∗ on ∨Sλ by

s ∗ t =

{
s ∗λ t if there exists λ ∈3 such that s ∈ Sλ and t ∈ Sλ,

0 otherwise.

It is easy to see that ∗ is associative. Observe that ∨Sλ is commutative if and only if
every Sλ is commutative. When |3| = 2 and {Sλ} = {A, B}, write A ∨ B for ∨Sλ and
observe that A ∨ B = B ∨ A.

For a first variant description of ∨Sλ, for any λ, define S0
λ to be the semigroup

having elements {0} ∪ Sλ with the multiplication ∗λ extended by setting s ∗λ 0=
0 ∗λ s = 0 ∗λ 0= 0 for all s ∈ Sλ. Then ∨Sλ is the 0-direct union of the semigroups
S0
λ. See Clifford and Preston [1, Volume II, p. 13], Howie, [5, p. 71] or Higgins,

[4, p. 26].
For a second variant description of ∨Sλ, write S0 for the one-element semigroup

{0} and define a multiplication on 30
=3 ∪ {0} by 0 · 0= λ · 0= 0 · λ= λ1 · λ2 = 0

for all λ, λ1, λ2 ∈3. Then 30 is a rather trivial lower semilattice and ∨Sλ is a 30

semilattice of the semigroups Sλ. See [1, p. 25, 26], [5, p. 89] or [4, p. 37–39].

LEMMA 12. Suppose that 3 is a finite set and that {Sλ}λ∈3 is a set of pairwise
disjoint, finitely generated semigroups Sλ. Then ∨Sλ is finitely generated, E`(∨Sλ)=∑
λ∈3 E`(Sλ) and E r (∨Sλ)=

∑
λ∈3 E r (Sλ).

PROOF. We consider the case for the number of left ends. The case for the number of
right ends is dual. If Xλ is a finite set of generators for Sλ, then X = {0} ∪ (

⋃
λ∈3 Xλ)
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is a finite set of generators for ∨Sλ. Write 0 for the left Cayley digraph `0(X, ∨Sλ)
and write 0λ for the left Cayley digraph `0(Xλ, Sλ). If, for each λ ∈3, Fλ is a
finite subset of Sλ, define F to be the finite set {0} ∪ (∪Fλ). The key observation
is that if λ1 6= λ2, x ∈ Xλ1 and s ∈ Sλ2 , then xs = 0 in ∨Sλ and the edge from x to
xs = 0 is not in 0 − F. Hence, the digraph 0 − F is the disjoint union of the finitely
many digraphs 0λ − Fλ. If 0λ − Fλ has mλ infinite components then 0 − F has∑

mλ infinite components. If any E`(Sλ) is infinite, then we can choose Fλ ⊆ Sλ
for which mλ is larger than any given natural number N and hence E`(∨Sλ) must
be larger than N also. If E`(Sλ) is finite for every λ, then for every λ we can choose
Fλ ⊆ Sλ for which mλ = E`(Sλ) and conclude that E`(∨Sλ)≥

∑
λ∈3 E`(Sλ). To prove

E`(∨Sλ)≤
∑
λ∈3 E`(Sλ), it suffices to show that m ≤

∑
λ∈3 E`(Sλ), whenever F is a

finite subset of ∨Sλ and 0 − F has m infinite components. By Corollary 7, we may
assume that 0 ∈ F. For each λ, define Fλ to be F ∩ Sλ and define mλ to be the number
of infinite components of 0λ − Fλ. Then, as above, 0 − F is the disjoint union of the
digraphs 0λ − Fλ and we obtain m =

∑
mλ ≤

∑
λ∈3 E`(Sλ). 2

EXAMPLE 16. For an arbitrary natural number n, let 3 be an index set with
|3| = n, and for each λ ∈3, let Sλ be a finitely generated abelian group with
E`(S3)= E r (S3)= 1. For example, take Sλ to be the free abelian group of rank
rλ ≥ 2. Let S =∨Sλ. Then S is a finitely generated, completely regular, commutative
inverse semigroup with E r (S)= E`(S)= n.

