
Bull. Aust. Math. Soc. 79 (2009), 285–297
doi:10.1017/S0004972708001263

THE DIRICHLET PROBLEM FOR BAIRE-TWO FUNCTIONS
ON SIMPLICES
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Abstract

We show that solvability of the abstract Dirichlet problem for Baire-two functions on a simplex X cannot
be characterized by topological properties of the set of extreme points of X .
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1. Introduction

Let X be a compact convex subset of a locally convex space, let A(X) stand for the
space of all continuous affine functions on X and let ext X denote the set of all extreme
points of X . If f is a bounded function on ext X , we may ask under what conditions
f admits an affine extension that preserves as many properties of f as possible. This
question is called the abstract Dirichlet problem (see [5, Theorem 3.17]).

The question of solvability of the abstract Dirichlet problem naturally leads to a
geometric notion of a simplex (see [5, Section 3]). If X is a simplex, every bounded
continuous function defined on ext X can be extended to an affine continuous function
on X if and only if ext X is closed (see [5, p. 615] or [1, Satz 2]).

An analogous problem for Baire-one functions on simplices was solved in
[16, Theorem 1], namely, every bounded Baire-one function defined on ext X is
extendible to an affine Baire-one function on X if and only if ext X is a Lindelöf
H -set.

Both these conditions characterize solvability of the abstract Dirichlet problem for
certain classes of functions purely by a topological condition imposed on ext X . In
particular, if X1, X2 are simplices whose sets of extreme points are homeomorphic, the
abstract Dirichlet problem for continuous (or Baire-one) functions is always solvable
on X1 if and only if it is always solvable on X2.
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286 J. Spurný [2]

These results prompt a natural question whether it is possible to provide such a
characterization for functions of higher Baire classes. Since affine functions of Baire
class two need not satisfy the barycentric formula, it is more reasonable to look for
Baire-two strongly affine extensions. (We recall that a universally measurable function
f ∈ U(X) on a compact convex set X satisfies the barycentric formula (or is strongly
affine) if µ( f )= f (r(µ)), µ ∈M1(X), where r(µ) is the barycenter of a probability
measure µ on X . It is easy to see that any strongly affine function is bounded; see, for
example, [8, Satz 2.1].)

The aim of our paper is to show that simplices, whose sets of extreme points are
homeomorphic, may behave quite differently from the point of view of the abstract
Dirichlet problem for Baire-two functions. Indeed, we obtain a stronger result in the
following theorem.

THEOREM 1.1. There exist metrizable simplices X1, X2 and a homeomorphism ϕ :

ext X1→ ext X2 such that:

(a) ϕ(ext X1)= ext X2;
(b) there exists a bounded Baire-two function on ext X1 that cannot be extended to

a Baire-two affine function on X1;
(c) if α ∈ [2, ω1), any bounded Baire-α function on ext X2 can be extended to a

function of affine class α on X2.

If F is a set of real-valued functions, we inductively define the following sets of
functions: we set F0 =F and, with Fβ , β < α, already defined for an ordinal number
α ∈ (0, ω1), we define Fα to be the space of all pointwise limits of bounded sequences
of functions from

⋃
β<α Fβ . If X is a topological space, we write Bb

α(X)= (C(X))α
for the space of all bounded Baire functions of class α, α ∈ [0, ω1). If F =A(X), the
space Aα(X)= (A(X))α is called the functions of affine class α.

The proof of Theorem 1.1 is a modification of the construction used in [14], where
a simplex with peculiar properties was presented. The main tool was to find a suitable
function space and transfer its properties to a compact convex set. (By a function
space H on a compact space K we mean a linear subspace of the space C(K ) of all
continuous functions on K such that H contains constants and separates points of K .)
The idea of the construction used in [14] was to start with a simple function space and
inductively increase its complexity. At the end the projective limit of the constructed
function spaces was taken.

It turns out that a variant of this construction can be used to produce examples
required by Theorem 1.1. The inductive construction goes as follows: we start
with a simple function space H0 on the unit interval [0, 1] and a set A ⊂ [0, 1] and
increase the complexity of H0 in two different ways. Roughly speaking, the first
modification ensures that points of A are split up infinitely many times, whereas
the second modification splits the points up only once. But both procedures provide
function spaces with the same Choquet boundaries. At the end we take the projective
limits of constructed spaces to get a pair of function spaces on a compact space that
give rise to the required examples.
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Since a rather detailed survey of function spaces and their properties is presented
in [14], for the sake of brevity we shall follow the notation and definitions in [14].

