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Stress and velocity fields in glaciers: Part I. Finite-difference 
schem.es for higher-order glacier m.odels 
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ABSTRACT The se t of forcc cquations a nd stress- stra in-ra te relations fo r icc masses 
can be solved with the method of' lines a nd shooting the stress-free conditions a t the free 
surface. Single- and multiple-shooting schem es with fi xcd po int or ~ewton ite ra ti ons for 
solving the stress equa ti on s including the dev iatoric stress g radients are desc ribed and 
their perfo rmances are d iscussed, The sing le-shooting ~e\Vton iteration proved to be the 
fas test scheme for typica l ya ll ey glac iers, a lthough its hori zonta l grid limita ti on is restric
ti\·e. G rid resolution ca n be imprm'ed substa nti a ll y with a multiple-shooting scheme but 
computa tion time and sto rage requirements incrcase substa nti a ll y. The Newton iteration 
a llows the handling of mixed basa l bounda r y conditions, p a rtly basa l velocity a nd partly 
basa l shea r trac ti on being prcsc ribed. A stick slip free g ravity fl ow illustrates the perfor
mance of the sc hcme, 

1. INTRODUCTION 

Se\'era l studi es have approached ques ti ons o n fl ow patterns 
in ice sheets near the summit (Reeh, 1988; Dahl:Jcnsen, 
1989) a nd the transition from ice-sheet fl ow to iec-shelf flow 
(Herterich, 1987) by including the role o f deviatoric stress 
gradients. Van der Veen a nd Whillans (1989) and Va n de r 
Veen (1989) ha\'C presented a numer ica l sch eme that solves 
the equations of force ba lance without a ny mathematical 
approxim ations, They sta rt thei r itera ti on from a "first 
a pproxim ation" that fo rma lly soh'es the equations of f'orce 
ba la nce in a form today referred to the sha llow-ice approxi
mation a nd impro\'e on this approx im a te solution. Their 
fi xed-point iterati on scheme seems to work effi cientl y fo r 
ice sh ee ts, though no acco unt is given abo ut its perform ance 
in the case of smaller and steeper glac iers. Muller (1991) pro
posed a simila r approach for soh'ing the first- order equa
ti ons for stress and velocity components in the two
dimensiona l plane-fl ow approx imation. This a lgorithm, 
based on finit e-difference di sere ti zati on a long the .r axis 
(method orIin es) and a fi xed-point itera tio n scheme to mee t 
the surface-boundary conditions, proved to be \'ery simple 
and flex ible, and could be readil y ex tended to the three
dimensiona l case ( Bl attcJ~ 1995). 

Th e fi xed-point itera tion applied by Mull er (1991) a nd 
Bla ller (1995) converges rapidly fQr la rge ice-sheet config
ura tions with a small aspec t rati o. H owe\'er, for sm a ll 
glac iers, where co rrec ti ve term s become import ant, th e 
numbe r o f' necessa ry iterati on steps g rows rap idly \\'ith the 
increas ing aspec t rati o. Furthermore, the nu mber ofneces
sary itera ti on steps a lso increases with incl-easing hori zonta l 
grid resol ution , T hese fac to rs limit the appl icabil it y of fi xed
po int iterati on in the achi e\'able hori zonta l g rid resolutio n 
a nd exclude sma ll and steep glaciers, f'o r which cOll\'ergence 
ca nno t be achieved at all. The fi xed-point iterati on scheme 
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can ha ndle prescr ibed basa l velocity and it can handle 
mi xed basal bounda ry conditi on s, presc ribed ba sa l veloc ity 
in some pa rts a nd basal shear traction in other pa n s of the 
bed. H owever, with mi xed bo undary conditi ons, cOI1\'er
gence of the iteration is so p oo r that fi xed-point iterati on in 
practice is restri cted to presc ribing the basal velocity along 
the entire bed. H owever, thi s procedure the n suffe rs from 
ob\'ious defi ciencies of adequate imposition of boundary 
conditions. 

In this p ap er, an improved a lgorithm is presented. The 
replacemelll o f fixed-point ite ra ti on by a New to n iteration 
scheme substa nti a ll y reduces the number of n ecessary itera
ti on steps. A lthough a single Newton iterati on step requires 
more computations, the tota l computati on time is consider
abl y reduced. Furthermore, the new technique easil y a ll ows 
the impositi on of mi xed basal boundary conditions. The 
limitati on in the horizontal g l-id resolution can be rl.'duced 
by replacing the single- by a multiple-shoo ting scheme, 
With thi s multiple-shooting sch eme, the conve rgence criter
ion is no longer the limiting factor in many applications. 
However, the la rge memory required for handling the line
ar algebra limits its applicability. 

The problem treated in thi s paper does no t h andle the 
complete g lacier-modelling problem, The accel era ti on term 
can be omitted in the m om entum-balance equations, 
though no t, as sometimes sta ted , because acceleration is 
negligibly sm a ll (Whillans, 1987). On the contra ry, accelera
ti on is la l-ge enough that the time needed to adjust the 
\'Clocit y field to a new situa tio n is negligibly short (seconds) 
compared with the time-sca les that are relevant for glacio
logica l studies (hours to years). Therefore, stress and 
\'clocity fi e lds a re treated as quas i-stationa ry, a nd that has 
an importa nt consequence. The stress and veloc ity fi elds 
onl y depend on the insta nta neous state or the geometry 
and other conditions that are relevant for the rheology but 
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no t their rates of cha nges. In thi s sense, the mecha nica l 
probl em treated in secti on 2 constitutes a complete m a the
m a ti cal problem tha t can be so lved independentl y of m ass 
ba la nce a nd consequent changes in geom etry. 

This paper presents the meth od s of multiple-shoo ting 
a nd Newton itera tion schemes, a nd the handling o("diITe re nt 
typ es 0(" basa l bounda r y conditions. Here, wc d isc uss the 
two-dimensiona l equ ati ons, eyen tho ug h the three-dime n
sio na l problem closely follows the sam e line as the simpler 
case. The mathematical deta ils, importa nt inform a tion on 
the implementa ti on and performa nce of the routines arc 
presented by Colinge (paper in prepara ti on), togeth er with 
practica l examples. A prac tical application of the three-di
me nsiona l, first-o rder scheme on H a ut Glacier d'i\rolla has 
been presented by Hubbard and othe rs (1998). The p c rfo r
m ance of multiple-shooting the Newton iteration schem e 
has been demonstrated by Blatter a nd o thers (1998). In thi s 
pap er, referred to a s Pap er II in the re m a inder of thi s paper, 
the rela ti on between basal stress di stribution a nd basa l 
m ovement is inves tiga ted in detail. 

