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ABSTRACT. The set of force equations and stress—strain-rate relations for ice masses
can be solved with the method of lines and shooting the stress-free conditions at the free
surface. Single- and multiple-shooting schemes with fixed point or Newton iterations for
solving the stress equations including the deviatoric stress gradients are described and
their performances are discussed. The single-shooting Newton iteration proved to be the
fastest scheme for typical valley glaciers, although its horizontal arid limitation is restric-
tive. Grid resolution can be improved substantially with a multiple-shooting scheme but
computation time and storage requirements increase substantially. The Newton iteration
allows the handling of mixed basal houndary conditions, partly basal velocity and partly
basal shear traction being prescribed. A stick-slip free gravity flow illustrates the perfor-

mance of the scheme.

1. INTRODUCTION

Several studies have approached questions on flow patterns
in ice sheets near the summit (Rech, 1988; Dahl-Jensen,
1989) and the transition from ice-sheet flow to ice-shell low
(Herterich, 1987) by including the role of deviatoric stress
gradients. Van der Veen and Whillans (1989) and Van der
Veen (1989) have presented a numerical scheme that solves
the equations of force balance without any mathematical
approximations. They start their iteration from a “first
approximation” that formally solves the equations of force
balance in a form today referred to the shallow-ice approxi-
mation and improve on this approximate solution. Their
fixed-point iteration scheme seems to work elliciently for
ice sheets, though no account is given about its performance
in the case of smaller and steeper glaciers. Muller (1991) pro-
posed a similar approach for solving the first-order equa-
tions for stress and velocity components in the two-
dimensional plane-flow approximation. This algorithm,
based on finite-difference discretization along the x axis
(method of lines) and a fixed-point iteration scheme to meet
the surface-houndary conditions, proved to be very simple
and flexible, and could be readily extended to the three-
dimensional case (Blatter, 1995).

The fixed-point iteration applied by Muller (1991) and
Blatter (1995 converges rapidly for large ice-sheet config-
urations with a small aspect ratio. However, for small
glaciers, where corrective terms become important, the
number of necessary iteration steps grows rapidly with the
increasing aspect ratio. Furthermore, the number of neces-
sary iteration steps also increases with increasing horizontal
orid resolution. These factors limit the applicability of fixed-
point iteration in the achievable horizontal grid resolution
and exclude small and steep glaciers, for which convergence
cannot he achieved at all. The [ixed-point iteration scheme
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can handle prescribed basal velocity and it can handle
mixed basal boundary conditions, prescribed basal velocity
in some parts and basal shear traction in other parts of the
bed. However, with mixed boundary conditions, conver-
gence of the iteration is so poor that fixed-point iteration in
practice is restricted to prescribing the basal velocity along
the entire bed. However, this procedure then suffers from
obvious deficiencies of adequate imposition of boundary
conditions.

In this paper, an improved algorithm is presented. The
replacement of fixed-point iteration by a Newton iteration
scheme substantially reduces the number of necessary itera-
tion steps. Although a single Newton iteration step requires
more computations, the total computation time is consider-
ably reduced. Furthermore, the new technique easily allows
the imposition of mixed basal boundary conditions. The
limitation in the horizontal grid resolution can be reduced
by replacing the single- by a multiple-shooting scheme.
With this multiple-shooting scheme, the convergence criter-
jon is no longer the limiting factor in many applications.
However, the large memory required for handling the line-
ar algebra limits its applicability.

The problem treated in this paper does not handle the
complete glacier-modelling problem. The acceleration term
can be omitted in the momentum-balance equations,
though not, as sometimes stated, because acceleration 1s
negligibly small (Whillans, 1987). On the contrary, accelera-
tion is large enough that the time needed to adjust the
velocity field to a new situation is negligibly short (seconds)
compared with the time-scales that are relevant for glacio-
logical studies (hours to years). Therefore, stress and
velocity fields are treated as quasi-stationary, and that has
an important consequence. The stress and velocity ficlds
only depend on the instantaneous state of the geometry
and other conditions that are relevant for the rheology but
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not their rates of changes. In this sense, the mechanical
problem treated in section 2 constitutes a complete mathe-
matical problem that can be solved independently of mass
balance and consequent changes in geometry.

This paper presents the methods of multiple-shooting
and Newton iteration schemes, and the handling of different
types of basal boundary conditions. Here, we discuss the
two-dimensional equations, even though the three-dimen-
sional problem closely follows the same line as the simpler
case. The mathematical details, important information on
the implementation and performance of the routines are
presented by Colinge (paper in preparation), together with
practical examples. A practical application of the three-di-
mensional, first-order scheme on Haut Glacier d'Arolla has
been presented by Hubbard and others (1998). The pertor-
mance of multiple-shooting the Newton iteration scheme
has been demonstrated by Blatter and others (1998). In this
paper, referred to as Paper 11 in the remainder of this paper,
the relation between basal stress distribution and basal
movement is investigated in detail.

2. STRESS AND VELOCITY FIELDS

Governing equations

Here, a summary of the model equations in the plane-flow
approximation is presented. A scale analysis is conducted
that suggests a perturbation-type solution procedure ol the
governing equations in terms of a small parameter. Corres-
pondingly, equations are called zeroth, first- and higher-
order equations depending upon whether they contain the
small parameter in the zeroth, first or higher powers. The
second-order equations of the conservation of mass and mo-
mentum and the flow law (constitutive relationship) are
listed and a detailed description of the integration scheme
as well as the Newton iteration scheme for its solution in
the two-dimensional plane-flow approximation are given.

