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SOME RESULTS CONCERNING
SYMMETRIC DISTRIBUTIONS

SANDOR CSORGO AND C.R. HEATHCOTE

The purpose of this note is to establish results of a technical

nature concerning a stochastic process that appears to be useful

in the study of certain problems in statistical inference. These

problems concern a test for symmetry, a method for obtaining an

adaptive estimator of the centre of symmetry, and the detection

of outliers with respect to the normal distribution. Details of

the applications will be presented elsewhere.

1. Statement of the problem

Let X , X , ..., X be independent identically distributed real

random variables with common non-degenerate distribution function F and

characteristic function

o(t) = e'vtxdF{x) = u{t) + iv(t) .

Our point of departure is the following simple fact:

THEOREM 1. F is symmetric about the constant 6 if and only if

(1.1) v{t)/u(t) = tan Qt

holds for all t + Q~\(k+%) , k = 0, ±1, ±2, ... .
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Proof. Write

o{t) = {exV(itQ)}{uQ(t)+ivQ(t)}

with uQ(t) = E cos{t(X-Q)} , vQ{t) = E sin{iU-8)} . If X is symmetric

about 0 then X - 6 is symmetric about zero, in which case U Q(*) E 0 .

Hence u{t) = uAt) cos £8 , v(t) = Ua{t) sin t& and we obtain (l.l).

Conversely, (l.l) implies

0 = v(t) cos te - u(t) sin t6

= #[sin t* cos t6 - cos « sin *6]

)} = vQ(t) .

That is, A" - 6 is symmetric about zero and hence X is symmetric about

6 .

This means that the function

(1.2) 6(t) = t'1 arctan{v{t)/u{t)} , t t 0 ,

is constant, 8 say, if and only if the distribution is symmetric about 8

(we take the principal value). Therefore, given an independent identically

distributed sample of n , its empirical counterpart

(1.3) Qn(t) = t'
1 a.rctan{Vn(t)/Un(t)} , t t 0 ,

could play a useful role in deciding whether or not the sample comes from a

symmetric distribution.

Here U (t), V (t) are the real and imaginary parts respectively of

the empirical characteristic function

n itX.
Cjt) = n £ e J = U (t) + iVn(t) .

Let S be any compact set of the real line not containing the origin

and on which u(t) does not vanish. Typically 5 sill be of the form

S = [-b, -a] u [a, b]

where a > 0 is arbitrarily small and b > a is sufficiently small. A

consequence of Theorem 2.1 of Feuerverger and Mureika [5] and the uniform

continuity of the arctan function is that, as n -*• °° ,
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( l .U) sup |6 (t)-Q(t)\ -»• 0 a lmost s u r e l y .
tts n

That is, 8 (t) is a strong uniform estimator of 8(£) . Hence the

constant or non-constant behaviour of 8 (£) is indicative of symmetry, or

lack of it, in the underlying distribution. If the distribution is indeed

symmetric about some point then, for large samples, 8 (t) is

approximately constant and the value of this constant is an estimate of the

centre of symmetry.

Next, suppose the sample members X , X , ..., X are symmetrically

distributed about some point 8 which is estimated by minimising

-, n

n-1 y

3=1

The resulting estimator 8*(£) satisfies

n " 1 f t'1 sln{t[x.-&)} = 0 , \t\ ± b , t t 0 .
0=1 3

As t -*• 0 this equation becomes n Y K% •~^i = 0 and

1 °
8^(0) = n~ Y X- = % > "the sample mean. Also

ft - C- fl

n"1 Y isin tX. cos tB*(t) - cos tX. sin tQ*(t)} = 0 .
3=1 3 n 3 n

Hence

tan tQ*(t) = V {t)/U (t)

and 6*(t) is the same as 6 (t) of (1.3). We then have an

interpretation of 8 (t) as the quantity minimising a version of the

sample circular variance, a point briefly discussed in the regression

context by Heathcote 161. It will be shown in Section 3 that the so-called

variance function associated with 8*(t) provides a means for detecting

outliers from normality.
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2. The process Tn(t) = n*{9 (t)-e(t)}

We f i r s t r e q u i r e a r a t e r e s u l t f o r {Q (t), t i S] . L e t

m(y) = A{* € (-%, %) : ((.(*) < y} ,

where X denotes Lebesgue measure, and introduce the nondecreasing

rearrangement of <j> as

(jT(fc) = sup[z/ : m(t/) < h] .

THEOREM 2. If

(2.D

then

r
lim sup sup 18 (t)-Q(t) S k , almost surely,

lloglognj nn

where k > 0 is a finite constant.

Proof. A one term Taylor expansion for the arctan function gives

9 (t) - 6(i) =

where

A m . V ! l . ?<|>
n U (t) u{t)

and 0 5 fy(t) S 1 . A simple algebraic manipulation and the first law of

the iterated logarithm in Theorem 9.1 of Csorgo [3] implies that

(2.2) sup |/I (t)| = 0

" LILI "
, almost surely.

The desired result follows since t is bounded away from zero in 5 .

