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WEIGHTED FOURIER TRANSFORM INEQUALITIES 
VIA MIXED NORM HAUSDORFF-YOUNG INEQUALITIES 

JOSEPH D. LAKEY 

ABSTRACT. Wiener-Lorentz amalgam spaces are introduced and some of their in
terpolation theoretic properties are discussed. We prove Hausdorff-Young theorems 
for these spaces unifying and extending Hunt's Hausdorff-Young theorem for Lorentz 
spaces and Holland's theorem for amalgam spaces. As consequences we prove weighted 
norm inequalities for the Fourier transform and show how these inequalities fit into a 
natural class of weighted Fourier transform estimates. 

1. Introduction. The Hausdorff-Young-Titchmarsh theorem and weighted exten
sions due to Hardy-Littlewood-Paley and to Pitt were among the first applications 
of Riesz-Thorin and Marcinkiewicz interpolation theorems. Stein [St] (following 
Hirschman [Hi]) noted that stronger interpolation techniques lead to strengthened "rear
rangement invariant" versions of Pitt's theorems. This observation in turn led to general
izations due to P. G. Rooney [R] and T. Flett [Fl], again using interpolation. Thus power 
weights were replaced by more general positive weight functions satisfying some weak-
type integrability conditions. Finally, in the early 1980's there was a strong push to gen
eralize the weight classes in extensions of the Hausdorff-Young theorem, e.g., [AH; H; S] 
culminating in several independent solutions of the following problem of characterizing 
the pairs of weights having the property that the Fourier transform is a "rearrangement 
invariant" continuous map from one weighted Lebesgue space to another: 

REARRANGEMENT FOURIER TRANSFORM PROBLEM. Characterize those pairs (w, v) 
of locally integrable weights for which w, 1/v are radially decreasing, and exponents 
1 < P < q < co such that for some fixed constant C, 

(RFT) v/eL'nL"V(W), [JRJ[f®(0\qu(0d(j' <c(jf,\f®(x)\"v{x)dx)ip. 

The symbol © appearing in the inequality (RFT) denotes the "symmetrically decreas
ing rearrangement,"/®^) = f*(£ld\x\d), and/* is the ordinary equimeasurable decreas
ing rearrangement of/, see e.g., [SW]. The norm on Ly is the expression on the right 
hand side of (RFT) (without the ®). Characterizations of the pairs of weights for which 
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(RFT) holds were obtained independently by Benedetto and Heinig [H; BH], Mucken-
houpt [Ml; M2], and Jurkat and Sampson [JS1; JS2]. The main tool in [H] is essen
tially a weighted extension of the Marcinkiewicz interpolation theorem. Direct use of 
interpolation is avoided in [BH], but the main tools used are Hardy inequalities and re
arrangement methods that also underlie interpolation techniques. The Jurkat-Sampson 
approach also avoids interpolation per se, but again is heavily based on Hardy type esti
mates and convexity methods. The approach in Muckenhoupt involves a clever reduction 
to the Hausdorff-Young inequality. In summary, it is fair to say that solutions of (RFT) 
are based on the same machinery that drives interpolation theory. Our statement of the 
characterization of (RFT) most closely resembles the Jurkat-Sampson statement. 

THEOREM 1.1 (RFT). Let 1 < p < q < oo and let w, v be nonnegative, radial 
weight functions. Set WiQ^xf) = w(x) and similarly define V in terms of v. A necessary 
condition for the inequality (without rearrangements), 

(FT) V/eL'flL" v(Rd \ Q k \f(0\qu(0di)? < c ( j ^ \f(x)\"v(x)dx)', 

is that 

(un ^wu*f{£v*-'it)*f. 

Conversely, ifw is decreasing and v is increasing then (UP*) is sufficient for (RFT). 

The condition (UP*) signifies the (rearrangement) uncertainty principle (see [B] for an 
explanation of this terminology). As pointed out in [M2, Theorem 7], there are examples 
of weighted Fourier transform inequalities for weights whose decreasing rearrangements 
do not exist (that is, whose distribution functions are never finite). Moreover, restriction 
theorems are examples of weighted Fourier transform inequalities with singular mea
sure weights and there is no sensible way of defining an equimeasurable rearrangement 
of such a weight. Nonetheless, weighted Fourier transform estimates in a rearrangement 
dependent context have been shown to have important applications to the study of pseu-
dodifferential operators [J], spherical summation methods [CD], and unique continuation 
properties [K], among other things. 