The geometry of the ice mass is defined by the upper (ree
surface z = 5(z) and the basal surface z = B(x), in which
(, z) are orthogonal Cartesian coordinates with the z axis
pointing opposite to the direction of gravity. As is common
in glaciology. the strain-rate tensor D and the stress deviator
3 are related by

1
Iy = S tx(3?) (1)

D=AF(I;)Z
where the rate factor A is, in general, a function of the temp-
erature but is held constant here where considerations are
limited to isothermal conditions. The fluidity F depends on
the second invariant of the stress deviator, the traditional
choice being F(1;;) = (I”)(H D2 with a proven law expo-
nent n &~ 3. Regularity of the integration procedure
requires a finite viscosity law, requesting #(0) # (, different
from Glen’s flow law,

The total stress T will be decomposed into pressure P
and the stress deviator £, T= —P 1 + %, normal compo-
nents will be denoted by ay. (no summation, k= . 2) and
shear-stress components by 7; (i, j = x, z), while 74 are the
total normal stress components.

1o obtain an objective hierarchy of approximations, we
scale the spatial variables x, z and S, the horizontal and ver-
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tical velocity components 4 and w, the stresses, the rate fac-
tor and the fluidity by

(z,2,8) = {L}(Z,€3,e8), (2)
(u,w) = {AHH}Npg{H}e)" (4, ew), (3)
(4)

(

(P, ik, Tijy oae) = pg{ HY(P, Fug, €75, €611,
A= {A}A, 5)
F = (pgHe)" ' F (6)

where the tilded quantities are dimensionless and {®}is the
dimensional order of magnitude for a dimensional quantity
®. Typical vertical and horizontal extents of the ice mass are
{H} and {L}, respectively, and the aspect ratio is
e={H}/{L}; p and g are the constant density of ice and
acceleration of gravity. The horizontal velocity component
u is scaled with the shear velocity in a homogencous paral-
lel-sided slab of thickness { H} when flow law in Equation
(1) with its power-law fluidity, £, is imposed; the vertical
velocity component w is taken to be a factor € smaller. Pres-
sure and total normal stress, P and 71 are scaled with the
hydrostatic pressure at the bed of a parallel-sided slab,
whilst shear stress 7;; (i # j) and normal deviatoric stresses
o are scaled with the basal driving stress.

For glaciers, the aspect ratio € is small and can be used as
an order-of-magnitude estimate of the various terms in the
mass- and force-balance equations and the constitutive
equations. In plane flow, these laws take the form (see
Blatter, 1995)

ou  Ow
or 9z

o, 7. S ., P

0. (7)

oS
oz +E_:E*f'0? / Fade |, (8)
—_—
9t i
MU 1072y =
f(‘)—;:[F“ )Ulr (9)
()r'r 9 (")(I: N

inwhich forn =3

"= 72 +462,, (11)
and t] is proportional to the inverse of the viscosity at van-
ishing effective stress. Note that Equation (8) is obtained
from the horizontal force balance by an integration over
depth and incorporating the vertical force balance and
free-surface stress-free boundary conditions (see e.g. Hutter,
1983, chapter 5).

We now apply a terrain following coordinate transfor-
mation by mapping the local ice thickness & on to the unit
interval

i—-B
=7 s T 12
; = (12)
We also employ the notation
T =T 0—90m T=7%=795 (13)
1 FB 98
”:E I—C)Hg—z+ﬁ—?:l (14)
N OB 9§ 2
[ A= ( = )E ?6 (1.))
de
g o (16)
449
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where 7 is the shear traction parallel to the surface defined
by ¢ = constant. In terms of the new independent variables,
the transformed 7T term takes the form

i c 1 2cb—ahdl
i Rl g ar—m by
o0& Trioc Tihecac T B aC (LR
where
1
=¥ / Fdc. (18)
J

With the above transformation rules, the field Equations
(7)—(10) may be written in the form

o o
B 19
aC e (19)
A O~ 1‘ "
d—‘{: —2¢ba — h 2r£—£ o gRR (20)
¢ o¢  d¢
%%: —ezla%‘g+ hAF (27 + 3ced), (21)
B P AP [2¢7 + (1 + 3¢%)3] (22)
1= 2+ 0% 2 3¢%)a].

This is a set of four equations for the variables u, 1, Tand o

and, if it were not for the T term, it would be a system of

first-order partial differential equations. This T term makes
it a system of integro-differential equations, which is of sec-
ond order in the £ derivative, Solutions to it are sought in the
domain bounded by the free and basal surfaces, for which
houndary conditions need to be imposed. In the trans-
formed terrain following coordinates, the locations of their
imposition are { = 0and { = 1.

Physically, the boundary condition at the free surface
consists of a vanishing shear traction (vanishing horizontal
air-pressure gradient is already incorporated in Equation
8))

=0, (23)
At the basal surface, the form of the boundary conditions
depends on the local conditions that are postulated to apply.
Either one assumes no-slip conditions and then has

d=w=0at{=0 (24)
or a certain sliding law. In this latter case, the basal shear
traction 7, and the sliding velocity @y, are functionally
related via

F(i,lp) =0 (25)
but, in addition, the tangency condition of the flow must
hold

1B
wy, = : dff‘I) Uty (26)

The simplest case is perfect slip for which 7, = 0. It is ob-

vious that a total of three boundary conditions must be
imposed, either Equations (23) and (24) or else (23), (25)
and (26).