We recall that U b(K ) stands for the space of all bounded universally measurable
functions on a compact space K (that is, functions that are µ-measurable with respect
to the completion µ of any Radon measure µ ∈M+(K )). If F ⊂ U b(K ), we
write F⊥ for the space of all measures µ ∈M(K ) with µ( f )= 0 for each f ∈F ,
and F⊥⊥ for the space of all bounded universally measurable functions f satisfying
µ( f )= 0 for each µ ∈F⊥.

2. Auxiliary results

The following notion will be useful in the main construction.

DEFINITION 2.1. We say that a function space H on a compact space K is Baire-one
complemented if there exists a mapping x 7→ µx , x ∈ K , such that:
(i) µx ∈M(K ) and sup{‖µx‖ : x ∈ K }<∞;
(ii) µx (h)= h(x) for each x ∈ K and h ∈H;
(iii) if f ∈ Bb

1(K ) and h(x)= µx ( f ), x ∈ K , then h ∈ Bb
1(K ) ∩H⊥⊥.

REMARK 2.2. If x 7→ µx , x ∈ K , is the mapping from Definition 2.1, the mapping
P : B1(K )→ Bb

1(K ) ∩H⊥⊥ defined as P f (x)= µx ( f ), x ∈ K , f ∈ Bb
1(K ), is a

projection of Bb
1(K ) onto Bb

1(K ) ∩H⊥⊥. Since it follows from [9, Theorem 5.1]
that Bb

1(K ) ∩H⊥⊥ =H1, the projection P maps Bb
1(K ) onto H1.

As in [14, Lemma 3.3], we start with the following classical family of sets (see
[11, pp. 82–86] or [6, Lemma 2.3]).

2.1. Family of sets Let {Fs : s ∈N<N
} be a family of subsets of [0, 1] such that:

(a) F∅ = [0, 1];
(b) {Fs∧n : n ∈N} is a disjoint family of nonempty nowhere dense perfect subsets of

Fs ;
(c)

⋃
{Fs∧n : n ∈N} is dense in Fs ;

(d) diam Fs < 2−(s1+···+s|s|), s ∈N<N.

We remark that the set
⋂
∞

n=1
⋃
|s|=n Fs ∈50

3([0, 1]) \60
3([0, 1]) (we refer the reader

to [7, Ch. II, Section 11.a] for the notation concerning Borel classes of sets).

LEMMA 2.3. Let H be a Baire-one complemented function space on a compact
space K . Then Bb

2(K ) ∩H⊥⊥ =H2.

PROOF. Assume that P : Bb
1(K )→H1 is the projection given by a mapping x 7→ µx ,

x ∈ K , that satisfies the properties from Definition 2.1.
Given f ∈ Bb

2(K ) ∩H⊥⊥, let { fn} be a bounded sequence of functions from Bb
1(K )

pointwise converging to f . Then P fn ∈H1, n ∈N, and P fn→ P f by the Lebesgue
dominated convergence theorem. Thus f = P f ∈H2. 2
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Before proceeding, we recall that a probability measure µ on a compact space K
is termed discrete if µ=

∑
∞

n=1 anεxn , where the sum is either finite or infinite,
numbers an are positive,

∑
∞

n=1 an = 1 and points xn lie in K . We mention the
following well-known easy observation.

LEMMA 2.4. Let f be an affine bounded function on a compact convex set X and
µ ∈M1(X) be discrete. Then µ( f )= f (r(µ)).

3. Construction of function spaces

The construction of suitable simplicial function spaces will be done by a
modification of the method used in [14]. Assume that H is a simplicial function
space on a metrizable compact space K such that Ac(H)=H. Let T be the
kernel associated with the mapping x 7→ δx , x ∈ K . (We recall that δx is the unique
H-maximal measure H-representing a point x ∈ K . We refer the reader to [2, p. 38]
for the definition of a kernel.) Assume that T f ∈ B2(K ) for each bounded Baire-two
function f on K .