If M is any monoid, End(M) is standard notation for the monoid of monoid
endomorphisms of M . For m ∈ M and f ∈ End(M), mathematicians sometimes find
it convenient to write the argument m to the left of the function f and other times find
it more convenient to write the argument on the right. Then for f, g ∈ End(M), the
composition f g has, in general, two different values depending upon which notational
convention is followed. We write Endr(M) for End(M) when we write functions
to the right of their arguments and we write End`(M) for End(M) when we write
functions to the left of their arguments. Then End`(M) and Endr(M) are duals of
each other with respect to the functor op. We use Monicr(M) for the submonoid of
Endr(M) consisting of one-to-one endomorphisms and Monic`(M) for the submonoid
of End`(M) consisting of one-to-one endomorphisms. We note that Monicr(M) and
Monic`(M) are also dual.

Let A and B be monoids and let 8 : A→ End`(B) be a monoid homomorphism.
For consistency, we would ordinarily write 8(a) for the endomorphism of B which
is the image of a ∈ A and then write [8(a)](b) for the value of this endomorphism at
the element b ∈ B. When the monoid homomorphism 8 is understood from context,
we will abbreviate [8(a)](b) as ab. Since 8 is a monoid homomorphism, we have
1b = b and a1(a2b)=a1a2 b. Since 8(a) is a monoid homomorphism for every a ∈ A,
we have a1= 1 and a(b1b2)= (

ab1)(
ab2). Similarly, if8 : A→ Endr(B) is a monoid

homomorphism, it is often convenient and unambiguous to abbreviate (b)[(a)8] as ba

and then observe that b1
= b, (ba1)a2 = ba1a2, 1a

= 1, and (b1b2)
a
= (ba

1)(b
a
2).
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Suppose that A and B are monoids and that 8 : A→ Endr(B) is a monoid
homomorphism. We define the monoid semidirect product A n8 B to have
elements {(a, b) | a ∈ A, b ∈ B} and multiplication (a1, b1)(a2, b2)= (a1a2, ba2

1 b2).
Similarly, if 8 : A→ End`(B) is a monoid homomorphism, we define the
monoid semidirect product B o8 A to have elements {(b, a) | b ∈ B, a ∈ A} and
multiplication (b1, a1)(b2, a2)= ((b1)(

a1b2), a1a2). It is easily verified that both
multiplications are associative with respective identity elements (1A, 1B) and
(1B, 1A). If 8(a) (or (a)8) is the identity endomorphism b 7→ b of B for every
a ∈ A, then A n8 B is the monoid direct product A × B while B o8 A is the monoid
direct product B × A and thus A n8 B ∼= B o8 A in this case. More generally,
we have A n8 B ∼= (Bop o8 Aop)op. If A and B are commutative monoids, then
Bop
= B, Aop

= A and A n8 B ∼= (B o8 A)op.

THEOREM 13. Suppose that Mi is a finitely generated infinite monoid for i = 1, 2.
If 8 : M1→Monic(M2) is a monoid homomorphism, then E r (M1 n8 M2)=

E`(M2 o8 M1)= 1.

PROOF. Since M2 o8 M1 ∼= (M
op
1 n8 Mop

2 )
op, it will be sufficient to prove that

E r (M1 n8 M2)= 1. Write M for M1 n8 M2. For i = 1, 2, let X i be a finite set
of monoid generators for Mi . Let X = {(x, 1) | x ∈ X1} ∪ {(1, x) | x ∈ X2}. Then X
is a finite set of monoid generators for M .

For the proof below, the reader might find it useful to visualize and then generalize
the Cayley digraph for a direct product of two infinite cyclic monoids.

Write 0 for the right Cayley digraph 0r (M, X). Since X i is a finite set for i = 1, 2,
for every positive integer n, there can be only finitely many elements mi ∈ Mi with
L X i (mi ) < n. Let F be a finite subset of V0 = M . Since F is finite, we may fix a
natural number N = NF, depending upon F, such that F⊆ {(m1, m2) | L X i (mi ) < N
for i = 1, 2}. As a consequence, an element (m1, m2) ∈ M is not in F if either
L X1(m1)≥ N or L X2(m2)≥ N .