To establish versions of (FT) which are not rearrangement invariant one would like 
to keep as much machinery available as possible from the rearrangement invariant case. 
One possible approach, then, is to look for inequalities which are invariant under the 
action of some restricted class of measure preserving transformations. This approach 
has already been used in work of Bloom, Jurkat, and Sampson [BJS], where weighted 
Fourier transform inequalities in Rd are proved for "sectionally decreasing weights" and 
are thus invariant under "sectional-type" rearrangements. Their results reduce to Theo
rem 1.1 in the one-dimensional case. To extend the one-dimensional result, one looks 
for a class of measure preserving transformations that are well-adapted to the geometry 
of the Fourier transform. The condition (UP*) reflects the fact that the Fourier transform 
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exchanges local and global behavior. Therefore it is natural to look for Fourier transform 
inequalities invariant under rearrangements that are the composition of local and global 
transformations. 

LOCAL/GLOBAL REARRANGEMENT FOURIER TRANSFORM PROBLEM. Characterize 
those pairs of weights u, v for which one has a weighted norm inequality 

V / e L ' n L f t R " ) , \\f\\Ll < cu,v\\f\yv-

Here U is any "local-global rearrangement" of u in the sense that U{x) = u(r o a(x)) 
where a is a permutation of the cubes Qn and r is a measure preserving transformation 
that maps each cube Qn to itself. We similarly define V in terms of v. Here Qn = [0,1 )d+n 
where n G Td. 

In this paper we prove partial results for this problem, which may be viewed as lo
cal/global Pitt-type inequalities. A local/global version of the Hausdorff-Young theorem, 
which has been known for quite some time, is given in terms of the Wiener amalgam 
spaces, defined as follows. 

DEFINITION 1.2. Given 1 <p,q<oo, the Wiener amalgam space W(LP, lq)(Rd) is 
the Banach space of functions/ for which 

\\f\\ww)=[T,([n \f(x)\*dxY'V <oo. 

Again, Qn denotes the translate by n G Zd of the unit cube [0, \)d. The natural adjust
ments are made to define W(LP, lq)(Rd) in case p or q is infinite. Notice that the scale of 
Wiener amalgam spaces is decreasing as p increases and increasing as q increases. The 
space W(L°°, ll )(R) was introduced by Wiener in [W, p. 21]. For a detailed discussion of 
these spaces we refer to [FS]. One has 

THEOREM 1.3 (HAUSDORFF-YOUNG). Given 1 < p,q < 2. The Fourier transform 
satisfies 

v/ e w(W,p)(Kd), ll/H^y, < cM\\f\\wm^ 

Theorem 1.3 was first proved for IR by Holland [Ho]. Later generalizations include 
those of Bertrandias and Dupuis [BD], Fournier [Fo], Feichtinger [FI; F2], and oth
ers. Versions of the Wiener amalgam spaces were used inherently in work of Aguil-
era and Harboure involved in finding necessary conditions for weighted Fourier trans
form estimates. These spaces are not themselves rearrangement invariant, but rather 
are amalgams of rearrangement invariant spaces. The Hausdorff-Young theorem for 
Wiener amalgam spaces furnishes a nice illustration in terms of norm inequalities of the 
exchange between local and global behavior of a function and its Fourier transform. 

Our paper is outlined as follows. In Section 2 we present a necessary uncertainty prin
ciple condition, (UP), for weighted Fourier transform inequalities. This sharpens (UP*) 
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in the sense that it takes into account the translation structure of the Fourier transform as 
well as the dilation structure. We give an example to show that this new and improved 
weight condition, however, still fails to characterize those pairs of weights for which 
local/global rearrangement invariant Fourier transform inequalities hold. Nevertheless, 
this counterexample indicates the sort of pathologies that make the sufficiency of (UP) 
for (FT) fail and allows us to refine our interpretation of the meaning of (UP*) in the 
rearrangement invariant context. In Section 3 we show how weighted Fourier transform 
estimates may be easily obtained from various versions of the Hausdorff-Young theo
rem by means of Holder's inequality. We indicate the role of Wiener amalgam spaces in 
proving weighted norm inequalities that are not rearrangement invariant. In Section 4 we 
introduce Wiener-Lorentz amalgam spaces as real interpolation spaces between Wiener 
amalgam spaces. Such interpolation is possible because the Wiener amalgam spaces 
are isomorphic to certain mixed norm Lebesgue spaces. Hausdorff-Young theorems for 
these spaces then arise as applications of vector-valued versions of the Marcinkiewicz 
interpolation theorem. We thereby generalize the Hausdorff-Young theorem for Wiener 
amalgam spaces as well as the version for Lorentz spaces. These results are applied to 
prove weighted Fourier transform estimates of "Pitt-type" when weights satisfy certain 
local/global weak-type integrability conditions. 