2. STRESS AND VELOCITY FIELDS 

Governing equations 

Here, a summa ry o f the model equa ti o ns in the pl a ne-flow 
a pproximation is presented. A sca le ana lysis is conduc ted 
tha t suggests a perturba tion-t ype soluti on procedure o f th e 
governing equations in te rms of a small pa rameter. Co rres
po ndingly, equ ations a re call ed zeroth , first- and hig hc r
o rde r equations depe nding upon whe thcr they conta in the 
sm a ll pa ram eter in the ze roth , first or hig her powers. Th e 
second-order equ ati ons o f the consen 'ati o n of mass a nd m o
mentum a nd the fl ow la\\' (constituti\ 'e relati onship ) a rc 
li , ted a nd a deta il ed d escripti on of the integration sche m e 
as well as the Newton itera ti on schem e for its so lutio n in 
th e t wo-dimensiona l pla ne-flow approx i m a tion a rc g iven. 

The geometry of the ice mass is defin ed by the upper fiTe 
surface z = 5(.1') and the basal surface z = B(.r) , in which 
(:1:. z ) a re orth ogona l C a rtesian coordina tes with the z a xi s 
pointing opposite to the direction of g rm·it y. As is commo ll 
in g lac iology, the stra in-rate tensor D a nd th e stress dev iator 
~ a rc rela ted by 

D = AF(IIl) ~ . 
1 ,) 

In = - t r (~- ) 
2 

(1) 

where the ra te fac to r A is, in ge neral , a fun ction of the te mp
era ture but is held consta nL here where considerations a rc 
limited to isotherm a l co nditi ons. Th e fluidit y F depends o n 
th e second il1\'a ri ant o f th e stress de\"i a to r, the traditi o na l 
choice being F (II/ ) = (In ) (11 - 1)/ 2 with a prO\ 'Cn la\\' ex po

nent '17 ~ 3. Reg ul a rit y of the integra ti on procedure 
requires a finit e \'iscos it y law, requesting F (O) t- 0, diITc re nt 
fi 'om Glen's fl ow law. 

The to ta l stress T will be decomposed inLO press ure P 
a nd the stress devi a to r ~, T = - P 1 + L::, norm al compo
nents will be denoted by (J"kk (no summ a ti o n, f..; = x . z) and 
shea r-stress compo ne n ts by Tij (i, j = :1" , z), wh i le T"" a rc the 
to ta l norma l stress compo nents. 

To obta in a n obj ec tive hiera rchy of a pprox imati ons, wc 
sca le the spati a l va ri a bles x, z and S, the ho rizonta l a nd ver-
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tica l vel oc ity eomponellls u a nd w, the stresses, the rate fac
tor a nd th e fluidit y by 

(x . z . 5) = {L}( i . EZ. ES). (2) 

(n.w) = {A}{H }(pg{H} Er'(U. EW) . (3) 

( P.TkkoTij . (J"kJ. ) = pg{H}(P. i kko tTij . Ea",J (4) 

A = {A } A. (5) 

F = (pgHE)"- 1 F (6) 

where the tilded qua ntiti es a re dimensionless a nd {if>} is the 
dimensio nal order of" m agni wde for a dimensio na l qua nti t y 
if> . Ty pica l \'e rtical a nd ho ri zonta l ex tents o f" th e ice mass a re 
{H} a nd {L} , res pec tivel y, and the aspect rati o is 
E = {H} / {L} ; p and 9 a re the constant d ensit y of ice and 
accele ra ti on of grm'it y. Th e hori zon ta l \'eloc it y componelll 
u is scaled with the shea r \'elocity in a hom ogeneous pa ra l
lel-sided slab of thickness {H} when fl ow law in Equati on 
(I) with its pO\l"er-I aw fluidity, F, is imposed ; th e vertica l 
\'cloc it y component w is ta ken to be a facto r E sm a ll er. Pres
sure a nd tota l norm a l stress, P and Tk/.' a rc sca led with th e 
hydros ta ti c press ure at th e bed of a pa ra llel-sided slab, 
whil st shear stress Ti j (i i= j ) a nd norm a l devi a toric stresses 
(J"" a rc sca led with the ba sa l dri\ 'ing stress. 

Fo r g lac ie rs, the aspect ra tio E is sma ll a nd can be used as 
a n order-o f-m agnitude estimate of" the \'a ri o us terms in the 
mass- a nd forcC'-ba la nce equati ons and the constitutive 
equati o ns. 1n pl ane fl ow, these laws ta ke the form (sec 
Blattcr, 1995) 

o'u oil} 
,:-, -+ r = O. 
v T v Z 

oa.,., oi,: as 2 EP (l'S
' - d ') 2( ---;::;-::- + ~ = ~ - E ,,_? T., : Z , 

v.1' v Z v :1" v .C z 
, V I 

T au - - 2 _ 
E ,:-, _ = AF (t ) (J" " . 