These facts suggest the ficld Equations (19)-(22) should
be regarded not as a system of partial differential equations
but rather as though they were ordinary differential equa-
tions to be integrated in the ¢ direction. (This will be for-
mally achieved by replacing all & derivatives by finite
differences in the following section) We have made this in-
terpretation implicitly apparent in Equations (19)-(22) by
writing the terms involving the ¢ derivatives on the lefthand
side and all other terms on the righthand side. Viewed this
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way, Equations (19)—(22) are three first-order ordinary dil-
ferential equations (ODEs) in ¢ and one algebraic equation
for u, w, 7 and o, the ¢ integration of which indeed requires
three boundary or initial conditions as surmised above.
Because one condition is imposed at ( =1 and two are
imposed at ¢ = 0, i.e. at the two end points of the interval
¢ € [0, 1], the problem is called a two-point boundary-value
problem.

How this integration is performed will be explained
below. Here, we simply mention that, as € — 0, the above
equations reduce to the zeroth-order equations, generally
known as the shallow-ice approximation, which is com-
monly used in models of large ice sheets. For smaller moun-
tain glaciers, the shallow-ice approximation misses
significant physics. Deleting terms that contain € yields
the first-order approximation which already captures the
essential patterns of the stress and velocity fields, and gives
realistic results for small ice masses.

Line integration

The idea of discretizing the partial differential equations in
every dimension except one to obtain a system of ordinary
differential equations is called the method of lines (Verwer
and Sanz-Serna, 1984). By introducing a discrete grid on
the £ axis and approximating the § derivatives by finite dif-
ferences, Equations (19)—-(21) can be rewritten as ODEs, and
Equation (22) becomes algebraic. For each vertical gridline
i. this establishes a set of three ODEs for the three un-
knowns 7, 4; and w; and one algebraic equation for 7;. This
large set of ODEs can be integrated by using a standard nu-
merical integrator (e.g. a Runge—Kutta scheme). The inte-
gration begins at the base (¢ = 0), with starting values [or
7, and @y, at each gridpoint. At each step of the numerical
integration, the algebraic equation is solved explicitly or
with a numerical root-finder. It is important that the alge-
braic equation always has a unique real solution. This is the
case for small aspect ratios generally relevant for glaciers
and for the flow law in Equation (11) with a flow-law expo-
nent n = 3 (paper in preparation by J. Colinge).

o arrive at a proper finite-difference scheme, several
points must be taken into account. The shear stress T is com-
puted from Equation (20) and depends on 9a/0€ and a.
Furthermore, & is computed from Equation (22) and de-
pends on 91 /d€. This cascade of dependence on £ deriva-
tives reduces the order of the whole difference scheme to
p—1, even if all difference schemes for single derivatives
are of the order p. Thus, to obtain a consistent difference
scheme of order p, the 9i/9€ in Equation (22) must be dis-
cretized to order p+ 1 (paper in preparation by J. Colinge).

The integration from ¢ =0 to ( =1 with the starting
values for basal shear stress and velocity components, i.¢.
three conditions, does not automatically satisty the surface
houndary conditions in Equation (23). In order to solve the
boundary-value problem, the proper basal values for Tiy
can be found iteratively. A good initial choice is the shal-
low-ice approximation of the basal shear stress, which in
many cases is already close to the solution:

2 as,;
g = 41'ia—5' (27)

If basal conditions have a large variability, then an initial
7}, = 0 is often the better choice to start with. With the

hasal shear stress and the values for the basal velocity com-
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ponents, Equation (22) is first used to calculate the basal

value for oy, 1, ]mf-crratmq upwards from the base yields sur—
face values 7}, # 0. By usmcr this result, a correction to 7)),
must be lound to obtain 7 'i'l . closer to the required boundary
condition. This method is called shooting , or single shooling
(Ascher and others, 1988). The type of basal boundary con-
ditions that must be met is defined by the sliding parameter-
ization. Prescribing basal velocity is the simplest and
numerically most stable case, except for the no-slip condi-
tions of the limited value for studies of basal sliding, Mixed
boundary conditions, vanishing basal velocity at non-slid-
ing locations and basal [riction represented by basal shear
traction at sliding locations may be useful for specific studies
on basal conditions. The application of a sliding law which
relates basal shear traction to basal velocity requires a
nested iteration of this sliding law within the shooting pro-
cedure.

The T term (see Equation (17)) on the righthand side of

Equation (20) requires different treatment. This term con-
tains the integral of 7 and, because it is of the second order
in the € derivatives, it can only be computed after the line
integration has been completed. In practice, the T term is
computed by using the 7 from the previous iteration step
and then including it in Equation (20). Tts inclusion makes
the computation time per iteration step slightly longer but
the number of necessary iteration steps is hardly affected.
Numerical experiments show that the convergence becomes
more difficult if nested iterations such as for sliding laws or
for the T' term must be considered.

Single-shooting fixed-point iteration

A simple way to define a single-shooting procedure is to
write the problem, Equations (20)-(22), as a fixed-point
problem (Muller, 1991; Blatter, 1993). We introduce the fol-
lowing notation, where M is the number of gridpoints for
the method of lines:

Ty = (FLpy s Frt-10) (28)
Ts = (‘f-l.se"'\‘i‘.\ffl.s)T‘- (29)
G(Tll) Lat Tl) - 'Th(Th)' (30)

A converging (ixed-point iteration is equivalent to a con-
structive proof of Banach’s fixed-point theorem (Ascher
and others, 1988). Thus, for (a > 0. o sufficiently small)
the fixed point T:J of G, G(T;) = f;, is the correct solution,

In the simplified case of an infinite slab with a parallel
flat surface and hase, a simple criterion

a < 4e78/58 (31)
can be rigorously proven (paper in preparation by J.
Colinge) to ensure the existence and uniqueness of the de-
sired fixed point (Banachs theorem). This exact criterion
for the slab is approximately valid for the case of realistic
glacier geometries and one can expect to be forced to
decrease a either when A€ decreases or the aspect ratio €
increases (see also Blatter, 1993).