We should point out that Feichtinger [FI; F2] has found different generalizations of 
the Hausdorff-Young theorem, also by means of Wiener amalgam spaces, but by making 
use of the complex method of interpolation. Although the motivation for our work is quite 
different from Feichtinger's, the idea of using Wiener amalgam spaces and interpolation 
to sharpen the Hausdorff-Young theorem is inspired by Feichtinger's work. 

Finally, we compare our sufficient conditions with the necessary condition (UP) and 
outline strategies for closing the gap between necessary and sufficient conditions in the 
local/global rearrangement invariant setting. 

The author wishes to thank Professor John Gilbert for providing references for inter
polation theory used in Section 4, and to thank the referee for helpful comments con
cerning the presentation. 

2. Necessary conditions. As pointed out, (UP*) is always necessary for the 
weighted norm inequality (FT) but does not take into account the full Euclidean structure 
of the Fourier transform. To introduce a strengthened uncertainty principle condition we 
need some extra terminology. Rd+ denotes the (strictly) positive cone of Rd consisting of 
those elements t = (t\,..., td) for which t} > 0, j = 1, . . . , d. For t G Rd+ we denote by 
1/r the vector ( l /^ i , . . . , l/td). Given x0 G R^andf € Rd+,R(xo;t) denotes the rectangle 
\XJ — XOJ\ < tj. The inequality (FT) still makes sense if we take a measure weight on the 
transform side. We denote the class of such weights by M+(Rd). 

THEOREM 2.1. Given weights \x G M+(Rd) and v G Ll0C(Rd) and exponents 1 < 
p,q < oo. Suppose that lX(Rd) Ç S'(^d) and one has the weighted Fourier transform 
norm inequality, 

- -
V/ e Ll C\Uv{Rd), (j\f(0\qdm)~q < c(yJ{f(x)\Pv{x)dxy. 
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Then 

(UP) sup 
(x0£0;t)£RdxRdxRd

+ 

[ , drtoYif vl-"'(x)d 
JR(to\) J \JR(xo\t) 

X) < OO. 

PROOF. The fact that vl~p' G L/oc(l^) follows from the inequality dual to (FT) which 
states that (c/., [LI]) 

V# e L*(0td), [J\(g^)M\p'vl-p\x)dxY < c(j\g(0\q,drto)7. 

Now fix (JCO, Co) £ ^ x ^ and consider the function 

Then/ G L1 nLÏ(RJ), and 

On the other hand, 

1/(01 = I /" v 1 - " ' ^ - 2 ^ " ^ 1 <&| 

I MxoU) I 

= I f vi-p\x)e-WZ-SoHx-*o) dx\ 
\jR(x0;t) I 

> / vx~p\x) cos 2TT(C - Co) • (* - xo) dx\ 
\jR(x{);t) 

This shows that 

llfi& ^ / I L v 1 ^ ' (x )cos2^ -Co) - (x -x 0 ) ^ 

^ L . J/„ / V ( ^ o s 2 ^ - £ 0 ) - ( x - x o H ' ^ ( 0 
^ ( € O ; & # ) I ' ' K U O ; 0 

cos ^ ( 7 , d / i (0) ( / v ^ W d x V . 
4 \JR(toà;) J\JR(xQ;t) J 

dfi(0 

>, 

The inequality follows by reducing the domain of integration and from the fact that 
cos 27r(C — Co) • (x — xo) > cos | if (x, £) G 7?(x0; 0 x /?(Co; g^). Taking g-th roots and 
using the Fourier transform inequality, we conclude that 

{x)dxY < c 

Since the inequality does not depend on (JCO, Co) we may use Minkowski's inequality to 
replace /?(£o; ̂ jt) by /?(Co; })• This proves the theorem. • 
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One might conjecture that condition (UP) is sufficient for local/global rearrangement 
invariant Fourier transform inequalities—at least in certain situations. For example, on R, 
suppose u(x) is symmetric, that for each n = 0,1, . . . ,« is decreasing from n to n +1, and 
that u([n, n+1]) is decreasing in n. Suppose that v_1 behaves similarly. This is seemingly 
analogous to the weight conditions in Theorem 1.1, except that now one has separated 
the local and global behaviors of the weights. We give a counterexample to show that the 
uncertainty principle inequality (UP) is not always sufficient for the inequality (FT)— 
even under such relatively nice circumstances. 