V.I" 

F (t2
) = t 2 + t~ : 

(7) 

(8) 

(9) 

(10) 

t
2 = i~ : + a~ .. " (11 ) 

and t3 is proporti onal to the i1l\'Crse orthe \ 'iscosit y a t \'a n
ish ing effecti \ "C st ress. :\o te tha t Equat ion (8) is obta i ned 
from th e hori zo nta l force ba la nce by a n integra tion ove r 
depth a nd incorporating the \'ertica l fo rce ba la nce and 
f"ree-surface stress-free bo unda r y conditions (sce e.g, Hutter, 
1983, ch a pter 5), 

\Ve now apply a terra in fo ll o\\'ing coordina te transfor
mati on by m apping the loca l ice thickness h o n to the unit 
interva l 

~ = ,r . 
Z- B 

( =--- _ . 
S - B 

Wc a lso employ t he nota ti o n 

i = 7.,: . a = a.,n f = i - 2ca, 
1 [ 02 B 02S] 

a == h (1 - () oe + (oe . 

aB as 
c == (1 - () o~ + ( D~ . 

b == ac 
CJ( 

(12) 

(13) 

(14) 

(15) 

(16) 

..J49 
https://doi.org/10.3189/S0022143000001969 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000001969


J ournaL qfGLacioLofJl 

where T is the shear tracti on pa ra llel to the surface defined 
by ( = constant. In term s of the new indep endent , 'ariables, 
the transformed T term takes the form 

821 c2 821 C 821 2cb - ah 81 
T=8e + h28(2+2h8~a(+ h2 a( (17) 

where 

(18) 

With the above transformation rules, 
(7)-(10) m ay be written in the form 

the fi eld Equations 

0 = 

8w au 
8( - ac (19) 

~~ = -2EbiT - h (2E ~; - ~I:) -E2T. (20 ) 

au 2aw - -
a( = -f h 8~ + hAF (2T + 3W7) , 

aiJ, aw - - [ - ? _] 
a~+ca~-AF 2cT + (1 +3c)o- . 

(21) 

(22) 

This is a set offour equa tions for the "ariables U, W, T and iT 
and, if it were not for the T term , it would be a system of 
first-order partia l differenti a l equations. This T term makes 
it a system of integro-differential equations, which is of sec
ond order in the ~ deriva tive. Solutions to it arc sought in th e 
domain bounded by the free and basa l surfaces, for v,'hich 
boundary conditions need to be imposed. In the trans
formed terrain foll owing coordinates, the locations of their 
impositi on are ( = 0 and ( = 1. 

Physica ll y, the boundary condition at the free surface 
consists of a vani shing shear traction (va ni shi ng hori zonta l 
air-pressure gradient is already incorpora ted in Equation 
(8)) 

TS = O. (23) 

At the basa l surface, thc form of the boundary conditions 
depends on the local conditions that are postul ated to appl y. 
Either one ass umes no-slip conditions and then has 

U = w = 0 a t ( = 0 (24) 

or a certain sliding law. In this latter case, the basa l shear 
traction Tb and the sliding "eloeity Ub are fun ctionally 
related via 

(25) 

but, in addition, the ta ngency condition of the now must 
hold 

(26) 

The simplest case is perfect slip for which Tb = O. It is ob
vious tha t a total of three boundary conditions must be 
imposed, either Equations (23) and (24) or else (23), (25) 
a nd (26). 

These facts suggest the fi eld Equations (19)- (22) should 
be regarded not as a system of partial differential equations 
but rather as though they were ordinary differential equa
tions to be integrated in the ( direction. (This will be for
mally achie"ed by replacing all ~ deri,'a ti ves by finite 
differences in the following section .) \Ve have made this in
terpre ta tion implieiLly apparent in Equa tions (19)-(22) by 
writing the term s invoking the ( deriva tives on the Ieftha nd 
side and all other terms on the righthand side. Viewed this 
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way, Equations (19)-(22) a rc three first-order ord inary dif
feren tia l equa ti ons (ODEs) in ( and one algebraic equ ation 
fo r U, W, T a nd 0', the ( integration of which indeed requires 
three boundary or initial conditions as surmised above. 
Because onc condition is imposed at ( = 1 and two a re 
imposed at ( = 0, i. e. at the two cnd points of the interva l 
( E [0.1]' the problem is ca ll ed a two-point bounda rY-" alue 
problem. 

How th is integrati on is performed will be explained 
bel 01'1'. Here, wc simply menti on that, as E ---7 0, the above 
equations reduce to the zero th-order equations, generall y 
known as the shallow-ice approximation, which is eo'111-
monly used in models oflarge ice sheets. For smaller moun
ta in glacie rs, the shallow-ice approximat ion misses 
significa nt physics. Deleting terms that contain (;2 yields 
the first-order approximation which already captures the 
essential patterns of the stress a nd " elocity fi elds, and gives 
rea listic resu lts fo r small ice m asses. 

Line integration 

The idea of di sc reti zing the pa rti al differential equations in 
e\'Cry dimension except onc to obtain a system of ordinary 
difTerential equations is called the method rif lines (Verwer 
and Sanz-Serna , 1984). By introducing a di sc rete g rid on 
the ~ ax is and approximating the ~ derivati"es by finit e dif
ferellces, Equations (19)-(21) can be rewritten as ODEs, and 
Equation (22) becomes algebraic. For each vert ica l gridline 
i , this establishes a se t of three ODEs for the three un
knowns Ti, ii.i and Wi and onc algebraic equation fo r (h This 
la rge se t of ODEs ca n be integra ted by using a sta ndard nu
merical integra tor (e.g. a Runge- Kutta scheme). The inte
grat ion begi ns at the base (( = 0), with starting va lues for 
Tb and Ub at each gridpoint. At each step of the numerical 
integration , the algebraic equa tion is solved explicitly or 
with a numerical root-finder. It is important tha t the alge
braic equation a lways has a unique rea l solutio n. This is the 
case for sm all as pect ratios generally relevant for g laciers 
and for the now law in Equation (11) with a fl ow-l aw expo
nem n = 3 (paper in prepa ration by]. Colinge). 

"10 anive at a proper finite-difTerence schem e, severa l 
points must be taken into account. The shear stress T is com
puted from Eq uation (20) and depends on 8iT I a~ and 0-. 
Furthermore, iT is computed from Equation (22) and de
pends on 8uI 8~. This cascade of dependence on ~ deri"a
ti,'es reduces the order of the whole difTerence scheme to 
p - 1, even if a ll difTerence schemes for single derivatives 
arc of the order p. Thus, to obtain a consistent difTerence 
scheme of order p, the aiJ'; 8~ in Equation (22) must be di s
ereti zed to order p + 1 (paper in preparation by]. Colinge). 