This criterion is very restrictive and explains the impos-
sibility of applying the method to small and steep glaciers.
Moreover, it uses global quantities of ice geometry and local
conditions may require a smaller a to achieve convergence.
This is especially true if the surface slope locally displays
large longitudinal variations, such as in icefalls or at steep
glacier snouts. This criterion provides information regard-
ing the stability of the numerical process. An unstable pro-
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cess is one which assigns largely different results to pairs of
very close starting conditions. Since the idea of single shoot-
ing is to use the final results to learn something about the
starting conditions, it is essential to avoid instability.

The restrictive criterion in Equation (31) also indicates
the impossibility of applying the line integration in a
single-shot inverse mode. One may be tempted to start the
integration at the surface with zero shear traction and meas-
ured velocity components to compute basal shear traction
and basal velocity (Van der Veen and Whillans, 1989).
Although the mathematical problem is well posed, it is ill-
conditioned and thus basal conditions obtained hy this inte-
gration are extremely sensitive to the input at the surface
and may be far away from the correct solution (see e.g,
Lliboutry, 1987; Bahr and others, 1994).

Single-shooting Newton iteration

look for 'f"., such that
o (Th) = (). Colinge (paper in preparation) has shown that
T is infinitely differentiable with respect to T|. This is only
true if the flow law F is differentiable and invertible in the

From the above consideration, we

entire domain; otherwise, the uniqueness of the solution is
no longer guaranteed, although the numerical integration
may produce a result. Thus, Glen’s flow law needs to be
modified to avoid infinite viscosity for stress-free conditions
(Hutter, 1981, 1983; Smith and Morland, 1981).

Another way of implementing a single-shooting proce-
dure is by solving T5(T},) = 0 with a Newton iteration:
TA-1)

Tl T i

7‘-1_‘\(1’\'[.}.. TEFL

:r_U' l.h)
Then

P (T + 8T) = To(Fo) + To(T) - 6T + O(6T3) = 0
(33)

is a series expansion of T, where

Al A E)(i—l_,-"'-%p'm,\.’ ].S) OT-"‘
T{TL) === L = - 34
n( i ) U(Tl_])- sty TermM—1, h) (UT_H') ( )

is the Jacobian matrix. 1o define the Newton iteration, we
need to truncate Equation (33) and solve the remaining lin-
ear equation

o, = —(TUT)) - 1) (35)

- snew | o
and thus find the basal T for the next from the old itera-

tion step
~New

i —7 gl (36)
The Newton itcralion uses all gridpoints at the surface to
correct the stress values at each gridpoint at the base and
converges quadratically close to the solution (Ascher and
others, 1988). On the other hand, the fixed-point iteration
only uses the gridpoints at the surface to correct the basal
stress in the same vertical profile and converges linearly. 1o
compute the components of the Jacobian

Bt Ty + 6T -¢j) = Tu(Ty)

- =y vl =1
iy 6T
(37)
where
e; = (0,-+-,0 ,1, 0,+-,0) (38)
J

we have to integrate the set of equations M — 1 times, once

451
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M — 1. The small
increment 7 in the cor responding Lmsal shear stress should

for each choice of the indices j =

be chosen as small as possible to obtain accurate values of

the Jacobian components. The smallest and best choice for
0T is the square root of the machine precision.

Forlarge M. the above computation of the Jacobian may
become very expensive in computing time, since we only get
one column of the matrix per integration. However, there is
a great potential for reducing the number of necessary inte-
grations. For physical reasons, we can anticipate that the
components ol the Jacobian become smaller if the difference
| j — i | grows, thus the Jacobian is approximately a banded
matrix. The Newton Kantorovitch theorem (Ascher and
others, 1988) ensures the convergence of the Newton itera-
tion even with an approximate Jacobian, provided the ap-
proximation is close enough. This suggests that we assume
the Jacobian is a k diagonal matrix, where kis odd, and then
calculate the approximate components of the Jacobian by

OFis N f\ (Tl; + 6T - (e1 4 epin + ejoop - )) = BT

Otjp 5T ‘
i=1,,M-1 (39)

forl=1,-+-,kand j=11+ k,l + 2k, --- This cnables us

to compute M /k columns of the Jacobian matrix at each in-
tegration and thus reduces the number ol necessary integra-
tions to k, independently of the generally much larger
number of gridlines M. Moreover, the linear system, Equa-
tion (35), can be solved faster by using a banded matrix. The
bandwidth £ must be chosen such that k A¢ > 5A, i.e. be-
yond the range of influence of basal perturbations.

When the convergence threshold is not reached with the
first iteration step, we repeat the above procedure of com-
puting the Jacobian and integrate the equations with an im-
proved choice of the basal shear traction. Sometimes the
Newton iteration can be continued by keeping the old Jaco-
bian, although convergence of the iteration may become
slower than with an updated Jacobian or may not be
achieved at all,

It is also possible to compute a number Ciingles called the
condition, which describes the stability of the process (Ascher
and others. 1988). For a slab, this number is

1 8
-rnillp,lt\ = O{A_Ez exp (Af)J (10)

A large condition number indicates an unstable algorithm
which is very sensitive (o initial (basal) values. In many
cases, we observed numerically that, for a chosen geometry
(synthetic or realistic), A€ could be chosen about half the
size than for the fixed-point iteration. This is a clear im-
provement, interesting for many studies, but the spatial re-
solution is still limited.