EXAMPLE 2.2. Take p = q = 2 and d = 1. We exhibit a pair (w, v) of weights for 
which (UP) holds with p — q — 2 but the corresponding weighted Fourier transform 
inequality fails. 

Let V(JC) = | sinx| l~a where 0 < a < 1 is fixed, and let 

«(0= J1' ^ e [ " - R ' r t + H W 0 ' 
0, otherwise. 

Clearly one has 

sup(7 u)( f v~l)<C 

where C is independent of xo and £o- This follows since when s is large, the integral in
volving v -1 is bounded by a constant times s, whereas the integral involving u is bounded 
by a constant times 1 /s. On the other hand, when s is small the integral involving v -1 is 
bounded by a constant times sa, whereas the integral involving u is bounded by a constant 
times | log s \. 

Now define/oW = *~^X[0,i](*). Then/0 e L2
v(R) provided /3 < ( 2 - a ) / 2 . By 

[T, Theorem 126] it follows that/o(0 ^ ^ l ^ - 1 for some constant c whenever £ is large. 
Next set/m(*) = EJ^o/oC* - k). Thus \\fm\\2

L2 ~ m + 1. On the other hand, 

o 
But 

/ m \ 

MO=[Ee-2m)fo(0. 

j-e-2^\ > yvos27rjfc£ > Vcos — > (m + l)cos -
o I o o 4m 4 

whenever |£| < ^ . By periodicity it follows that 
m I 7 T 1 

y^e-2mkz\ > (m + i ) c o s whenever |£ — n\ < —, n G 
n I 4 8m 

Thus, 

l l /m | |^/JE^2^l¥o(OlVo^ 

>Cm2Y,i , , [/o(0|VO^ 

„>m
J\t-"\<i 

> Cm2 £ n2""3 ~ m2l}. 
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That is for large m we have \\fm\\2
L2 > Cra2/3. Hence 

\\Jm\\Ll 

Therefore, if 1/2 < /? < (2 — a) /2 the weighted Fourier transform norm inequality 
fails. 

The Fourier transform inequality fails because fm is concentrated where v is small, 
whereas fm is concentrated where u is large. One might guess that the failure of (FT) 
is related to the fact that the symmetrically decreasing rearrangement function of u is 
a constant function. This is not really the issue, since we could have replaced u by the 
weight that is one when |£ — n\ < l/rc1+e, and shown the inequality still fails if e is 
small enough—depending on /?. The symmetrically decreasing rearrangement of this 
new weight is essentially the characteristic function of a disc, and (FT) holds if we re
place u by u® in this case. The real problem here is that we cannot define the decreasing 
rearrangement of | sin;c|a_1 since the distribution function is always infinite. We there
fore need some condition on w, for example a pointwise decay condition that takes into 
account the fact that the singularities of v - 1 add up in a nontrivial way. For example, it 
is known that if we take v(x) = | sinx|1_a and w(£) = 1/(1 + |£|)a, then the weighted 
Fourier transform estimate (FT) holds when/7 = q = 2, cf., [LI; KS]. 

3. Weighted norm inequalities via Hausdorff-Young inequalities. The first the
orem we present is really a corollary of Theorem 1.1. We present the argument in order to 
exhibit the technique we will use later to get inequalities in the rearrangement dependent 
case. 

THEOREM 3.1. Given 1 < p < 2 and weights u, vfor which u and £ both belong to 
wk-LP(Rd). Then 

V / e Z ^ ) , \[f\\Ll < c\\f\U 

PROOF. We have 
\lf\\2

Ll<Cp\\u\U-ls\\f\\lir>i 

<cuc'p\\f\W2 

C'li/v^H2^ 

< C | | . . - l l l I " " 2 

LP+1 

wk-Lp|l/ | | /2. 

Here we have made use of Holder's inequality for Lorentz spaces, cf., [Hu] along with 
the Hausdorff-Young theorem for Lorentz spaces. • 

Notice that the conditions on u and \ imply that their symmetrically decreasing re

arrangements are bounded by constants times \x\p so that the condition (UP*) is easy to 
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check in this case. More refined local/global versions of the Hausdorff-Young theorem, 
together with corresponding Holder inequalities, will yield weighted Fourier transform 
estimates with corresponding local/global conditions on the weights. We illustrate our 
point of view with the following theorem. 