The integration from ( = 0 to ( = 1 with the starting 
"alues fo r basal shear stress and velocity components, i. e. 
three conditions, does not automatically satisfy the su rface 
bounda ry conditions in Equation (23). In order to solve the 
boundary-val ue problf'm, the proper basa l va lues for hb 
can be found iteratively. A good initial choice is the sha l
low-ice approximation of the basal shea r stress, which in 
many cases is already close to the solution: 

- 0 aSi 
T i .b = - hiEif · (27) 

If basal conditions hm'e a large variability, then a n initia l 
T~b = 0 is often the better choice to start with. With the 
basa l shear stress and the values for the basal velocity eom-
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ponents, Equa tion (22) is first used to calcul a te the basal 
value for a i.b. T ntegrating upwards from the base yields sur
face values f~s =1= O. By using thi s result, a correc tion to 7~b 
must be (o und to obtain 7~.s closer to the required boundary 
condition. This method is called shooting, or singLe shooting 
(Ascher a nd o thers, 1988). The type of basal bounda ry con
ditions tha t must be met is defin ed by the sliding parameter
izati on. Prescribing basal ve locity is the simplest and 
numerica ll y m ost stable case, except for the no-slip condi
ti ons of the limited \'alue (o r tudies of basa l sliding. l'vfixed 
boundary conditions, \'ani shing basal velocity at non-slid
ing locations a nd basal fri ction represented by basa l shear 
trac ti on at sliding locations m ay be use ful for sp ecific studies 
on basal conditions. The application of a sliding law which 
relates basal shear traction to basal \'cloci ty requires a 
nes ted itera ti on of thi s sliding law within the shoo ting pro
cedure. 

The T term (see Equation (17)) on the rightha nd side of 
Equation (20) requires different treatment. This term con
tains the integral of 7 and, because it is of the second order 
in the ~ deriva tives, it can onl y be computed a ft er the line 
integration has been completed. In practice, the T term is 
computed by using the 7 from the previous itera tion step 
a nd then including it in Equa tion (20). Its inclusion makes 
the computa tion time per itera tion step slightly longer but 
the number of necessa ry ite ra tion steps is ha rdl y a ffected. 
Numerica l experiments show that the cO l1\'e rgence becomes 
more diffi cult if nested itera tions such as for sliding laws or 
for the T term must be considered. 

Single-shooting fixed-point iteration 

A simpl e way to defin e a single-shooting procedure is to 
write the problem, Equatio ns (20)-(22), as a fixed-point 
problem (l\!Iull er, 1991; Blatter, 1995). Wc introduce the fol
lowing no tation, where !I f is the number of g ridpoints for 
the method of lines: 

rj, ( - - )T .L b= Tl.111· ··· T.\/ - l.b , 

T- ( - _ )T 
s = T1.5' ··· ' Ti\1 - l. s . 

(28) 

(29) 

(30) 

A converg ing fixed-point itera tion is equiva lent to a con
structi ve proof of Banach's fixed-point theo rem (Ascher 

a nd others, 198?} Thus, fo:. ( 0' >-9, 0' sufficientl y small ) 
the fi xed point T b ofC, C (T b) = T b' is the correc t solution. 

In the simplified case of a n infinite slab with a pa rallel 
nat surface a nd base, a simpl e criterion 

0' < 4e-8 / C:.~ (31 ) 

can be rigorously proven (paper 111 prep a ration by J. 
Colinge ) to ensure the exi ste nce and uniqueness of the de
sired fixed point (Banach's th eorem). Thi s exact criterion 
for the sla b is approxim atel y valid for the case of rea listic 
g lacier geometries and one can expec t to be forced to 
decrease 0' either when 6~ decreases or the asp ect ra ti o E 

increases (see a lso Bl atter, 1995). 
This criterion is very res trictive and expla ins the impos

sibility of appl ying the me thod to sma ll and steep glaciers. 
MoreO\ 'er, it uses globa l quantities of ice geometry and loca l 
conditions may require a sm a ll er 0' to ac hieve conve rgence. 
This is es pecially true if the surface slope locall y di splays 
large longitudinal va ri ations, such as in icefa lls o r at teep 
glacier snouts. This criteri on prov ides informa tion rega rd
ing the stability of the numeri cal process. An unstable pro-
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cess is one which assigns largely different results to pa irs of 
ver y close starting conditions. Since the idea of sing le shoot
i ng is to use the (ina l results to lea rn something a bout the 
starting conditions, it is essenti a l to avoid instability. 

The restrictive criterion in Equa tion (31) a lso indicates 
the impossibility o f applying the line integration in a 
. ingle-shot inverse m ode. One may be tempted to sta rt the 
integration at the surface with zero shear trac ti on andmeas
ured velocity components to compute basa l shea r trac tion 
a nd basal \'elocity (Van der Veen a nd " "hill ans, 1989). 
Although the mathematical problem is well posed, it is ill
conditioned and thus basal conditions obtained by thi s inte
g ra tion are extremely sensiti\'e to the input at the surface 
a nd may be fa r away from the co rrect so lution (see e.g. 
Lliboutry, 1987; Ba hr a nd others, 1994). 

Single-shooting Newton iteration 

From the abO\'C consideration, wc look [o r Tb such that 
T s(T b) = O. Colinge (paper in prepa ra ti on) has shown that 
Ts is infinitely differenti able with resp ect to Tb. This is only 
true if the fl ow law P is differentiabl e and invertibl e in the 
entire domain; o the rwi se, the uniqueness of the solution is 
no longer g ua ranteed, a lthough the numerica l integra ti on 
may produce a res ult. Thus, G len's now law need s to be 
m odifi ed to avo id infinite \'iscosity for stress-free conditions 
(Hutter, 1981, 1983; Sm ith a nd Morl a nd, 1981). 