Suppose that m ∈ M1 and q, p ∈ M2 with L X2(p)= t > 0. Write p in the form
x j1 x j2 · · · x jt with x ji ∈ X2 for 1≤ i ≤ t . Then we have a positive path in 0 of length t
from (m, q) to (m, qp) with consecutive edges labelled by (1, x ji ) for 1≤ i ≤ t . For
further reference, we may refer to this as the vertical path from (m, q) to (m, qp).
If we further assume that L X1(m)≥ NF, then all of the vertices of this path occur in
0 − F and hence in the same component of 0 − F.

Suppose that m ∈ M2 and q, p ∈ M1 with L X1(p)= t > 0. Set p = x j1 x j2 · · · x jt
with x ji ∈ X1 for 1≤ i ≤ t . Then there is a positive path in 0 of length t from (q, m)
to (qp, m p) with consecutive edges labelled by (x ji , 1) for 1≤ i ≤ t . For further
reference, we may refer to this as the oblique path from (q, m) to (qp, m p). We
need to discuss hypotheses which will guarantee that this oblique path is in 0 − F.

Let k be a fixed natural number and x ∈ X1 a fixed generator of M1. Then
{b ∈ M2 | L X2(b) < k} is a finite set and hence {bx

| b ∈ M2, L X2(b) < k} is also finite.
For this k and x , define k̄ by

k̄ = 1+max{L X2(b
x ) | b ∈ M2, L X2(b) < k}.
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Then if b ∈ M2 and L X2(b) < k, we also obtain that L X2(b
x ) < k̄, or equivalently, if

L X2(b
x )≥ k̄ then L X2(b)≥ k. We may slightly modify our definition for k̄ and assume

that k̄ ≥ k. Thus, for every natural number k, there is a natural number k̄ ≥ k such that
whenever b ∈ M2 and L X2(b

x )≥ k̄ then L X2(b)≥ k.
Similarly, suppose that x ∈ X1 and that ` is any natural number. Since x8 is one-

to-one, there is a natural number ˆ̀ ≥ `, depending upon ` and x , such that whenever
b ∈ M2 and L X2(b)≥ ˆ̀, then L X2(b

x )≥ `.
We use the values k̄ to keep an oblique path within 0 − F by our choice of the

path’s final endpoint. We use the values ˆ̀ to keep an oblique path within 0 − F by our
choice of the path’s initial endpoint.

Consider again oblique paths from (q, m) to (qp, m p). We regard q as varying over
M1 and m as varying over M2, but we want to fix p ∈ M1 with L X1(p)= t > 0 and
write p = x j1 · · · x jt with x ji ∈ X1 for 1≤ i ≤ t .

Let k0 = N = NF and choose k̄0 ≥ k0 such that L X2(b)≥ k0 whenever b ∈ M2 with
L X2(b

x j1 )≥ k̄0. Define k1 to be k̄0. By induction on i , for 1≤ i < t , choose k̄i ≥ ki
such that whenever b ∈ M2 with L X2(b

x ji+1 )≥ k̄i , then L X2(b)≥ ki . Define ki+1
to be k̄i . Then kt depends upon both N and p. To emphasize this, we may write
kN ,p for kt . Suppose that for the oblique path from (q, m) to (qp, m p), we know
that L X2(m

p)≥ kt . Then it is routine to show, by induction on i , for each vertex
(qx j1 x j2 · · · x jt−i , mx j1 x j2 ···x jt−i ) on the path, that L X2(m

x j1 x j2 ···x jt−i )≥ kt−i ≥ k0 =

N and that L X2(m)≥ N , so that all of these vertices are in 0 − F. Thus, the oblique
path from (q, m) to (qp, m p) is in 0 − F provided that L X2(m

p)≥ kN ,p.
Let `0 = N = NF and choose ˆ̀0 ≥ `0 such that L X2(b

x jt )≥ `0 whenever b ∈ M2

with L X2(b)≥ ˆ̀0. Define `1 to be ˆ̀0. By induction on i , for 1≤ i < t , choose ˆ̀i ≥ `i

such that whenever b ∈ M2 with L X2(b)≥ ˆ̀i , then L X2(b
x jt−i )≥ `i . Define `i+1 to

be ˆ̀i . Then `t depends upon both N and p. To emphasize this, we may write `N ,p
for `t . Suppose that for the oblique path from (q, m) to (qp, m p), we know that
L X2(m)≥ `t . Then it is routine to show, by induction on i , that for each vertex
(qx j1 x j2 · · · x ji , mx j1 x j2 ···x ji ) on the path, that we have L X2(m

x j1 x j2 ···x ji )≥ `t−i ≥

`0 = N , so that all of these vertices are in 0 − F. Thus, the oblique path from (q, m)
to (qp, m p) is in 0 − F provided that L X2(m)≥ `N ,p.