Let {Fk : k ∈N} be a pairwise disjoint family of compact subsets of ChH K and let
η ∈ (0, 1).

Let H be Baire-one complemented by a projection P with ‖P‖ ≤ 3 such that
P f = f on

⋃
∞

k=1 Fk .
We define sets L1, L2, L ⊂ K ×R as

L1 =

∞⋃
k=1

(Fk × {1/k}) ∪ (Fk × {−1/k}),

L2 =

∞⋃
k=1

(Fk × {2/k}) ∪ (Fk × {−2/k}),

L = (K × {0}) ∪ L1 ∪ L2.

Let p : L→ K denote the natural projection. Then L is a metrizable compact space
with the topology inherited from K ×R and K can be considered as a subspace of L
via the mapping x 7→ (x, 0), x ∈ K . Let

H1
= { f ∈ C(L) : f |K ∈H and

f (x, 0)= c f (x, 1/k)+ (1− c) f (x,−1/k), x ∈ Fk, k ∈N}, (3.1)

H2
= { f ∈ C(L) : f |K ∈H and

2 f (x, 0)= f (x, 2/k)+ f (x,−2/k), x ∈ Fk, k ∈N}. (3.2)

Let S denote the kernel on L associated with the mapping

x 7→

εx if x ∈ L \
∞⋃

k=1

Fk,

1
2 (ε(u,2/k) + ε(u,−2/k)) if x = (u, 0), u ∈ Fk, k ∈N.
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[5] The Dirichlet problem for Baire-two functions on simplices 289

LEMMA 3.1. The following assertions hold:

(a) both H1 and H2 are simplicial function spaces (for i = 1, 2, let δi
x denote the

unique Hi -maximal measure for x ∈ L and let T i be the kernel associated with
the mapping x 7→ δi

x , x ∈ L);
(b) Hi

=Ac(Hi ), i = 1, 2;
(c) ChH1 L = ChH2 L = (L \ K ) ∪ (ChH K \

⋃
∞

k=1 Fk);
(d) the mapping h 7→ h ◦ p, h ∈H, provides an isometric embedding of H into

H1
∩H2;

(e) Sδx = δ
2
x , x ∈ K ;

(f) T 2 f ∈ Bb
2(L) for each f ∈ Bb

2(L);
(g) if f ∈ U b(L) satisfies equations (3.2) and f |K ∈A(H), then f ∈A(H2);
(h) H2 is Baire-one complemented by a projection Q with ‖Q‖ ≤ 3 such that, for

each f ∈ Bb
1(L),

(h1) (Q f )|K = P( f |K ), and
(h2) (Q f )|L1 = f |L1 .

PROOF. Since the proof is a slight modification of [14, Lemma 5.1], we point out only
the changes that have to be made.

First we observe that (a), (b), (c) and (d) can be proved in exactly the same way as
in [14, Lemma 5.1].

If x ∈ K , then Sδx is carried by ChH2 L and Sδx ∈Mx (H2). Thus

Sδx = δ
2
x .

This proves (e).
Next we verify (f). Assuming that T f ∈ Bb

2(K ) for each f ∈ Bb
2(K ), let f be a

bounded Baire-two function on L . We need to show that T 2 f ∈ Bb
2(L). We notice

that S f ∈ Bb
2(L).

By (e), for each x ∈ K we get

(T 2 f )(x) = δ2
x ( f )= (Sδx )( f )

= δx (S f )= T ((S f )|K )(x).

Since T f ∈ Bb
2(K ) for each f ∈ Bb

2(K ) by our assumption, T 2 f is a Baire-two
function on K . Since T 2 f = f on the open set L \ K , T 2 f ∈ Bb

2(L).
To verify (g), let f ∈ U b(L) satisfy the hypothesis. Given x ∈ K , (e) implies that

δ2
x ( f )= (Sδx )( f )= δx (S f )= δx ( f )= f (x).