Another way o f implementing a single-shooting pro('('
dure is by sokin o- T s(Tb) = 0 with a Newton itera ti on: 

( 

71, (fl b,··· ,T.\1- 1b) ) 

T,, (Tb) = 7.1I- 1.,(71b,: . ... 7\l - lb) . (32) 

Then 

- - - - - - I - - - 2 
T s(Tb + 8Tb) = T s(T b) + Ts(T b) . 8Tb + O(8T b) = 0 

(33) 

is a seri es expa nsio n ofT" where 

t'(T ) = 0(7 1.". ·· ·. 7r 1ll .\ [ - 1. s) = 
s h !:'l( - - ) v Tl. b , ·· ·.Tmu\ [ - l. b 

(34) 

is theJ acobian m a tri x. 10 dcline th e :\fewton itera tion, we 
need to trunca te Equ ation (33) a nd sok e the remaining lin
ea r equati on 

(35) 
A 1) (' \\' 

a nd thus find the basal T b for th e nex t from the o ld itera-
ti on step 

"' new .... old " 
T b = Tb + 8T b· (36) 

The Newton ite ra ti on ll ses all g ridpoillls at the surface to 
co rrect the stress va lues at each g ridpoint at the base a nd 
converges quadratica ll y close to the solution (Ascher a nd 
others, 1988). On the other hand , th e fi xed-point itera ti on 
onl y uses the g ridpoints at the surface to correct th e basal 
stress in the same vertica l profil e a nd cOI1\ 'Crges linea rl y. To 
compute the components of theJ acobian 

OTi.s T,(Tb + 8T . ej ) - Ts(Tb) 
OTjh;:'::; 8T i= 1. .. · , M - 1 

(3 7) 
where 

(38) 

j 

we have to integ ra te the se t of equa ti ons i\! - 1 tim es, once 
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for each choice of the indices j = 1, ... . M - 1. The small 
increment oT in the co rres ponding basa l shea r stress should 
bc chosen as sm a ll as possible to obta in acc urate \'a lues of 
theJ acobia n component s. The sm a ll est and bes t choice for 
oT is the squa re root of the mac hine precision. 

For la rge !ll , the abo\'e computa tion ofth eJ aco bian may 
become \'ery ex pensi\ 'e in computing time, since wc only get 
onc column of the matri x per integration. However, there is 
a g reat potenti a l for reducing the number of necessa ry inte
g rati ons. f o r physica l reasons, we ca n anticipate that the 
components ofth eJ acobian becom e small er if the difference 
I j - i I grows, thus theJ acobi a n is approximately a banded 
matri x. The Newton- KantorO\ 'iteh theorem (Aseher and 
others, 1988) ensures the conve rgence of the :\!ewton itera
ti on e\'e11 with a n approx imate J acobian, provided the ap
proxi mati on is close enough. This suggests tha t wc ass ume 
theJ acobian is a k di agonal ma trix, where k is odd, a nd then 
ca lculate the approximate components oflheJ acobi an by 

UT;, T,(Tb + oT· (el + el+/; + el+ 2k" .) ) - TsCib) 
UTjb ~ oT 

i= 1,· · ·. M - 1 (39) 

fo r l = 1, ... ,k a nd j = l.l + k . l + 2k . .. '. Thi s ena bles us 
to compute j\l/ k columns of theJ acobian matri x a t each in
teg rati on a nd thus reduces the number of necessa ry integra
ti ons to k, independentl y of the generally much larger 
num ber of g rid lines !I f. ~lo reove l-, the linear system , Equa
ti on (3."», can be soh-ed fas ter by usi ng a banded m a trix. The 
ba nd width J .. must be chosen such that k !::,.~ ::::: 5h , i. e. be
yondthe range of influence of basa l perLurba tions. 

" ' hen the con\'ergence threshold is not reached with the 
first itr rat ion step, wc repeat the a bove procedure of com
p uting theJ acobia n and integrate the equations with an im
p roved choice of the basa l shea r tracti on. Someti mes the 
Newton iteration can be continued by kee ping the o ldJaco
bian, although cOI1\'Crgence of the iterat ion may become 
slower th an with a n updated Jacobian or may not be 
achi e\'Cd at all. 

It is a lso possibl e to compute a IlLlmber Csingle, ca lled the 
condition, which describes the stability of the process (Ascher 
a nd others, 1988). For a slab, thi s number is 

( 40) 

A large condition number indica tes a n unstabl e a lgo rithm 
which is \'C ry sensiti\'C to initi a l (basal) values. In m any 
cases, \\'C obsen 'ed numerica ll y th a t, for a chosen geometry 
(synthetic or realistic), t.~ could b e chosen about half the 
size than fo r the fi xed-point itera ti on. This is a clear im
pro\'ement , interesting for many studies, but the sp a tia l re
so lution is stilllimitecl . 

Multiple-shooting Newton iteration 

The computa tion becomes unsta ble as !::,.~ dec reases. One 
poss ibility of stabili zing the itera ti on scheme is to div ide 
t he glacier into N hori zonta l laye rs, applying th e single 
shooting with ~ew ton iterati ons to each layer a nd require 
th at the fi na l so luti on has no di scontinuity. More precis_e ly, 
with the sta rting: shea r stresses a nd velociti es T o.), Uo.), 
j = L "·,N (UO.1 is give n ) a nd the fin a l va lues 

+52 

TL)(To.j . UO)), U1AToj. Uo.)) lI'e hm'e to sok e the fo llow
ing problem 

Tl.I(To.l ) -TU.2 

Ul.l(T01 ) - UO.2 

TL 2 (To.2 . U(2 ) - To.'J 
U1.2(TO.2 , UO,2) - UO:3 

TU'-l(To.N - I . UOS- 1 ) - To .. \· 
UU'- l (TON- 1 . Uo."v- tl- UO.N 

T 1"v(To"v. Uo. ,v) 

in terms of To.), Uo.) . 

= 0 (4 1) 

This approach is call ed multiple shooting (Ascher a nd 
others, 1988) and it is p ossible to prove for the slab that 

Cl1lultiplp = 0 [!::,.1~3 exp (N ~~) ] . (42) 

This is a clear improvement, since Cmulliple < Csinglc a nd 
the sta bility impro\'es for increasing N . It is also possible to 
prove for a slab with a linea r fl ow law that such a process 
converges to the unique solution of the pa rti al differenti a l 
equa ti on (paper in prepa ration by]. C olinge ). 

Again, the analysis of the simplified case of the slab h as 
been rel evant in the genera l case. So, this a lgorithm theore
tica lly a llows [or a ny spati al resoluti on but requires much 
more computing time a nd memory (if .6~ is halved, then 
N must be doubled ). The ract that the sta bility of the a lgo
r ithm suffers, if!::"~ dec reases is a prope rty of the method of 
lin es c1i sc reti zati on. The condition number of th e ODE 
sys tem is 

( 43) 

which obviously g rows as !::,.~ becomes sm a ll er. 