Multiple-shooting Newton iteration

The computation becomes unstable as A¢ decreases. One
possibility of stabilizing the iteration scheme is to divide
the glacier into N horizontal layers, applying the single
shooting with Newton iterations to each layer and require
that the final solution has no discontinuity. More precisely,
with the starting shear stresses and velocities TU_,, Uo.js

Q

J=1,---\N (Up; is given) and the final values

452

https://doi.org/10.3189/50022143000001969 Published online by Cambridge University Press

T1.i(Toj,Ugy), Uy (T, Uy,;) we have to solve the follow-
ing problem

]_Aﬂ W{Toa) — T
“ (Tnl)—Un;
T2 (Tu 2, Una) — Toa

ialt e il Uy
( .z [l’) 0.3 :(] (41)

Tl v-1(Tox_1, Ull\fl}*TU N
Uy n-1(Ton-1, Un\~|) Uo.n
Tin(Ton. Un\)

in terms of 1 j, Uu‘j-
‘This approach is called multiple shooting (Ascher and
others, 1988) and it 1s possible to prove for the slab that

(i) o

This is a clear improvement, since C’,,,u“_il,k, 2 Ugriglos and
the stability improves for increasing V. It is also possible to

C'umltiplc' ==

prove for a slab with a lincar flow law that such a process
converges to the unique solution of the partial differential
equation (paper in preparation by J. Colinge).

Again, the analysis of the simplified case of the slab has
been relevant in the general case. So, this algorithm theore-
tically allows for any spatial resolution but requires much
more computing time and memory (iff A€ is halved, then
N must be doubled). The fact that the stability of the algo-
rithm suffers, if A& decreases is a property of the method of
lines discretization. The condition number of the ODE
system is

Cope = 0(31—6) (43)

which obviously grows as A¢ becomes smaller.
Mixed basal boundary conditions

The above algorithms and analyses do not only apply for
prescribed zero basal velocity; any reasonable basal velocity
can be imposed. However, in some cases it may be prefer-
able to prescribe the basal shear traction in a given area of
the glacier instead of the basal velocity itself. The algorithm
still works in this more general application with little modi-
fication.

Again, it is possible to give a fixed-point formulation of
the problem

G = % —al (W), (44)

where Y}y, = 75, if ¢ € E where (E denotes the domain in
which basal shear traction is {.?YCSC]‘ith) and Y, = 4;y, if
i & B, T, = (T15+,Ta-15) . The iteration parameter o
must be chosen differently for the two domains with either
prescribed basal velocity or prescribed basal shear traction.
However, the fixed-point iteration was found to converge
very slowly and, thus, its application in the case of mixed
basal boundary conditions is not practical.

"The resolution with a Newton iteration is preferable and,
because the problem for mixed basal boundary conditions is
less stable, multiple shooting is necessary . The algorithm
must be prepared to include u;), as an unknown if i & F
and 7;, il'i € E. This implies computing a mixed Jacobian
matrix by considering partial derivatives with respect to ;)
ili € E and with respect to 7, ifi & E.
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In the basal section, where shear traction is prescribed,
the basal velocity becomes a solution of the computation.
This [act poses an additional problem with the discretiza-
tion scheme. Using, for example, a symmetric second-order
difference for 9u/d¢ makes the ¢ at odd gridpoints depen-
dent on @ at even gridpoints and vice versa. Additionally, a
symmetric sccond-order scheme for da /A€ transfers this un-
coupling to the solution of 7.

This uncoupling is less effective as long as the velocity
component u is prescribed along the entire bed and solu-
tions are acceptable as long as variations in the basal
velocity are small. However, if basal shear traction 7, is pre-
scribed instead at parts of the bed, the decoupling produces
solutions for even and odd gridpoints which oscillate with a
wavelength of two grideells.

There are several possibilities for removing part of the
oscillation, for example, by smoothing the solution with a
filter tunction. However, the meaning of such a smoothed
solution is not clear. A variation of this method is to smooth
the solution for the basal velocity @, within the region of
prescribed basal shear traction and then to recompute a
solution by using the algorithm prescribing this 1, instead.
This furnishes a well-defined numerical solution to an
approximate problem and the well-posedness of the
problem suggests that this solution should be close to the
true one. In practice, however, this method was not satisfac-
tory. Alter smoothing wy, the corresponding 7}, was not as
close to the originally prescribed one as desirable.

A preferable approach is to avoid the symmetries that
disconnect the odd and even points, for example, by using
non-symmetric finite differences to approximate di/d€,
There are several ways to do this but some ways remove only
part of the oscillation (the odd and even points become only
weakly coupled ). The [ollowing scheme removes the oscilla-
tion to a large degree and also maintains the consistency in
the order (second order) of the whole difference scheme, A
fourth-order symmetric scheme [or

%(6 0 = —i+9(C) + 81 (€) — 811 (€) + @;—2(C)
o T 12A¢

(45)

is first used to compute &.(r;,¢). The corresponding
F(a(¢),7i(¢)) is then used to compute the value of
;(¢ + AC). The value of 7;(C + A() is dependent on g; as
well as on da /OE. For a; the above .(x;, €) is used but
da . Oleft — Tright.i—
_""(&C) 201111.4—1(() Tright.i I(C) (*10)
1913 AL
where Gler i1 (€) is recomputed from Equation (22) with the
asymmetric order-three scheme
Ji - 2u42(C) + 3t (€) — 6 (C) + ui—1(C)

%(fnl-ﬁ.—)— GAE

(47)
and Gyight i1 (C) with

B, =iia(Q) + 6;(C) — 31 () — 2i-2(C)
dif({s'llc) = Af .