Obviously, δ2
x ( f )= f (x) for every x ∈ L \ K . Using [14, Lemma 2.7], we conclude

that f ∈A(H2).
For the proof of (h), let x 7→ µx , x ∈ K , be the mapping that generates the

projection P guaranteed by the assumption. By our hypothesis, µx = εx for every
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x ∈
⋃
∞

k=1 Fk . We extend this mapping on the whole space L by setting

µ2
x =


µx if x ∈ K ,

εx if x ∈ L1 ∪ (L2 ∩ (K × (−∞, 0))),

2ε(u,0) − ε(u,−2/k) if x = (u, 2/k), u ∈ Fk, k ∈N.
(3.3)

Then
Q f (x)= µ2

x ( f ), x ∈ L , f ∈ Bb
1(L),

is the required projection. Indeed, it is easy to verify that Q f ∈ Bb
1(L) for f ∈ Bb

1(L)
and ‖Q‖ ≤ 3. Also conditions (h1) and (h2) are satisfied. To show that Q f ∈A(H2),
we realize that Q f satisfies the assumptions of (g). Indeed, Q f |K∈A(H) by
(h1) and (3.3) yields validity of equations (3.2) for Q f . As H2 is simplicial and
H2
=Ac(H2), [14, Theorem 2.6(b2)] yields Q f ∈ (H2)⊥⊥. This concludes the

proof. 2

3.1. Inductive construction Let {Fs : s ∈N<N
} be the family of perfect sets in [0, 1]

provided by Lemma 2.1 and let A =
⋂
∞

n=1
⋃
|s|=n Fs . Let {ηn} be a sequence of

numbers in (0, 1) such that
∞∑

i=1

(1− ηi ) <∞. (3.4)

For every n ≥ 0, we construct by induction:
(i) simplicial function spaces H1

n , H2
n on a metrizable compact space Kn ⊂

Rn+1 such that ChH1
n

Kn = ChH2
n

Kn and H2
n is Baire-one complemented by

a projection Pn of norm at most 3;
(ii) closed subsets L1

n , L2
n of Kn;

(iii) a countable family Fn = {Fn(k) : k ∈N} of pairwise disjoint compact sets in
ChH1

n
Kn; and

(iv) a continuous surjection pn+1 : Kn+1→ Kn as follows.
In the first step, let K0 = L1

0 = L2
0 = [0, 1], H1

0 =H2
0 = C([0, 1]), P0 be the identity

mapping and F0 = {Fs : |s| = 1}. Assume that the objects have been defined for each
k = 0, . . . , n. To construct H2

n+1, we use Lemma 3.1 for Kn , Fn , ηn and H1
n to get

Kn+1, L1
n+1, L2

n+1, pn+1 : Kn+1→ Kn and new simplicial function spaces Ĥ1, Ĥ2 on

Kn+1. We set H1
n+1 = Ĥ1. Since ChH1

n
Kn = ChH2

n
Kn , we can use Lemma 3.1 again

for the same objects; we only replace H1
n by H2

n and get another pair of simplicial
function spaces H̃1, H̃2 on Kn+1. In this case we set H2

n+1 = H̃2.
If the family Fn was enumerated as Fn = {F(k) : k ∈N}, for each k ∈N and a

sequence s ∈Nn+2 of length n + 2, we consider the following couple of sets:

F(s, k,+) = {x = (x(0), . . . , x(n + 1)) ∈ Kn+1 :

pn+1(x)= (x(0), . . . , x(n)) ∈ F(k), x(0) ∈ Fs, x(n + 1)= 1/k},

F(s, k,−) = {x = (x(0), . . . , x(n + 1)) ∈ Kn+1 :

pn+1(x)= (x(0), . . . , x(n)) ∈ F(k), x(0) ∈ Fs, x(n + 1)=−1/k}.
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[7] The Dirichlet problem for Baire-two functions on simplices 291

We set
Fn+1 = {F(s, k,+), F(s, k,−) : s ∈Nn+2, k ∈N}.

Let
Pn+1 : Bb

1(Kn+1)→ Bb
1(Kn+1) ∩ (H2

n+1)
⊥⊥

be the projection from Lemma 3.1(h). This finishes the inductive step.

3.2. Definition of function spaces We define the function spaces similarly as in
[14, Section 5.2]. We have obtained sequences {Hi

n}, i = 1, 2, of simplicial spaces
on compact metrizable spaces {Kn} together with surjective mappings pn – in short,

K0
p1
← K1

p2
← K2← · · · . (3.5)

Let K = lim
←

Kn be the limit of the inverse system (3.5) (see [4, Chapter 2.5]) of the

sequence {Kn}, that is,

K =

{
x = {xn} ∈

∞∏
n=0

Kn : pn+1(xn+1)= xn, n ≥ 0
}

with the product topology. Then K is a metrizable compact space and we can consider
each compact space Kn homeomorphically embedded in K via the mapping

en : Kn→ K :

x 7→ ((p1 ◦ · · · ◦ pn)(x), . . . , (pn−1 ◦ pn)(x), pn(x),
nth
x , x, . . .).