Mixed basal boundary conditions 

The a bo\'C algorithms and analyses do not onl y apply fo r 
presc ribed zero basal velocity; any reasona ble basa l veloc ity 
ca n be imposed. Howe\'er, in some cases it may be prefer
able to prescribe the basal shear trac ti on in a given a rea of 
the g lacier instead of the basal velocity itse l f The algo rithm 
still wo rks in this more general application with little modi
fi cati o n. 

Aga in, it is possible to give a fi xed-point formul ation of 
the problem 

G(Yi,) = Yo - aYs(Yi,) . (44) 

whe re Yi.b = Ti.b if i E E where (E denotes the domain in 
which basa l sl;ear trac:io11 is ¥r:~cribed ) and Yib = Ui.b if 
t t/. E , T, = (Tl.s , · .. ,TJ\I- I.s) . I he Itera tion parameter a 
must b e chosen differently [or the two dom ains with either 
presc ribed basa l veloc ity or prescribed basa l shea r trac ti on. 
H owever, the fi xed-po int iterati on was found to cOll\'e rge 
very slowly and, thus, its a pplication in the case of mixed 
basal bounda ry co nditions is not practical. 

The resolution with a Newton itera tion is preferable and , 
because the probl em fo r mixed basal boundary conditions is 
less sta ble, multipl e shoo ting is necessary . The algo rithm 
must be prepared to include 1(i.o as a n unknown if i t/. E 
and T-i.h if i E E. This implies computing a mixedJacobia n 
ma trix by considering parti a l derivatives with respect to 'u;.\) 

if i E E and with resp ect to T;.b ifi t/. E. 

https://doi.org/10.3189/S0022143000001969 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000001969


In the basal secti on, where shear traction is prescribed , 
th e basal ve locity becomes a so lution of the computation. 
This fac t poses an additional problem with the di sc retiza
tion schem e. Us ing, for example, a symmetric second-order 
difference fo r aul aE ma kes the a a t odd g ridpo ints depen
dent on U a t even gridpoints a nd vice versa. Additionally, a 
symmetri c second-order schem e for aa I a~ tra nsfers thi s un
coupling to thc solution of T. 

This uncoupling is less effec ti\'e as long as the velocity 
component u is prescribed a long the enti re bed a nd solu
ti ons a rc acceptable as long as variations in the basal 
velocity are sm a ll. However, ifbasa l shear tracti o n Tb is pre
sc ribed instead a t parts of the bed, the deco upling produces 
so lutions for even and odd g ridpoints which oscillate \·\·ith a 
wavelength o f two gridcell s. 

There a re several possibilities for remO\'ing part of the 
oscillation, fo r example, by smoothing th e soluti on with a 
filter function. H owever, the meaning of such a smoothed 
so lution is not elear. A variatio n of this method is to smooth 
the solution for the basa l ve loc ity Ub within the region of 
prescribed basal shea r trac tion and then to recompute a 
solution by using the a lgorithm presc ribing thi s Ub instead. 
This furni shes a wel l-defined numerical solution to a n 
approx ima te problem a nd the well-posedness of the 
problem suggests that this solut ion should be elose to the 
true onc. In prac tice, howeve r, thi s method was not sati sfac
tory. After sm oo thing Ub, the co rresponding Tb was not as 
close to the origina lly prescribed one as desirable. 

A prefera bl e approach is to avoid the sym m e tri es that 
di sconnec t the odd and e\'en points, for exa mple, by using 
non-symmetric finite diffe re nces to approx im a te aul aE. 
There a re severa l ways to d o this but some ways remov(' onl y 
pa rt of the osc ill a tion (th e odd a nd even points become on ly 
wea kl y coupl ed ). The fo ll owing scheme removes the osci ll a
ti on to a la rge deg ree a nd a lso m a intains th e consistency in 
the order (second order) o f thc whole di fference scheme. A 
fourth-order symmetri c schem e [or 

aU ( , () ~ - ii.,+2( () + 8'Ui+J (() - 8Ui - 1 (() + Ui - 2( () 
aE E" - 12~E 

(45) 

is first used to compute a,. (x ;, (). The corres ponding 
F(ai((),Ti(()) is then used to compute the va lue of 
Ui(( + ~(). The va lue Of T;(( + ~() is depende nt on ai as 
well as on oa I o( Fo r a, the abO\'C ac(xi. () is used but 

~: (Ei, () ~ alcft.I+1 (() :t·ighl.1 - 1 (() (46) 

where alcft.i+ L (() is recomputed from Equation (22) with the 
asym metric o rder-three schemc 

au ( , ) ~ 2Ui+2(() + 3Ui+1 (() - 6'u;(() + LL; _ I (() 

aE E,+l. ( - 6~E 

(47) 

a nd arig,hti - L (() \\'ith 

This ma kes three separate computations of aul aE a nd solu
ti ons of Equa tion (22) necessa r y. On the o th er ha nd, thi 
sc heme has a well-defin ed order a nd mee ts the bo unda ry co n
ditions correctl y. If Equati on (22) is solved ite ra tivel y with a 
numerical roo t find er, the first so lution, e.g. for ae is a \'e ry 

CoLinge and Blatler: Stress and velocityJields illg/aciers: I 

elose approxim ation for the oth el- two solutions aldt a nd 
aright , and thus a llows a substanti a l rcduction in the number 
o f iteration steps. Using the a\'erage a t = (aright + alf' ft) /2 
produces the same so lution (within the precision of the nu
merical scheme) as using the abo\'e suggested a". 

3. FLOW IN A PARALLEL-SIDED PLANE SLAB 

Second- and first-order slab equations 

The geometry of th e ice slab is defi ned by the upper free sur
face S == H a nd the basal surface B == 0 in Cartesian coo r
dinates (x , z), with the x ax is aligned para llel to th e 
di recti on of the surface slope. The z ax is a nd the di recti on 
of g ravit y include a n a ngle Q . The equat ions are written in 
dimensionl ess fo rm using the sca ling 

(T, a ) = pgHsina (i , a), i i-.i (49) 

u . w = AoH(pgH s in al(u. iiJ). (50) 

(x . z , S) = H(i , z, S), (5 1) 

A = AoA. (52) 

F = (pgH sin a)2F (53) 

vvhere T , (J, U a nd ware the shea r stress, de\ 'iatoric normal 
stress, longitudina l a nd t rans\'erse (vert ica l) velocity com
ponent, res pec tivel y. The symbols with the "tilde" arc th e 
co rresponding dimensionless qu a ntiti es; the rate factor A is 
scaled with Aa a nd Glen's expo nent Tl = 3. 