(48)

This makes three separate computations of 9 /9€ and solu-
tions of Equation (22) necessary. On the other hand, this
scheme has a well-defined order and meets the boundary con-
ditions correctly. If Equation (22) is solved iteratively with a
numerical root finder, the first solution, e.g. for &, is a very
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close approximation for the other two solutions . and
Tright» and thus allows a substantial reduction in the number
of iteration steps. Using the average . = (Gygit + Glofe) /2
produces the same solution (within the precision of the nu-
merical scheme) as using the above suggested a..

3. FLOW IN A PARALLEL-SIDED PLANE SLAB

Second- and first-order slab equations

The geometry of the ice slabis defined by the upper free sur-
face S = H and the basal surface B = 0 in Cartesian coor-
dinates (r,z), with the = axis aligned parallel to the
direction of the surface slope. The z axis and the direction
of gravity include an angle a. The equations are written in
dimensionless form using the scaling

(t,a) = pgHsina (7,3), i#] (49)
u, w = AgH(pgH sin )’ (i, @), (50)
(z,2, 8) = H(%, 2 5). (51)
A = AyA, (52)

F = (pgH sina)* F (53)

where 7, o, © and w are the shear stress, deviatoric normal
stress, longitudinal and transverse (vertical) velocity com-
ponent, respectively. The symbols with the “tilde” are the
corresponding dimensionless quantities; the rate factor A is
scaled with Ay and Glen’s exponent n = 3.

The above scaling serves the purpose of writing the
cquations in dimensionless form and, thus, does not contain
the scaling factor e. However, in the following equations we
formally re-introduce factors € and € with € = 1 to mark the
first- and second-order terms corresponding to the scaling
in Equations (2)—(6).

The dimensionless, two-dimensional second-order slab
equations for the four unknowns 7. @, % and w are

dw du
e AN - ) 54
9 oF (54)
or da 3 o° 2 ; -
Frimi A i 1—c¢ 532 (/ r(l~) (B5)
i , Ot .
_— = i) R o !- "
BE 97 + 2A0FT, (56)
0= d—lf —eApFa (57)
ar

with the flow law in Equation (11) and the surface-boundary
condition 7. = 0.

In the first-order approximation, Equations (35) and
(56) reduce to

87 8

e o ] 5

9z 85 (58)
P _ sl (59)
0z

whereas Equations (37) and (54) remain as in the second-
order form. Note that in the first-order approximation, the
solution for w from Equation (54) does not feed back to the
solutions of the other three equations; thus, w can be deter-
mined by quadrature of Equation (54) after the other three
variables are computed.

The foregoing scaling reduces the number of free para-
meters for a homogencous slab to two, namely f; and Ajg.
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The rate factor Ag is simply a multiplier for the velocity field
and, as long as Aj is homogeneous over the whole domain,
the stress field is independent of Ag. This permits normdh-
zation of the velocity [1cld tor different choices of T“ and
makes Ay a function of fl,, rt‘duung the number of free para-
meters o the single parameter z‘“ In all examples, we choose
T”, and Ay such that the asymptotic surface velocity

1 -
G0 = Ag (é + f;’,) =1. (60)

The asymptotic stress and velocity profiles are defined as
the solution for the entirely non-sliding slab, 1.e. the solution
in the absence of any sliding perturbations. The limit of
f_’%“ — () constitutes a Newton fluid, whereas the limit
i,a — 0 constitutes the classical Glen flow law with infinite
viscosity for vanishing oﬂoctlvc stress. In all presented nu-
merical examples, we choose t“ = 0.1 and Ay = 5/3. With
this assumption. the only freedom rests in the choice of the
basal stress pattern over a chosen area and/or the velocity
over the remaining areas.

To simulate an infinitely long plane-strain slab, the
model domain of finite length is numerically connected
end to end. With homogeneous basal boundary conditions
in the finite domain, this produces a homogeneous solution
for the infinite slab; with inhomogeneous boundary condi-
tions, this yields a periodic pattern with a wavelength of
the length of the finite domain.

Comparison between first- and second-order solu-
tions

The differences between first- and second-order equations are
terms that contain derivatives of 7 and @ with respect to I.
These terms may become significantly large if sharp longitu-
dinal transitions occur, either abrupt changes in the surface of
bottom topography or sliding—non-sliding transitions. Only
the latter are possible for parallel-sided ice slabs.

We have performed a number of computations with the
first- and second-order models for a long non-sliding slab
with a shorter zone of perfect slip. One representative
example is illustrated in Figures 1-6. The chosen grid size
is A# = 1.0 and the length of the zone with frictionless slid-
ing is defined by seven gridpoints with prescribed vanishing
basal shear traction, 7, = 0, and the no-slip condition is
imposed in the rest of the slab by 4, = (L The transition
occurs over one grideell, i.e. over the distance of one slab
thickness. The non-dimensional basal shear traction scales
to 71, = 1 for non-sliding conditions far away from the influ-
ence of the sliding zone (asymptotic behaviour) and the
corresponding shear velocity is normalized to s = 1.

In all cases, the basal shear traction reaches a peak value
at the non-sliding gridpoint adjacent to the sliding zone and
then drops sharply to the prescribed zero shear traction at
the first sliding gridpoint (Fig. 1). Correspondingly, the long-
itudinal velocity component increases sharply, also chan-
ging [rom a typical shear-flow profile to nearly plough-flow
in the interior of the sliding area (Figs 2 and 3). The trans-
itions are also accompanied by a peak in downward vertical
velocity where the ice enters sliding, and upwards, where ice
leaves the sliding area (Fig. 4). Of course, the surface of the
slab would change corresponding to the non-zero vertical
velocity component and given surface mass {lux. In this
study, we do not investigate surface response to variations
in basal conditions but we look at snapshots of the quasi-sta-
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Fig. 1. Longitudinal profiles of basal shear traction in the
Jirst= and second-order approximations (terms linear and
quadratically i € are accounted for) across the transitions
between non-sliding areas and a limited zone of perfect sliding
Jor a parallel-sided ice slab. The sliding is specified for seven
gridpoinls (2-8) by prescribed vanishing basal shear traction.
The non-sliding parts are defined by vanishing basal velocity.
T he grid size is Ax = Twhich corresponds to the thickness of
the slab.