Let C be an infinite component of 0 − F. Define sets IC and JC by
IC = {c ∈ M1 | (c, d) ∈ C for infinitely many different d ∈ M2} and JC = {d ∈ M2 |

(c, d) ∈ C for infinitely many different c ∈ M1}. Below, we will show that IC and JC
are nonempty, that IC is a right ideal in M1 and JC is a right ideal in M2 and finally
that IC = M1 and JC = M2.

Let Cg and Ch be two infinite components of 0 − F. To prove that 0 has
one end, it suffices to show that Cg = Ch by exhibiting a vertex of 0 which is in
Cg ∩ Ch . Suppose that we know that JCg = M2. Then 1 ∈ JCg , so there are infinitely
many c ∈ M1 with (c, 1) ∈ Cg . We may then choose p ∈ M1 with (p, 1) ∈ Cg and
L X1(p)≥ NF. Suppose also that we know that ICh = M1. Then 1 ∈ ICh , so there
are infinitely many d ∈ M2 with (1, d) ∈ Ch . Choose m ∈ M2 with (1, m) ∈ Ch and
L X2(m)≥ `N ,p. Since L X1(p)≥ NF, the vertical path, labelled by m p, in 0 from
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(p, 1) to (p, m p) is in 0 − F and hence in Cg . Since L X2(m)≥ `N ,p, the oblique path
in 0 from (1, m) to (p, m p) is in 0 − F and hence in Ch . Then the vertex (p, m p) is
in both Cg and Ch , so Cg = Ch .

We want to show that, for any infinite component C of 0 − F, the set IC is
nonempty, is a right ideal in M1, and is all of M1.

If it were the case that there were only finitely many elements c ∈ M1 with (c, d) ∈
C for some d ∈ M2, then, since C is infinite, for at least one such element, ĉ, there
must be infinitely many different d ∈ M2 with (ĉ, d) ∈ C and then ĉ ∈ IC . Suppose
then that there are infinitely many different elements c ∈ M1 with (c, d) ∈ C for some
d ∈ M2. Then there is an element (ĉ, δ̂) ∈ C with L X1(ĉ)≥ NF. The vertical path
from (ĉ, 1) to (ĉ, δ̂) is in C , so (ĉ, 1) ∈ C . But then the vertical path from (ĉ, 1) to
(ĉ, d) is in C for every d ∈ M2, so ĉ ∈ IC .

To show that IC is a right ideal in M1, it suffices to show that cx ∈ IC whenever
c ∈ IC and x ∈ X1. Choose ˆ̀ = `N ,x such that L X2(d

x )≥ N whenever d ∈ M2 and
L X2(d)≥ ˆ̀. Since c ∈ IC , there are infinitely many d ∈ M2 with (c, d) ∈ C and hence,
for infinitely many of these, L X2(d)≥ ˆ̀. For each of these, the edge with label (x, 1)
from (c, d) to (cx, dx ) is in C . Since x8 is one-to-one, these values for dx are distinct
and cx ∈ IC .