THEOREM 3.2. Given exponents 1 < /?, q < 2 and weights u, v such that u G 
W(L^J^~p)(Rd)andv~l G W(L^p J^)(Rd). Then 

V / G L ^ ) , \\f\\Ll < C\\f\U 

PROOF. We prove the result in the case where /?, q < 2, but the natural adjustments 
can be made when p — 2 or q — 2 

neJd Sin ) \nçjd 

< C„C'/>,,?||/||w(i/>,/«) 

ize. 

_£_ \2-q p l 

= C\\V~1\\ JL^\\f\\h 

= c'Mli 

This technique can easily be extended to obtain weighted Fourier transform estimates 
with other exponents as long as simple compatibility conditions (which allow application 
of Holder's inequality) are met. For example, 

THEOREM 3.3. Given 1 <p < 2, 1 <q <p', andu G W(L°°, ll)(Rd). One has 

VfeL?(Rd), \\f\\Ll < c\\f\yv 

ifandonlyifv1-?' G W(L\ l°°)(Rd). 

The necessary condition in this result follows from Theorem 2.1, and the sufficiency 
follows from mimicking the proof of the previous theorem. In fact, one may prove a 
converse of this particular result which states that if the constant in the inequality above 
depends only on ||v_1||W(/i>/û0), then u G W(L°°Jl)(Rd), cf., [L2]. One also sees that 
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[M2, Theorem 7] is an immediate consequence of Theorem 3.3. The proof in [M2] relies 
on the theory of fractional integrals. We may interpret the local/global weight conditions 
in the theorem above as saying that the local condition on vx~p should coincide with the 
global condition on u and that the global condition on v1_/? should be the same as the 
local condition on u. 

4. The Hausdorff-Young theorem for Wiener-Lorentz amalgam spaces. Our 
goal in this section is to prove weighted norm inequalities for the Fourier transform where 
the weights satisfy mixed norm (or quasinorm) weak-type integrability conditions. We 
do this by first establishing mixed norm versions of the Hausdorff-Young theorem, then 
applying the same simple methods used in the proofs of Theorems 3.1 and 3.2. All that is 
required is the simple observation that we may apply real interpolation methods between 
Wiener amalgam spaces. All of the interpolation theoretic background may be found in 
[Tr] or [BB]. 

Our first observation is that the Wiener amalgam space W(LP, lq)(Rd) may be identified 
with the mixed norm space lq(Lp)(Q xZd) consisting of functions g(x, n) defined onQxZd 

(where Q denotes the unit cube [0, l)d) having finite norm 

(x,n)\\Hlf) = („§.(/, i*-»>H'); 

The isomorphism with W(LP, lq)(Rd) is simply given by the mapping g(x, n) — f(x + n), 
cf., [FS]. Again the usual adjustments are made when/? and or q are infinite. 

Next we observe that the mixed norm spaces are special instances of the vector valued 
sequence spaces lq(A) of functions g(-, n) having values in a Banach space A with norm 
|{||g('> W)| |A}|L- For such spaces there are interpolation theorems where one interpolates 
between compatible pairs of underlying Banach spaces, A\, A2, as well as theorems where 
one fixes the space A and interpolates between the lq components. We shall need both 
types of results. In the first result the underlying Banach spaces will be Lorentz spaces 
Lp,r(Q), 1 < p, r < 00, with quasinorm 

when 0 < /?, q < 00, and 

||g(-,rc)||wk-z/> = supt{\g(.,n)(t)}~? = supf'g(-,n)*(0 
f>0 r>0 

when q = 00. Here Xf(t) = \{x : \f(x)\ > t}\ is the distribution function of/. The 
rearrangement is taken with n fixed so that g(-, n) is considered as a function defined on 
Q. On the other hand, one may define a Lorentz space norm in the Zd component by 
lq-s(A) with quasinorm 

(
00 

EOlMIIK/));"-
7 = 1 
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when 0 < /?, q < oo. Here the rearrangement ||{g}||^(/) denotes the reordering of the 
lattice norms ||g(-,«)||,4 in decreasing order of magnitude. When q = oo we take the 
wk F quasinorm to be 

sups[#{n:\\g(',n)\\A>s}]K 
5>0 

The first interpolation theorem is a special case of [Tr, p. 128]. 