Conversely, we can define retractions of K onto Kn as

rn : K → Kn : {xn} 7→ (x0, . . . , xn−1, xn, xn, xn . . .).

Using these mappings, we can regard each function space Hi
n , i = 1, 2, as a subspace

of C(K ); specifically, we use the mapping

h 7→ h ◦ rn, h ∈Hi
n, i = 1, 2.

In what follows we shall use these identifications implicitly.
We fix n ≥ 0. For x = (x0, x1, x2, . . .) ∈ K , we write xn ∈ Kn ⊂Rn+1 in

coordinates as
xn = (xn(0), xn(1), . . . , xn(n)).

We define a ‘coordinate’ function cn : K →R as

cn(x)= xn(n), x ∈ K . (3.6)

We define function spaces Hi , i = 1, 2, on K as

Hi
=

∞⋃
n=1

Hi
n, i = 1, 2.

As in [14, Lemma 6.1], we get the following properties.
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LEMMA 3.2. Let H1, H2 be the spaces defined above. Then:

(a) Hi , i = 1, 2 are well-defined simplicial function spaces on K ;
(b) Hi

=Ac(Hi ), i = 1, 2;
(c) ChH1 K = ChH2 K = K \

⋃
∞

n=0
⋃

Fn .

3.3. Maximal measures Given n ≥ 0, x ∈ Kn and i = 0, 1, let δi
x,n denote the

unique Hi
n-maximal measure representing x . For x ∈ K and i = 1, 2, let δi

x denote
the Hi -maximal measure representing x .

3.4. Cantor set As in [14, Section 6.1, Lemmas 6.2 and 6.3], for every point a ∈ A
we get a homeomorphic copy

Ca =

{
x = (x0, x1, x2, . . .) ∈ K \

∞⋃
n=0

Kn : x0 = a

}
of the Cantor set {0, 1}N. The homeomorphism ϕa : {0, 1}N→ Ca is provided by the
mapping

ϕa : {0, 1}N→ Ca : (τ1, τ2, . . . , ) 7→ x = (a, x1, x2, . . .),

defined as

cn(x)= xn(n)

{
> 0 if τn = 1,

< 0 if τn = 0,
n ∈N.

For any n ∈N, a ∈
⋃
{Fs : |s| = n} and t ∈ {0, 1}n we define a point

xa,t = (xa,t (0), xa,t (1), . . . , xa,t (n)) ∈ Kn ⊂Rn+1

by setting

xa,t (0)= a and xa,t (i)

{
> 0 if ti = 1,

< 0 if ti = 0,
i = 1, . . . , n.

Let S be a countable subset of {0, 1}N defined as

S = {τ ∈ {0, 1}N : τn = 0 for at most finitely many natural numbers n}.

Let µn , n ∈N, be measures on {0, 1} defined as

µn({0})= 1− ηn and µn({1})= ηn, n ∈N.

Let µ ∈M1({0, 1}N) denote the product measure
∏
∞

n=1 µn .
For each t ∈ {0, 1}n , let

at =

n∏
i=1

bi where bi =

{
ηi if ti = 1,

1− ηi if ti = 0.

If t ∈ {0, 1}n , let
Ut = {τ ∈ {0, 1}N : τ ||t | = t}

denotes the standard clopen set in {0, 1}N determined by t . Then µ(Ut )= at .
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LEMMA 3.3. Let a be a point in A. Then:

(a) ϕaµ= δ
1
a (here ϕaµ denotes the image of the measure µ);

(b) δ1
a(ϕa(S))= 1.