Since IC is a right ideal in M1, we will obtain IC = M1 if we show that 1= 1M1 ∈

IC . Suppose that ĉ ∈ IC with L X1(ĉ)≥ NF. Then, as above, (ĉ, 1) ∈ C and (ĉ, d) ∈ C
for every d ∈ M2. There are infinitely many d ∈ M2 with L X2(d)≥ `N ,ĉ. For each
of these, (ĉ, d ĉ) ∈ C and there is the oblique path from (1, d) to (ĉ, d ĉ) in C . If IC
is infinite, there is always some ĉ ∈ IC with L X1(ĉ)≥ NF. Suppose instead that IC is
finite. Then, since IC is a subsemigroup of M1, it must contain an idempotent e. Then
there are infinitely many d ∈ M2 with (e, d) ∈ C , hence infinitely many such d with
both L X2(d)≥ `N ,e and L X2(d

e)≥ kN ,e. For the latter, we use the hypothesis that e8
is one-to-one. Since L X2(d)≥ `N ,e, for each such d , the oblique path from (e, d) to
(e · e, de)= (e, de) is in C for each of these infinitely many d . Since L X2(d

e)≥ kN ,e,
the oblique path from (1, d) to (e, de) is also in C for each of these infinitely many d
and we see that 1M1 ∈ IC .

We want to show, for any infinite component C of 0 − F, that 1M2 ∈ JC , and that
JC is a right ideal in M2 and hence is all of M2. We now know that IC = M1, so there
are infinitely many elements c ∈ IC with L X1(c)≥ NF and for each such c an element
dc ∈ M2 with (c, dc) ∈ C . For each such c, the vertical path from (c, 1) to (c, dc) is
in C , so we have infinitely many different c with (c, 1) ∈ C and 1 ∈ JC . Suppose that
d ∈ JC and that x ∈ X2. Then, for infinitely many c ∈ M1, (c, d) ∈ C, and there are
thus infinitely many such c with L X1(c)≥ NF. For those c with L X1(c)≥ NF, we can
be sure that the edge labelled (1, x) from (c, d) to (c, dx) is in C , so (c, dx) ∈ C for
infinitely many c and dx ∈ JC . 2

EXAMPLE 17. In this example, we want to show that, in the previous theorem, the
hypothesis that8 has its range in Monic(M2) rather than just in End(M2) is necessary.
We also see that the second conclusion of the Layer Lemma need not hold if T
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1
a a2 a3 a4

b ab a2 b a3 b a4 b

b2
ab2

a2 b2 a3 b2 a4 b2

b3
ab3

a2 b3 a3 b3 a4 b3

b ab a2 b a3 b a4 b

b2 ab2 a2 b2 a3 b2 a4 b2

b3 ab3 a2 b3 a3 b3 a4 b3

   

Left digraph Right digraph

FIGURE 3. Left and right Cayley digraphs for A n80 B.

is an infinite monoid. Let A = 〈a〉 and B = 〈b〉 be free monogenic monoids and
M = A n80 B. Here a80 = θB where bmθB = 1B for every nonnegative integer m,
hence θB is not one-to-one.

Then M has monoid presentation 〈a, b : ba = a〉 and every element of M can be
represented by a unique word in the form anbm for nonnegative integers m, n. We
illustrate the right and left Cayley digraphs for A n80 B in Figure 3. We remark that

E r (A n80 B)= E`(A n80 B)= E r (B o80 A)= E`(B o80 A)=∞.

Since Mop
≈ B o80 A, we see that E`(B o80 A)= E r (M)=∞. This shows that it is

not necessarily the case that E`(B o80 A)= 1, as in Theorem 13, if 8=80 nor that
E`(B o80 A)= E`(A), as in the Layer Lemma, if B is infinite.

EXAMPLE 18. Our initial impression was that, with the hypotheses of the previous
theorem, we should also be able to prove that E`(M1 n8 M2)= E r (M2 o8 M1)= 1.
This is not valid. Here, we give an example where 8 : M1→Monic(M2) is a monoid
homomorphism but E`(M1 n8 M2)= E r (M2 o8 M1)=∞.

Let M1 = 〈a〉 be the free cyclic monoid with generator a. Let M2 be the monoid
having monoid presentation 〈b, t | bt = t, t2

= t〉. Then one can show that every
element of M2 has a unique representative of the form tεbn where ε has value 0 or 1
and n is a nonnegative integer. We want to define a semidirect product, M1 n8 M2, so
we write functions to the right of their arguments. Define α : M2→ M2 by bnα = bn

and (tbn)α = tbn+1. Then α is a monoid homomorphism and is one-to-one. Since M1
is free on a, we obtain a monoid homomorphism 8 : M1→Monicr(M2) by setting
a8= α. Then the semidirect product M = M1 n8 M2 has elements {(am, tεbn) |

m ≥ 0, n ≥ 0, ε = 0, 1} and is generated by (a, 1), (1, b) and (1, t). If we identify
(a, 1), (1, b) and (1, t)with a, b and t , respectively, then M has a monoid presentation
〈a, b, t | ta = atb, ba = ab, bt = t, t2