20_ T = T %

0 ! Gy L 1

0 3 10
numbering of grid points

Fig. 2. Longitudinal profiles of basal and surface longitudinal
velocily component in the first- and second-order approxima-
tions across the transitions belween non-sliding areas and a
limited zone of perfect sliding as in Figure 1. T he subscripls s
and b refer to surface and base, respectively, the solid and
dashed lines represent first-order solutions and the dotted and
dash-dotted lines the second-order solutions.

tionary stress and velocity fields with sharp basal transitions
for a given geometry. Such transitions may be unrealisti-
cally abrupt (Hutter and Olunloyo, 1980, 1981; Barcilon and
MacAyeal, 1993) and, in reality, ice may break at the peak
stress locations. On the other hand, this illustrates the extent
to which the first-order solution captures the essential pat-
terns of stress—strain relations and produces reliable results
relatively close to the second-order solutions.

The second-order solutions show profiles with negative
shear stress in the interior of the sliding area (Fig 5). It is
not exactly clear whether this is physically realistic or
whether it is a numerical artefact, or both. In the solution
for 7, this looks like a small oscillation around zero-stress
values with a wavelength of two grideells (Fig. 6). This fact
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Fig. 3. Vertical profiles of longitudinal velociy inside and ad-

Jacent to an area of perfect sliding as described in Figure 1T he
labels refer to the corresponding gridpoints as tllustraled in
Figure 1. The decrease in velocity with distance to the bed is
assumed to be a numerical artefact in the second-order solu-
lions.

(0] 5 10

numbering of grid points

Fig. 4. Longitudinal profiles of vertical veloctly component at
the surface in the second-order approximation across the trans-
itions between non-sliding areas and a limited zone of perfect
sliding as in Figure 1.
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1" —order
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0.2
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Fig. 5. Vertical profiles of shear stress inside and adjacent to an
area of perfect sliding as described in Frgure . The labels refer
to the carresponding gridpoints as illustrated in Figure 1. The
negalive shear-stress profiles are assumed to be a numerical
artefact in the second-order solutions.
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Ax=1.0

2"—order

6] B 10
numbering of grid points
Fig. 6. Longitudinal profiles of shear stress at various levels of
z in the second-order approximation across the transitions
between non-sliding areas and a limited zone of perfect sliding

as in Figure 1. The negative shear stresses are assumed to be a
numerical artefact in the second-order solutions.

strongly indicates that the oscillation is numerically induced,
although the exact reason is not clear. The problem stems
from the T term (see Equation (20) and thus far no solution
is available.

4. CONCLUSIONS AND PROSPECTS

The governing equations for the two-dimensional stress and
velocity fields in glaciers are presented in Cartesian and ter-
rain-following coordinates. A scaling analysis allows the de-
finition of a hierarchy of approximations based on powers of
the small-aspect ratio of the ice geometry. Deleting terms
that contain ¢ to powers 2 and higher leads to a set of three
coupled non-linear partial differential equations, referred to
as [irst-order approximation in this paper. We present dis-
cretization schemes based on the method of lines and discuss
various integration and iteration schemes.

The single-shooting fixed-point iteration is easy to pro-
gram and, for large ice masses with small aspect ratios, it
converges reasonably fast (Blatter, 1995). At present, this is
the method of choice for three-dimensional finite-difference
modelling of higher-order glacier mechanics and dynamics.
Tn this paper, we introduce two-dimensional (plane-strain)
models with more elaborate numerical methods: Newton
iteration instead of fixed-point iteration and multiple shoot-
ing instead of single shooting,

The Newton iteration scheme is faster than the fixed-
point scheme for the same glacier and the same horizontal
resolution Az, For large ice sheets with smooth surface to-
pography, the Newton iteration allows [or substantially
smaller Az than the fixed-point iteration. For small glaciers
with smooth topography, this improvement is only small
but, for glaciers with steep sections and variable surface
profile, the fixed-point iteration performed better. Fixed-
point iteration only works reasonably well, if basal velocity
is prescribed along the entire bed. On the other hand, New-
ton iteration can adequately handle mixed basal conditions,
where the velocity is prescribed only at parts of the bed and
basal shear traction at the rest of the bed. This allows the
modelling of glaciers with floating parts such as on sub-
glacial lakes or ice shelves.
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The multiple-shooting scheme allows much better spa-
tial resolution than the single-shooting scheme, with Ax as
small as 5% of the average ice thickness for the first-order
approximation. However, this is at the price of long compu-
tation times and large work-memory requirements. An ap-
plication, which corroborates these statements is presented
in Paper I This scheme may still be practical, if single si-
tuations for the stress and velocity fields are to be modelled.
If the mechanical model must be used repeatedly for cou-
pling a surface-evolution model, the single shooting with a
well-implemented Newton iteration is certainly the method
ol choice. In the second-order approximation, the T term
must be iterated parallel to the Newton iteration. This re-
duces the convergence radius and, thus far, the best horizon-
tal resolution that could be achieved with the second-order
code was about 75% of the average ice thickness. More ela-
borate discretization schemes, which promise faster compu-
tation with higher spatial resolution suitable for three-
dimensional ice masses, are presently being investigated.