The above scaling serves th e purpose of writing the 
equations in dimen sio nl ess form a nd , thus, does not COnLain 
the scaling factor E. H oweve r, in th e following equati o ns wc 
formall y rc-introduce factors f and f2 with f = lto mark th e 
first- a nd second-o rder terms corres ponding to th e sca li ng 
in Equations (2) (6). 

The dimensionless, t\\'o-dimensio na l second-orde r slab 
equations for th e four unknow ns i, a, U a nd iiJ are 

aw ou 
f)'i a;;; . 

aT =_2Eoa - 1 -E2 0,2 (rI Tc!z,). 
a'i ox 0;;;2 J: 

OU .) aw -_ 
- = - f- - + 2AoFT. oz a./: 

aii -
0 =-- EAa F a a:i: 

(54) 

(55) 

(56) 

(57) 

with th e (low law in Equati on (11) and the surface-boundary 
conditi on T" = O. 

In th e first- order approx ima ti o n, Equations (55) and 
(56) reduce to 

aT aa 
-=-2f--l 
o'i ox' (58) 

~~ = 2AoFi (59 ) 

whereas Equations (57) and (54) rem a in as in the second
o rder form. Note th a t in the first-ord er a pprox imati on, th e 
so lution for w from Equati on (54) does not feed back to th e 
so lutions of the othe r three equa tions; thus, w can be d e te r
mined by quadra ture of Equati o n (54) a fter the othe r three 
variables a rc computed. 

The foregoing sca ling reduces thc number offrc e p a ra
-2 

me ters for a homogeneo us slab to two, namely to a nd Aa. 
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The rate factor Ao is simply a multiplier for the velocity field 
and, as long as Ao is homogeneous over the whole domain, 
the stress field is independent of Ao. This permits normali-

-? 

zation of the velocity C~e1d for different choices of to and 
ma kes Aa a function of to, reduc i ng the number of free para

-? 
meters to the single pa rame ter to' In a ll examples, we choose 
i~ , and Aa such that the asymptot ic surface velocity 

_ (1 -2) 
U s.oc = Aa "2 + to = 1 . (60) 

The asymptotic stress and velocity profiles are defined as 
the solution for the entirely non-sliding slab, i. e. the solution 
in the absence of any sliding perturbations. The limit of 
Ao ~ 0 constitutes a Newton fluid , whereas the limit 
~) to ~ 0 constitutes the classica l Glen fl ow law with infinite 
viscosit y for vani shing effective stress. In all presented nu
mer ical examples, we choose t~ = 0 .1 and Aa = 5/ 3. With 
thi s ass umption, the only freedo m rests in the choice of the 
basa l stress pattern over a chosen area and/or the velocity 
o\'er the remaining areas. 

10 simul ate an infinitely long plane-strain slab, the 
model domain of finit e leng th is numericall y connected 
end to end. \Vith homogeneous basal boundary conditions 
in the finite domain, this produces a homogeneo Lls so lution 
for the infinite slab; with inhomogeneous boundary condi
ti ons, th is yields a period ic pa ttern wi th a wavelength of 
the length of the finite domain. 

Comparison b etw een fi rst- a nd second-orde r s olu
tions 

The difTcrences between first- a nd second-order equations are 
terms that contain deri\'atives of i and w with respect to x. 
T hese terms may become significantly large if sharp longitu
d inal transitions occur, either abrupt changes in the surface of 
bottom topography or sliding- non-sliding transitions. Only 
the lat ter are possible for parall el-sided ice slabs. 

\IVe have performed a number of computations with the 
first- and second-order model s fo r a long non-sliding slab 
with a shorter zone of perfect sI ip. One representative 
example is illustrated in Figures 1- 6. The chosen grid size 
is !::,.£ = 1.0 and the length of the zone with frictionless slid
ing is defined by seven gridpoints with prescribed vanishing 
basal shear trac tion, Tb = 0, and the no-slip condition is 
imposed in the rest of the sla b by itb = Q The transition 
occurs over one g ridcell , i.e. ove r the distance of one slab 
thickness. Th e non-dimension a l basal shear traction scales 
to 7]) = 1 for non-sliding conditio ns far away fi"om the influ
ence of the sliding zone (asymptotic behaviour) and the 
corresponding shear velocity is normalized to Us = l. 

In all cases, the basal shear traction reaches a p eak value 
a t the non-sliding gridpoint adjacent to the sliding zone and 
then drops sharply to the prescribed zero shear traction at 
the fi rst sliding gridpoint (Fig. I). Correspondingly, the long
itudinal velocity component inc reases sharply, also chan
ging from a typica l shear-flow profil e to nearly plough-flow 
in the in terior of the sliding area (Figs 2 and 3). The trans
itions are also accompanied by a p eak in downward vertical 
veloc ity where the ice enters slid ing, and upward s, where ice 
leaves the sliding area (Fig. 4). Of course, the surface of the 
slab wou ld cha nge corrcsponding to the non-zero vertical 
veloc ity component and given surface mass flu x. In this 
study, we do not investigate surface response to variati ons 
in basa l conditions but we look a t snapshots of the quasi-sta-
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Fig. 1. Longitudinal prqfiles qf basal shear traction in the 
first - and second-order approximations (terms linear and 
quadratically in E are accounted Jor) acTOSS the transitions 
between non-sliding areas and a limited zone qfpelfect sliding 

Jor a parallel-sided ice slab. The sliding is specified for seven 
gridpoinls (2- 8) by prescribed vanishing basal shear traction. 
The non-sliding parts are difined by vanishing basal veloci!)!. 
The grid size is !::"x = 1 which corresponds to the thickness qf 
the slab. 