= t〉 and every element of M has a unique
representative of the form am tεbn with m ≥ 0, n ≥ 0, ε = 0, 1. Write just 0 for the
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left Cayley digraph `0({a, b, t}, M). We want to show that e∞(0)=∞. It is easily
verified that

a · (am tεbn)= am+1tεbn, b · (ambn)= ambn+1,

b · (am tbn)= am tbn, t · (ambn)= am tbm+n, t · (am tbn)= am tbn.

We thus account for all of the edges in 0. To show that e∞(0)=∞, it suffices to find,
for every natural number k, a finite subset Fk ⊆ V0 such that |C∞(0 − Fk)|> k.

Let Fk = {am tbn
| 0≤ m ≤ k, 0≤ n ≤ k}. For 0≤ i ≤ k, let Ci be the full subgraph

of 0 on the set {am tbi
| m > k}. We will be done when we show that each Ci is a

component of 0 − Fk . (There is one more component of 0 − Fk , but we need not
concern ourselves with it.) Ci is connected since we have an edge labelled by a from
am tbi to am+1tbi for each m > k. For a vertex v = am tbi in Ci , the other edges having
v as an initial vertex are loops labelled by b and t . Examining the account of the edges
in 0 in the previous paragraph, we see that the only other edges in 0 having a vertex
v = am tbi as a terminal vertex are edges with label t from ambn to am tbm+n . But such
an edge cannot have its terminal vertex in Ci if m + n = i ≤ k and m > k.

COROLLARY 14. Suppose that Gi is a finitely generated infinite group for i = 1, 2.
If 8 : G1→ Aut(G2) is a group automorphism, then the group semidirect product
G2 o8 G1 has one end.

PROOF. Group automorphisms are endomorphisms and are one-to-one. 2

COROLLARY 15. Suppose, for i = 1, 2, that Mi is an infinite monoid with a finite set
of monoid generators X i . Let M = M1 × M2 be the monoid direct product. Then
E r (M)= E`(M)= 1.

PROOF. The direct product is a special case of Theorem 13 where 8 takes each
element of M1 to the identity automorphism of M2. 2

EXAMPLE 19. Let m, n, m̂, n̂ be arbitrary natural numbers. We construct a
monoid M having a submonoid J such that E r (M)= m̂, E`(M)= n̂, E r (J )= m and
E`(J )= n. Let J = Jn,m be the monoid of Example 10 and let P be the direct
product of J with any infinite monoid of the form S1 for some semigroup S. Then
P contains a submonoid which is isomorphic to J , and P , like J and S1, contains no
nontrivial left or right units. By the corollary, E r (P)= E`(P)= 1. For any natural
number k and generator y, let T (y, k) be the the monogenic monoid having monoid
presentation 〈y : yk

= yk−1
〉. The monoid M = T (u, m̂)o80 (T (v, n̂)o80 Pop)op

contains a submonoid isomorphic to P . With two applications of the Layer Lemma,
we obtain E r (M)= m̂ and E`(M)= n̂.

4. Subsemigroups of free semigroups

Our principal results in this section are about the number of ends of subsemigroups
of free semigroups. Theorem 18 says that every commutative subsemigroup of
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a free semigroup has one end. Theorem 20 says that every finitely generated
noncommutative subsemigroup of a free semigroup has infinitely many ends. The
analogous results for submonoids of free monoids follow immediately by adjoining
the empty word. The next two lemmas will be used in the proof. We regard the first
lemma as elementary and well known. The group versions in [6, Exercise 1.4.6] and
[7, Proposition I.2.17] are easily modified to obtain the semigroup version.

LEMMA 16. Suppose that F is the free semigroup on the alphabet A and that u,
v ∈ F. If uv = vu, then there are natural numbers m, n and an element w ∈ F such
that u = wm and v = wn .