The physics that is included in the glacier model pre-
sented here poses a novel problem concerning the required
information on the glacier to exploit fully the capabilities of
the model. The bed topography becomes available for a
growing number of glaciers. T'he general lack of information
on sliding patterns poses the most serious limitation, since
the longitudinal coupling of stresses strongly depends on
the spatial variations of the basal velocity; see Paper IL On
the other hand, these requirements point to the desirahle
field measurements that provide the necessary input for
their subsequent interpretation based on model computa-
tion (Harbor and others, 1997; Hubbard and others, 1998).

5. ACKNOWLEDGEMENTS

We thank A. Ohmura and G. Wanner for their support and
stimulating discussions. K. Hutter commented on an earlier
version of this paper and helped to improve the manuscript
substantially.

REFERENCES

Ascher, U. M., R. M. Matheij and R. D). Russell. 1988. Numerical solution of
boundary value problems for ardinary differential equations. Engelwood CIiffs,
NJ. Prentice-Hall. Series in Computational Mathematics.

Bahr, D.B., W.'T. Pfeffer and M. F. Meier. 1994. Theoretical limitations to
englacial velocity calculations. 7 Glaciol., 40(136). 509 518.

Barcilon, V. and D. R. MacAyeal. 1993. Steady flow of a viscous ice stream
across ano-slip/free-slip transition at the bed. 7 Glaciol., 39(131), 167 185.

Blatter, H. 1995. Velocity and stress ficlds in grounded glaciers: a simple
algorithm for including deviatoric stress gradients. 7 Glaciol., 41(138),
338014

Blatter, H., G. K. C. Clarke and]. Colinge. 1998. Stress and velocity fields in
glaciers: Part I1. Sliding and basal stress distribution. J Glaciol., 44 (148),
457 166,

Dahl-Jensen, D. 1989. Steady thermomechanical flow along two-dimen-
sional flow lines in large grounded ice sheets. J Geaplys. Res., 94(B8),
10,355 10,362,

Harbor, J., M. Sharp, L. Copland, B. Hubbard, P. Nienow and D. Mair.
1997. The influence of subglacial drainage conditions on the velocity dis-
tribution within a glacier cross section. Geology, 25(8), 739 742,

Herterich, K. 1987. On the flow within the transition zone between ice sheet
and ice shell. fnVan der Veen, C. J. and J. Oerlemans, eds. Dynamics of the
West Antarctic ice sheet. Dordrecht, etc., D. Reidel Publishing Co., 185202,

Hubbard, A.. H. Blatter, P. Nienow, D. Mair and B, Hubbard. 1998. Com-
parison of the first order approximation for glacier flow with field data:
Haut Glacier d'Arolla, Switzetland. 7. Glaciol., 44(147). 368-378.

Hutter, K. 1981. The effect of longitudinal strain on the shear stress of an ice
sheet: in defence of using stretched coordinates. F Glacial., 27(95), 39-56.

Hutrer, K. 1983. Theoretical glaciology: material science of ice and the mechanics of
glaciers and ice sheets, Dordrecht. ete., D. Reidel Publishing Co.; Tokyo,
“Terra Scientific Publishing Co.

Hutter, K. and V. O. 8. Olunloyo. 1980, On the distribution of stress and ve-
locity in an ice strip, which is partly sliding over and partly adhering 1o
its bed, by using a Newtonian viscous approximation. Prac. R, Soc. Lon-
don, Ser. A. 373(1754), 385403,

Hutter, K. and V. 0. 8. Olunloyo. 1981. Basal stress concentrations due to
abrupt changes in boundary conditions: a cause for high till concentra-
tion at the bottom of a glacier. dun. Glaciol., 2, 29-33.

Lliboutry, L. A. 1987. Very slow flows of slids: basics of modeling in geodynamics
and glaciology. Dordrecht, ete,, Martinus Nijhoff Publishers.

Muller, H. C. 1991, Une méthode iterative simple pour résoudre les équa-
tions de mouvement d'un glacier. (Mémoire de diplome en mathéma-
tique, Université de Genéve. Section de Mathématique.)

Reeh, N.1988. A flow-line model for calculating the surface profile and the
velocity, strain-rate, and stress fields in an ice sheet, 7 Glaciol., 34(116),
46554

Smith, G. D. and L.W. Morland. 1981, Viscous relations for the steady ereep
of polycrystalline ice. Cold Reg. Sei. Technol., 5(2), 141-150.

Van der Veen, C. J. 1989. A numerical scheme for calculating stresses and
strain rates in glaciers. Math. Geol., 21(3), 363 377.

Van der Veen, C. . and 1. M. Whillans. 1989. Force hudget: 1. Theory and
numerical methods. 7 Glaciol., 35(119), 53-60.

Verwer, J. G. and ]. M. Sanz-Serna. 1984. Convergence of method of lines
approximations to partial differential equations. Computing, 33, 297 313.

Whillans, I. M. 1987. Force budget of ice sheets. fnVan der Veen, C. J. and ],
Oerlemans, eds. Dynamies of the West Antaretic ice sheet. Dordrecht, etc.. D.
Reidel Publishing Co., 17-36.

MS recetved 18 September 1997 and accepted in revised form 16 March 1998

RF
456 ‘ _—
https://doi.or-lém 0.3189/50022143000001969 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000001969

	Vol 44 Issue 148 page 448-456 - Stress and velocity fields in glaciers: Part I. Finite-difference schemes for higher-order glacier models - Jacques Colinge and Heinz Blatter