" 1 -order 

15 
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o 5 10 
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Fig. 2. Longitudinal prrifiles qfbasal and surface longitudinal 
velocity component in the first - and second-order apjJroxima
tions across the transitions between non-sliding areas and a 
limited zone qf perfect sliding as in Figure 1. The subscripts s 
and b rifer to surface and base, respectivebl, the solid and 
dashed lines represent first -order solutions and the dotted and 
dash -dotted lines the second-order solutions. 

tionary stress and velocity fields with sharp basal transitions 
fo r a given geometry. Such transitions may be unrealisti
cally abrupt (Hutter and Olunloyo, 1980, 1981; Barcilon and 
MacAyeal, 1993) a nd, in reality, ice may break at the peak 
stress locations. On the other hand, thi s illustrates the ex tent 
to which the first-order solution captures the essential pat
terns of stress-strain relations and produces reliable resul ts 
rel a tively close to the second-order so lutions. 

The second-order solutions show profiles with negative 
shear stress in the interior of the sliding a rea (Fig. 5). It is 
not exactly elear whether thi is physically reali stic or 
whether it is a numerical artefact, or both. In the solution 
[or i, this looks like a small oscilla tion around zero-stress 
values with a waveleng th of two gridcells (Fig. 6). This fact 
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Fig. 3. Vertical profiles of longitudinal velocity inside and ad
jacent to an area of perfect sliding as described in fzgure 1. The 
labels refer to the corresponding gridpoints as illustrated in 
Figure 1. T he decrease in velocity with distance to the bed is 
assumed to be a numerical artifact in the second-order solu
tions. 
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Fig. 4. Longitudinal profiles of vertical velocil)l component at 
the sll1jace in the second-orderapproximatiol1 acTOSS the trans
itions between non-sliding areas and a limited zone oJ /mject 
sliding as in Figure 1. 
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Fig. 5. Verticalflrofiles ofshear stress inside and adjacent to an 
area offJe1ject sliding as described in Figure 1. The labels refer 
to the corresponding grid points as illustmted in Figure 1. The 
negative shear-stress profiles are assumed to be a numerical 
artefact in the second-order solutions. 
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Fig. 6. Longitudinal profiles ofshear st ress at varioLls levels oJ 
z in the second-order approximation across the transitions 
between non -sliding areas and a hmitrd zone of/mfect sliding 
as in Figure 1. T he negative shear stresses are assumed to be a 
numerical artifact in the second-order solutions. 

strongly indicates tha t the oscill ati on is numerica ll y induced, 
a lthough the exact reason is not clear. The problem stems 
from the T term (sce Equation (20) and thus far no soluti on 
is available. 

4. CONCLUSIONS AND PROSPECTS 

The governing equat ions for the two-di mensional stress and 
velocity fi elds in g lac ie rs a rc presented in Cartes ian and te r
rain-foll owing coordinates. A scaling a na lysis allows the de
fini ti on of a hierarchy of approximati ons based on powers of 
the small-aspect ra ti o of the ice geomet ry. Deleting terms 
that contai n f to povvers 2 and higher leads to a se t of three 
co upl ed non-li near partial differentia l eq uations, referredLO 
as first-order approx im a ti on in thi s paper. \Vc present di s
c reti zation schemes based on the meth od or-lin es and di scuss 
var ious iIllegration a nd iteration scheme. 

The single-shooting fi xed-point iterat ion is easy to pro
gram and, for la rge ice masses with small aspect ratios, it 
conve rges reasonably fast (Blatte r, 1995). At present, thi s is 
the method of choice for three-d imensional finite-diffe rence 
modelling of higher-order glacier mechan ics and dynamics. 
In this paprr, wC' in troduce t\Vo-dimensiona l (plane-strain ) 
m odels with more e laborate numerical methods: Newton 
ite ra tion instead of fixed-point itera tion a nd multiple shoot
ing instead of singlc shooting. 

The Newton iteration scheme is faster than the fi xed
point scheme for the same glac ier a nd the same horizonta l 
resolu tion ~x. For la rge ice shee ts with smooth surface to
pography, the Newton iterati on a ll ows for substa nti a ll y 
smaller ~x than the fi xed-point itera ti on. For sma ll g lac iers 
with smooth topogr aphy, this improvemen t is on ly small 
but, for glac iers with steep sections and \'ar iable surface 
profile, the fixed-point iteration perfo rmed better. Fixed
point iteration only works reasonably well , ifbasa l vcloc ity 
is prescri bed a long the entire bed. On the other hand , New
ton iterat ion can adequa tel y hand le m ixed basal conditi o ns, 
where the velocity is presc ri bed onl y a t parts of the bed and 
basal shear tract ion a t the rest of the bed. This allows the 
modelli ng of glac ie rs with noat ing pans such as on sub
g lacia l lakes or ice shelves. 
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The multiple-shooting scheme allows much better spa
tial resolutio n than the single-shooting scheme, with 6 x as 
small as 5% of the a\uage ice thickness for the first-order 
approximation. However, thi s is at rhe price oflong compu
tation times a nd large 1V0rk-memory requirements. An ap
plication , which corroborates these statements is presented 
in Paper n. This scheme may still be prac tical, if single si
tuations fo r the stress and veloci ty fi elds are to be modelled. 
If the mecha nical model must be used repea ted ly for cou
pling a surf"ace-e\'olution model, the single shooting with a 
well-implemented I\'e\\·ton itera tion is certa inly the meth od 
of" choice. In the second-order approximation, the T term 
must be iterated para ll r l to the Newton iteration. This re
duces the convergence radius a nd, thus far, the best hori zon
tal resolution tha t could be achi eved with the second-order 
code was about 75 % of the ave rage ice thick ness. More ela
borate di sc retization schemes, which promise faster compu
tation with higher spatial reso lution suitable for three
dimensiona l ice masses, are presentl y being investigated. 

The physics that is included in the glacier model pre
sented here poses a novel problem concerning the required 
inform ation on the glacier to exploit full y the capabil iti es o[ 
the model. The bed topography becomes avai lable for a 
growing number of glaciers. The general lack ofinformation 
on sliding pa llerns poses the most serious limitation, since 
the longitudina l coupling of stresses strongl y depend on 
the spati a l \'a riations of the basa l velocity; sce Paper II. On 
the other ha nd, these requirem ents point to the desirable 
field measurements that provide the necessary input [or 
their subsequent interpretation based on model computa
tion (H arbor a nd others, 1997; Hubbard and others, 1998). 
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