THEOREM 4.1. Fix exponents 1 < p\ < pi < oo and 1 < q\, qi < oo. For 
0 < 6 < 1 write 

1 1-6 0 ,1 1 - 0 9 
- = + — and - = + —. 
p p\ pi q q\ qi 

Then the real interpolation method yields 

(4.1) (lqi(LPi)(Q x Zd),lq2(LP2)(Q x Zd))Q = lq{L™)(Q x Zd). 

The next result tells us what happens when we fix the underlying Banach space and 
interpolate between the lq components. The result is a special case of [Tr, pp. 125-127]. 

THEOREM 4.2. Fix 1 < p < oo, 1 < qx < q2 < oo, and 1 < s < oo. For 0 < 6 < 1 
write 

I _ iz i i_ 
q q\ qi 

Then 

(4.2) (lqi(Lp)(Q x ZJ), lq2(If)(Q x Zd))^ = lq'\Lp)(Q x ZJ). 

The isomorphism between the Wiener amalgam spaces and the mixed norm spaces 
now allows us to define Wiener-Lorentz amalgam spaces. 

DEFINITION 4.3. Given 0 < /?, q, r, s < oo. One says that/ belongs to the Wiener-
Lorentz amalgam space W(Lp,r, lq,s)(Rd) if the function g(x, n) — f(x + n) defined for 
(x, n) G Q x Zd belongs to the mixed norm space lq,s(Lp,r)(Q x Zd). The amalgam space 
quasinorms are those inherited from the corresponding mixed quasinorm spaces. 

The obvious adjustments are made in the case where any of the exponents are 
infinite—provided the corresponding Lorentz spaces are defined. Strictly speaking, The
orem 4.1 only gives us "diagonal spaces" W(Lpr,lr)(Rd). Off-diagonal versions can be 
obtained by substituting U-r for IP in Theorem 4.2. The Wiener-Lorentz spaces are 
normable whenever both components are normable. 

REMARKS 4.4. The containment properties of the spaces W(LP'r, lq's)(Rd) are like 
those for Lorentz spaces in that they are increasing in the indices r, s, decreasing in p, 
and increasing in q. In the case of Wiener amalgam spaces one has W(LP, F) = LP so 
it is interesting to compare the global Lorentz space Lp,q with the spaces W(Lp,q, lp,q), 
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W(Lp,q, F), and W(LP, F,q). To simplify the illustration consider, in one dimension, the 
case where q — oo. 

(i) In this case wk-LP is a proper subset of W(wk-LP,wkF). For example, set/* = 
x'pk~pX[o,\], and/ = E*>0/*(* ~ k). Then/ G W(wk-Z/\ wkF) but / ^ wk-Z/\ 

(ii) On the other hand, one has W(wk-LP, F) Ç wk-Z/\ This is just a statement of the 
fact that 

ll/lk-z/ - s u p ^ ) < £ sup 1 ^ 0 = \\f\\Pw(^-Ls in-
s>0 k r>0 

(iii) There.are no containment relations between wk-LP and W(LP, wkF). Clearly, 
wk-Z/7 is not locally contained in LP. On the other hand, set/* = X[k,k+ak]

 s u c n that 
Eik a* = 1. Then for/ = E^A the decreasing rearrangement of/ is simply X[o,i]> inde
pendent of the choice of {ak}, whereas this sequence can be chosen to give/ arbitrarily 
small norm in W(LP, wk F). 

All of these properties persist when we replace q — oo by any q > p. We leave the 
details to the reader. 

Of the possible versions of the Marcinkiewicz interpolation theorem that hold for 
these spaces, we single out two cases which can be applied to the Fourier transform, see 
e.#., [BB,p. 180]. 

THEOREM 4.5. Given exponents 1 < px,P2, p < oo, 1 < q\,q2, q < oo, 1 < n , r2, 
r < oo, and 1 < s\,s2, s < oo. For 0 < 0 < 1 write 

1 _ 1 — 0 0 l _ l - 0 0 l _ l - 0 0 l _ l - 0 0 

/? px p2 q qx q2
9 r rx r2 ' s s\ s2' 

a) If Qi 7̂  <?2> n 7̂  r2> #nd r /s a linear operator such that 

T: W(LP, lq[ ) —> W(Z/!, f1 ), w/fn norm Mi, 

T: W(LP, lqi) -» W(Z/2, f2), vWf/i norm M2, 

(4. 3) T: W(LP, lq>s) —• W(Lr*, f ), vwfft norm CM\'9M6
2. 

b) IfPi ¥" Pi> Q\ 7̂  Qi, and T is a linear operator such that 

T: W(Lp', f1 ) -> W(Lr, P1 ), w/f/i norm # i , 

7: W(LP2, f2 ) -> W(Lr, Z*2), with norm 7V2, 

//zen 

(4.4) 7: W(Z/'5, O -> W(L\ lq>s), with norm CN\-eN°2. 