Observe that condition (2.1) is generally not satisfied if it is only

true that
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r
J _oc

log+(\x\)dt(x)

but is satisfied if for arbitrary e > 0 we have

{log+(\x\)}1+ed(x) < »f
Thus (2.1) holds in most situations of practical interest. A finer

analysis is given in Csorgo [2].

Our main objective is to establish the asymptotic normality of the

process

Tjt) = n*{6n(*)-e(*)} , t € 5 .

If the underlying distribution is symmetric about 6 , that is 6(i) = 9 ,

then this result will enable us to show the asymptotic normality of an

adaptive estimator 8 (t ) for 9 within the class {9 (i), t £ S} .

Let C(S) be the Banach space of continuous functions defined on S ,

endowed with the supremum norm, and consider a Gaussian process

{T(t), t £ 5} with zero mean and covariance

ET(t)T(s) =

with

Ht, s) = [u(t-s){u(t)u{s)+v(t)v(s)}+u(t+s){v(t)v(s)-u(t)u(s)}

+v(t-s){v(t)u(s)-u{t)v(s)}-v(t+s){u(t)v(s)+v(t)u(s)}]/2 .

, THEOREM 3. r^-) converges weakly in C(S) to T(-) if and only

if (2.1) holds.

Proof. Commencing exactly as in the proof of Theorem 2, we find

where

u(t){V (t)u(t)-UJt)v(t)}
Bit) =

(
5

tU
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and, on applying ( 2 . 2 ) ,

sup \R (t)\ = 0\n (log log n) \ , almost surely.

Since u(t)/U (t) converges almost surely uniformly to 1 on S , the

weak limit of T in C(S) , if it exists, coincides with that of

Dn(t) = {v(t) Re Yjt) - u(t) Im Ŷ ( t) }/{t \o(t) \2}

where

Yn(t) = n
h{Cn{t)-e{t)} .

From Theorem 1 of Marcus [7] {of. also Theorem 3.1 of Csorgo [3]), D (•)

converges weakly to T{ •) if and only if (2.1) holds, and this yields the

desired result.

?
We define the variance function a (t) associated with 6 (t) to be

the variance of the limit process

(2 3) 02(t) = 2 2

2t2{u2(t)+v2(t)}

= [2t2)~Xg{u(t), v{t), u(2t), V{2t)} .

This variance function coincides exactly with that of the functional least

squares estimator of Chambers and Heathcote [/], Heathcote [6].

3. The variance function

Suppose X is symmetric about 6 . If the reasonable criterion of

minimum asymptotic variance is accepted then the optimum estimator obtained

by the above method is 8 (t ) , where t minimises a (t) . Theorem 2

of Chambers and Heathcote [7] shows that in the class V of distributions

which are normal, or lack a variance, or are leptokurtic, the normal is the

only one for which t = 0 ; that is the sample mean X is optimal. For
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other members of V the value of t is strictly non-zero.

This characterisation of the normal distribution in terms of the

variance function also leads to a method for detecting outliers with

respect to the normal, similar to that described for regression models by

Chambers and Heathcote [I], The procedure is the following. Assume X

has a distribution in the above class V of possibly long-tailed

2 2
distributions, and suppose a (t) is an estimate of o(t) . Plot a (t)

and determine t at which it achieves a minimum. If t = 0 we infer

that X is normally distributed; otherwise delete a suspected outlier and

estimate the minimising t . for the reduced sample of n - 1 . Continue

the process until the origin is estimated to be the minimising value of

2
a (t) . The deleted sample members are then classified as outliers with

respect to the remaining ones, inferred to be generated by an underlying

normal distribution.

In the case of symmetry, the variance function of (2.3) reduces to

2/ , \ r -,

with uAt) = E cos{t(X-Q)} . In pract ice a ( t ) i s unknown, and can be

estimated by

O2
n{t) = {2t2y1g{Un(t), Vjt), Un(2t), Vn{2t)} .

I t follows from the almost sure uniform consistency of the empirical

charac te r i s t i c function C it) t h a t , as n -*•<*>,

(3.1) sup
ttS n

0 almost surely.

Thus if t minimises a (t) we take 6 [t ) as estimator of 9 . Note

2 2
that 0 (t), a (t) are symmetric about the origin so that we need consider

only t > 0 .

To formalise this procedure suppose t > 0 is given by
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( o p )
t = inf\s : o ( s ) = i n f O (t)\ ,

1 0 5 * >

and let S = [a0, b ] be an interval such that 0 < a. < t. < b. and

a (t ) < a (t) for any other t in S . Let

= inf^s : a (s) = inf o"{t)\ .t inf^s : a (s) inf o
I « t i S n

The argument of Lemma 5 of Csorgo [4] shows that, as n ->• °° ,

"t •*• *n almost surely.

Then from (l.U), 6 [t ) ->• 9 almost surely, and imitating the proof of

Theorem U of C4] we obtain the following:

THEOREM 4. If condition (2.1) is satisfied then

lim Pr{2- (tJ <*} =

/or all real x , where $(•) denotes the standard normal distribution

function.

Observe that if the underlying distribution has finite variance then

S and 5 may be extended to include the origin.
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