LEMMA 17. If S is any subsemigroup of the additive semigroup N of natural numbers,
then E`(S)= E r (S)= 1.

PROOF. Let S be a subsemigroup of the additive semigroup N. Since S is
commutative, it is clear from Proposition 10 that E`(S)= E r (S) when these are
defined. Since we have only defined E`(S) and E r (S) for finitely generated semigroups
S, we need to show that S is finitely generated.

If all of the elements of S are divisible by some natural number d > 1, assume
that d is the largest natural number dividing all of the elements of S and define Ŝ by
Ŝ = {s/d | s ∈ S}. Then Ŝ is a subsemigroup of N which is isomorphic to S. We can
replace S by Ŝ and assume that the greatest common divisor of the set of all elements
of S is 1. It is easy to see, using elementary number theory, that S then contains all but
finitely many natural numbers. If we write n0 − 1 for the greatest natural number that
is not in S, then we may write S = X0 ∪ {n ∈ N | n ≥ n0} for some finite set X0 ⊆ N.
We then see that S is generated by the finite set X = X0 ∪ {n ∈ N | n0 ≤ n < 2n0}.
Write 0 for 0r (S, X).

Now let F be any finite subset of vertices of 0, let m be the largest element in F
and choose any k ∈ N which satisfies m < kn0. Then the set C = {n | n ≥ (k + 1)n0}

is an infinite subset of 0 − F having a finite complement in N, so we will be done
when we show that C is contained in the component of 0 − F which contains kn0.
For an arbitrary element n ∈ C , write n = qn0 + r , where 0≤ r < n0 and q ≥ k + 1.
Then we have a path of length q − k from kn0 to n in 0 − F having 1 edge labelled
by n0 + r and q − k − 1 edges labelled by n0. 2

THEOREM 18. If S is a commutative subsemigroup of a free semigroup, then
E`(S)= E r (S)= 1.

PROOF. Using Lemma 16, it can be shown that any set of pairwise commuting
elements in a free semigroup must consist of powers of a single word. Hence S is
isomorphic to a subsemigroup of N and the conclusion follows from Lemma 17. 2

LEMMA 19. Let F be the free semigroup on the alphabet A and let S be a finitely
generated subsemigroup of F with finite set of generators X. Let 0 be the right Cayley
graph 0r (S, X). If F is a finite subset of S and w is a element of S − F, write Cw for
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the component of 0 − F containing w. If the length, L A(w), of w on the alphabet A
is minimal among elements of S − F, then w is a prefix of every vertex in Cw.

PROOF. Let u be an arbitrary element of Cw. We use induction on the length of a path
in Cw from w to u to show that w is a prefix of u. The base case, where u = w, is
obvious. Suppose that u 6= w and write p for the vertex before u on a path from w

to u in Cw. By the induction hypothesis, w is a prefix of p and p = wp′ for some,
possibly empty, word p′. If u = px = wp′x for some generator x ∈ X , we are done.
If wp′ = p = ux , then by the minimality of L A(w) among elements of S − F, it must
be true that L A(w)≤ L A(u) and again w is a prefix of u. 2

THEOREM 20. If S is a finitely generated subsemigroup of a free semigroup and S is
not commutative, then E`(S)= E r (S)=∞.

PROOF. As in Lemma 19, we write F for the free semigroup on the alphabet A,
write X for some finite set of generators for the subsemigroup S of F , and 0 for
the right Cayley graph 0r (S, X). We have hypothesized that S is not commutative
and we choose two elements x, y ∈ S such that xy 6= yx . It suffices to exhibit, for
every natural number n, a finite subset F of S such that 0 − F has at least n + 1
infinite components. Let n ∈ N be arbitrary. For integers 0≤ i ≤ n, define the element
wi ∈ S by wi = x i yxn−i . All of the wi have the same length, nL A(x)+ L A(y). For
notational convenience, we write ` for this length. By the cancellative properties in
the free semigroup S, all of the wi are distinct. Let F= {s ∈ S | L A(s) < `}. By
construction, each wi must have minimal length in S − F and, using Lemma 19, we
see that elements wi must occur in distinct components of 0 − F. It is easily seen that
these components are infinite. 2
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