Applying Theorem 4.5 to the Fourier transform we have the following extension of 
the Hausdorff-Young inequality. 
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COROLLARY 4.6 (HAUSDORFF-YOUNG). Given 1 < p < 2 and 1 < q < 2, the 

Fourier transform f extends to a continuous map 

(4.5) <f\ W(L™, lq)(Rd) -> W{Lq\ lp'«). 

By duality one also has the continuity of 

(4.6) J : W(LP, l^p)(Rd) - • W{Lq'*\ lp\ 

The result follows by interpolating between one component in the Hausdorff-
Young theorem for Wiener amalgam spaces when the other component is held fixed. 
Off-diagonal versions of this Hausdorff-Young theorem will be established below once 
we have desired endpoint versions. 

Corollary 4.5 provides a version of the Hausdorff-Young theorem for a finer scale of 
spaces than previously considered. Furthermore, in view of Remarks 4.4 we note that in 
the case where q — p this result neither implies nor is implied by Hunt's theorem for 
Lorentz spaces. 

The following calculation shows how Holder's inequality for the corresponding 
Wiener-Lorentz amalgam spaces can be applied to obtain weighted Fourier transform 
inequalities—when the weights lie in appropriate Wiener-Lorentz spaces and exponents 
are chosen appropriately. 

Given/ G \}v we have 

\WLl = E (L Iff") 
neld 

2-z 
/ / . *. i \ J i i a \ 

< 
neid x 

2 Ellfral&ll-xalU 
neld 

l|2 ^qKll/xôJi^^l^^lKikxôJi^lnll^^ 
w{Lsyj)"u\\WiL^4£p>£-q) 

— ^u\lt\\w(L4',lP'4) 

< Cu\\f\\w{If4,l<i) 

- — - II 

= Cu\\fv
2v 2\\w(if^,ii) 

<CuC
f\\{\{fviXQ^L2\\v^XQn\\ J L ^ } » | £ 

11 L2-P'2-<I l 

11 L2-P'2-I l 

= c„C( Ed^xall^dlv-'xcll^.^^)5 

n£ld 
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<c„c'(E(l^xeJlL2)2)(E(lk"'xeJU.^) !^)^ 
\ez" ' \ez<> L * ' 

= C„C|lf||22||v-1|| , « . 

= cBcv|i/-||^. 

In this calculation we have used the Holder's inequality for L(p, q) spaces along with 
the fact that (/"*)a = (fa)* whenever/ is nonnegative and a > 0. 

Thus we have unified the results in Section 3. 

THEOREM 4.7. Given exponents 1 < p < 2 and 1 < g < 2, ara/ weights u, v swc/z 
thatue W(L^,/é'2?i) andv~x G W(L^'2^,/2^). 77ien 

(4.7) V/ G Lv
2(^), |[/||L2 < CMCv|if||L,. 

A similar calculation, using instead the second inequality in Corollary 4.6 yields a 
corresponding weighted norm inequality in the case where we reverse the local and global 
weight conditions. Of course we could modify the argument slightly to prove weighted 
norm inequalities of the form 

v / e K(Rd), ii/Hii < c\[f\\Lr 

where r, s G [1, oo). The result in Theorem 4.7 is sharpest when q — 2, since this is the 
only case where the estimate 

11/Il w(zy y •*') — lullw(L^y^) 

used in the calculation before Theorem 4.7 is sharp. 
2-p p~2 

EXAMPLE 4.8. Take v(x) = | sinx| p and set u(Q = (1 + |£|) p , where 1 < /? < 2, 
and take q = 2. Thus v"1 G W(L^ ,0°, /°°) and u G W(L°°, Z^'°°). Theorem 4.7 applies 
in this case to give us a weighted norm inequality. Notice that the Fourier domain weight 
of Example 2.2 fails to satisfy the weight condition in Theorem 4.7. 

So far we have only established W(Lp,q, lq) estimates for the Fourier transform. To 
establish W(Lp,q, V) estimates, where q ^ r, we need an extension of the "endpoint" 
result involving W(LP, ll) to one involving W(LP,q

9 l
l). Then the desired estimates can be 

obtained by interpolating the global component with the local LP,q space held fixed. We 
begin with the following lemma, which is really [Ho, Lemma, p. 301] restated. 