PROOF. For the proof of (a), we notice that the measure ϕaµ is carried by ChH1 K
(see Lemma 3.2(c)). We claim that ϕaµ ∈Ma(H1). Indeed, let h be a function in H1

m
for some m ≥ 0. If t ∈ {0, 1}m , then h = h(xa,t ) on ϕa(Ut ), and thus

(ϕaµ)(h) = µ(h ◦ ϕa)

=

∑
t∈{0,1}m

∫
Ut

h ◦ ϕa dµ

=

∑
t∈{0,1}m

∫
Ut

h(xa,t ) d

( m∏
i=1

µi

)
=

∑
t∈{0,1}m

µ(Ut )h(xa,t )

=

∑
t∈{0,1}m

at h(xa,t )

= h(a),

where the last equality follows from the construction (see Equations (3.1)). Thus
ϕaµ ∈Ma(H1). Since ϕaµ is carried by ChH1 K and H1 is simplicial, ϕaµ= δ

1
a .

To verify (b), we notice that (a) yields

δ1
a(ϕa(S))= (ϕaµ)(ϕa(S))= µ(S).

Hence, it is enough to show that µ({0, 1}N \ S)= 0. But this follows from (3.4), since

µ({0, 1}N \ S) = µ

( ∞⋂
n=1

∞⋃
k=n

{τ ∈ {0, 1}N : τn = 0}
)

= lim
n→∞

µ

( ∞⋃
k=n

{τ ∈ {0, 1}N : τn = 0}
)

≤ lim
n→∞

∞∑
k=n

µ
(
{τ ∈ {0, 1}N : τn = 0}

)
= lim

n→∞

∞∑
k=n

(1− ηk)

= 0.

This finishes the proof. 2
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LEMMA 3.4. Let x be a point of Kn . Then:

(a) δ2
x,n+1 = δ

2
x ;

(b) if f ∈ U b(K ) satisfies f |Kn ∈A(H2
n), n ≥ 0, then f ∈A(H2).

PROOF. It is easy to see that δ2
x,n+1 is an H2-representing measure for x . Further, by

virtue of Lemmas 3.1(c) and 3.2(c), δ2
x,n+1 is supported by

L2
n+1 ∪

(
ChH2

n
Kn \

⋃
Fn

)
⊂ ChH2 K .

Hence, δ2
x,n+1 is H2-maximal and δ2

x,n+1 = δ
2
x . This proves (a).

For the proof of (b), let f ∈ U b(K ) be as in the premise. By (a),

δ2
x ( f )= f (x) for each x ∈

∞⋃
n=1

Kn. (3.7)

As K \
⋃
∞

n=1 Kn ⊂ ChH2 K , (3.7) holds for every x ∈ K \
⋃
∞

n=1 Kn as well. By
[14, Lemma 2.7], f ∈A(H2). 2

LEMMA 3.5. For any f ∈ Bb
2(K ), the function

x 7→ δ2
x ( f ), x ∈ K ,

is a Baire-two function on K .

PROOF. Let f be a bounded Baire-two function on K . By Lemma 3.4(a),

δ2
x ( f )= δ2

x,n+1( f ), x ∈ Kn.

Thus the function x 7→ δ2
x ( f ), x ∈ K , is Baire-two on each Kn by virtue of

Lemma 3.1(f).
By Lemma 3.2(c), f (x)= δ2

x ( f ) for x ∈ K \
⋃
∞

n=1 Kn . It follows from
[14, Lemma 3.4] that f is a Baire-two function on K . 2

LEMMA 3.6. The space H2 is Baire-one complemented by a projection of norm at
most 3.

PROOF. According to the inductive construction, for each n ∈N,

(Pn f )|Kn−1 = Pn−1( f |Kn−1) and (Pn f )|L1
n
= f |L1

n
, f ∈ Bb

1(Kn). (3.8)

Further, L̂ =
⋃
∞

n=1 L2
n is an open subset of K .

By (3.8), the mapping

P f (x)=


Pn( f |Kn )(x) if x ∈ Kn, n ≥ 0,

f (x) if x ∈ K \
∞⋃

n=0

Kn,
f ∈ Bb

1(K ),
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is well defined and P f ∈ Bb
1(K ) for each f ∈ Bb

1(K ). Indeed, it follows from
Lemma 3.1(h) that P f |L2

n
∈ Bb

1(L
2
n), n ∈N. Thus P f is a Baire-one function on L̂ .

As P f = f on K \ L̂ , P f ∈ Bb
1(K ).