LEMMA 4.9. Given g G W(L°°, ll)(Rd), and 1 < s < oo, one has 

VA G Ls(Rd), ||/i*s|k(L~.j.) < 2;||g||W(Loo,/1)||/z||z,. 

By means of the Marcinkiewicz interpolation theorem (for vector-valued functions 
with values in L°°), we have 
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COROLLARY 4.10. Given l<s<oo, \<t<oo, 

VA E If'(Rd), \\h * gWw^^ < CM\\h\\Ls,, 

We wish to apply this last corollary to get a new endpoint version of the Hausdorff-
Young inequality. Begin with a function/ E W(Lp'q,ll)(Rd), and write/„ = fxQn-
Let kn = rnk where k is a smooth cutoff function which is one on Qo (so that k E 
W(L°°, ll)(Rd)). Thusfn =fn* kn. Hence, 

IL/ iiH'CL ŷ̂ ) ~ iv(L°°y.9) 
n 

— il Y^f * if il / 

~~ II / Jn * A'«llw(L00,F'<7) 

— ^ 2 ^ 11/" * l̂lw(L00,/P/'9) 

<c£IL?»IU 
< C'2] \\fn\W* = C'WfWwilJ'^J1)' 

n 

Thus we have proven 

COROLLARY 4.11. Given 1 < p < 2 and 1 < q < oo, o/ie /^s 

(4. 8) V/ E W(L™ Z 1 )^ ) , ll/H^ooy.) < C ^ l ^ . ) . 

One can apply the Marcinkiewicz interpolation theorem now to get inequalities of the 
form 

Unfortunately, there seems to be no simple identification of the intermediate spaces ap
pearing in this inequality. Nevertheless, if we apply the Marcinkiewicz interpolation the
orem between this inequality and (4.6), we get 

\\f IIW{{L™,l«')6j)lJP') - Cl 1/11 WOA(/',/%/)• 

One can use Corollary 4.11 together with Corollary 4.6 to get a local improvement 
of the classical Hausdorff-Young theorem. That is, from Corollary 4.11, together with 
containment properties of Lorentz spaces we have (when 1 < p < q < 2) 

V/ e w(V*,/,)(Rrf), ll/HW(i„ ; / ) < | l / | |m u ayA ) < c\]f\\vm^j}), 

and 

wipf/) - lUllwczy/*) - c\lf\\w(LP«fiy y'/) — 

Interpolating between these two inequalities yields 
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COROLLARY 4.12. Given 1 < p < 2 and r < q < 2. 

(4.9) Vf E W(L™Jl)(Rd), \\f\\mL,y) < C|lf||w(wo, 

REMARKS 4.13. As mentioned, the weight conditions in Theorem 4.7 are not ex
pected to be sharp except in the case q — 2. Nevertheless, the condition gives a rough 
explanation of why the necessary condition (UP) fails to be sufficient (i.e., it does not 
require the weight u to satisfy the same weight condition as v1_/? where the local and 
global conditions are reversed). We may reinterpret the rearrangement condition (where 
the weights are decreasing) as saying that u and v_1 have the correct sort of local/global 
duality. 

The results in this paper may be viewed as Hardy-Littlewood-Paley, or Pitt type theo
rems, in the sense that the weights considered must satisfy some weak-type integrability 
condition—either locally or globally. More refined interpolation techniques will likely 
provide improved versions of Corollary 4.6. For example, it is likely that versions of 
(4.5) and (4.6) hold with Lorentz space norms in both the local and global components 
simultaneously. However, to actually solve the local/global rearrangement Fourier trans
form problem we need to find the correct analogues of tools used in the solutions of the 
rearrangement Fourier transform problem. One might look for local/global analogues 
of Hardy inequalities used in [BH] and [JS2], or one might try to reduce the Fourier 
transform problem to a form of the Hausdorff-Young theorem as in [M2]. 

In addition to the particular amalgam spaces considered here, one can also consider 
Wiener-Lorentz amalgam spaces in the setting of other groups, or by considering other 
decompositions, such as the dyadic decomposition of Rd. The latter is a natural setting for 
considering endpoint versions of Pitt-type inequalites as studied, for example, in [BL]. 

As pointed out in the introduction, a solution of the local/global rearrangement prob
lem still would not be the end of the story, since the problem does not cover the case of 
weighted Fourier transform inequalities with measure weights (for example, restriction 
theorems). Nonetheless, such a solution would significantly refine our understanding of 
the uncertainty principle. 
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