Given a function f ∈ Bb
1(K ), then P f |Kn is H2

n-affine for each n ≥ 0. By
Lemma 3.4(b), P f ∈A(H2).

Finally, as ‖Pn‖ ≤ 3, we get ‖P‖ ≤ 3 by definition. This concludes the proof. 2

4. Proof of Theorem 1.1

We are now in a position to prove the main result. Let H1, H2 be the simplicial
function spaces on the metrizable space K constructed in Section 3. For i = 1, 2, let X i
be the state space of Hi and φi : K → X i be the standard homeomorphic embeddings
from [14, Section 2.5]. Then X1, X2 are metrizable simplices and φ2 ◦ φ

−1
1 restricted

to ext X1 is the homeomorphism required by Theorem 1.1(a).
If i = 1, 2 and s ∈ X i , let δ̂i

s stand for the unique A(X i )-maximal measure A(X i )-
representing s.

For the proof of Theorem 1.1(b), let f = χK\
⋃
∞

n=0 Kn
and

f̂ (s)= f (φ−1
1 (s)), s ∈ ext X1.

Then f̂ ∈ Bb
2(ext X1) and there is no affine Baire-two function on X1 extending f̂ .

Indeed, assume that ĥ is such a function. By [12, Théorème 3] or [3, Proposition 9],
ĥ is bounded. We pick a point a ∈ A. By [10, Proposition 3.2],

φ1δ
1
a = δ̂

1
φ1(a).

Thus δ̂1
φ1(a)

is a discrete measure (see Lemma 3.3). According to Lemma 2.4 and
[15, Lemma 4.2],

ĥ(φ1(a)) = δ̂
1
φ1(a)(̂h)= (φ1δ

1
a)(̂h)

= δ1
a (̂h ◦ φ1)= δ

1
a( f̂ ◦ φ1)

= δ1
a( f ).

As δ1
a is carried by K \

⋃
∞

n=0 Kn (see Lemma 3.3),

δ1
a( f )= 1.

On the other hand, if a ∈ K0 \ A, then

ĥ(φ1(a))= f̂ (φ1(a))= f (a)= 0.

Thus

ĥ =

{
0 on φ1(K0 \ A) or

1 on φ1(A).
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By choice of A, ĥ is not a Baire-two function.
For the proof of (c), let T 2 be the kernel on X2 associated with the mapping s 7→ δ̂2

s ,
s ∈ X2. We remark that

T 2g ∈Abf(X2), g ∈ Bb(ext X2). (4.1)

(Since any function from Bb(ext X2) is the restriction of some function from Bb(X2),
claim (4.1) follows from [9, Corollary 6.2].)

Let f̂ be a bounded Baire-two function on ext X2. By extending f̂ by 0 on
X2 \ ext X2, we may assume that f̂ is defined on the whole of X2. We claim that

T 2 f̂ ∈A2(X2). (4.2)

To this end, we notice that

h(x)= δ2
x ( f̂ ◦ φ2), x ∈ K ,

is a Baire-two function on K (see Lemma 3.5). Using [9, Corollary 6.2],
[14, Theorem 2.6(c)] and Lemma 3.2(b), we get that h ∈ (H2)⊥⊥. As H2 is Baire-
one complemented, it follows from Lemmas 3.6 and 2.3 and Remark 2.2 that h is a
pointwise limit of a bounded sequence {hn} of functions from Bb

1(K ) ∩ (H2)⊥⊥ =

(H2)1.
Let I : U b(K ) ∩ (H2)⊥⊥→Abf(X2) be the isometry from [14, Section 2.6].

By [14, Theorem 2.5(e)], I hn→ I h and I h ∈A2(X2).
Since

T 2 f̂ = I h on ext X2,

T 2 f̂ = I h on X2 (we use the minimum principle [13, Proposition 3.6]). Hence
T 2 f̂ ∈A2(X2).

If α ∈ (2, ω1), we observe that T 2 f̂n→ T 2 f̂ whenever { f̂n} is a bounded sequence
of Borel functions on ext X2 pointwise converging to f and use (4.2) as the starting
point for a straightforward transfinite induction. Hence, given f̂ ∈ Bb

α(ext X2), the
function T 2 f̂ is the required extension of affine class α.

This concludes the proof.
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functions’, Israel J. Math. 134 (2003), 255–289.
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