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GOING-DOWN UNDERRINGS

DAVID E, DOBBS

Let R be an integral domain with quotient field K . Ten

conditions equivalent to "Either R is algebraic over Z or

t.d. (R/ F ) <, 1 for some p" are given. One of these conditions,

referred to in the title, is "Each extension of subrings of R

having quotient field K satisfies the going-down property." As

consequences, other classes of rings are also characterised.

1. Introduction

Let R be a (commutative integral) domain with quotient field K .

Numerous studies of R have proceeded in terms of its overrings (that

is, the rings contained between R and K). More recently (see [5], [7]>

LSI), R has also been studied via its subrings and, more specifically,

via its underrings (that is, the subrings of R having quotient field

K ). This article considers domains R each of whose subrings is "small."

Beginning with [77], a number of papers have considered this question in

the case where "small" means "Noetherian." Here, we shall interpret

"small" as meaning variously "of (Krull) dimension at most 1," "a going-

down domain" (in the sense of [3]), or "treed." Of course, these three

interpretations of "small" need not be equivalent for a given ring. How-

ever, our main result. Theorem 2.1, shows that when any of these conditions
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(or a few other "smallish" ones) is imposed on all the subrings (or, for

that matter, just on all the underrings) of i? , it becomes equivalent to

the correspondingly quantified version of any other "small" condition.

Perhaps, the most interesting part of Theorem 2.1 is this: each extension

of underrings of R satisfies GD (the going-down property) if and only

if either R is algebraic over 7L or t. d. (R/JF ) < 1 for some p .

In Theorem 2.1, the quantified smallness conditions for underrings

turn out to be equivalent to the corresponding assertions for subrings.

While similar phenomena for "not necessarily small" conditions are wide-

spread (see [5], [£])• [7] noted, interalia, that a domain integral over

each underring need not be integral over each subring. In fact, [7]

characterized the domains in question, and it is gratifying that, in

Corollary 2.3, our present work leads to new characterizations of them.

Section 2 also contains subring/underring characterizations of some other

classes of domains.

Throughout, usage is standard, as in [7], [75]; in particular, the

going-down, incomparability, and lying-over properties of extensions are

denoted by GD, INC and LO , respectively. The integral closure of a

domain A is denoted by A' , and dim(A) means the Krull dimension of

A . For ease of reference, we assume that the reader has access to the

going-down survey [9],

2. Results

By definition, a domain R is a going-down domain in the case that

R c_ 21 satisfies GD for each domain T containing R . It is known

(see [91 (4.1)]) that the test rings T can be taken to be overrings of

R . The main examples of going-down domains are arbitrary domains of

dimension at most 1 , arbitrary Priifer domains, and certain D + M

constructions. Examples in [3, Theorem 4.2 (ii)] show, in contrast to the

case of a Priifer domain, that not all the overrings of an arbitrary going-

down domain need be going-down domains. Determining when all the under-

rings (or all the subrings) of a going-down domain are going-down domains

is one of the motivations for Theorem 2.1. Since the survey [9] was

written, most work on going-down domains has emphasized special cases,

such as [13] and its various globalizations [6].
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For our purposes, a key fact about domains A is

dim(A) < 1 =s> A is a going-down domain => A is treed.

(The last implication was shown in [3, Theorem 2.2]. As usual, A is

said to be treed in case Spec(A) , as a poset under inclusion, is a tree.)

In certain contexts, these implications are reversible. In fact, all three

conditions are equivalent if A is Noetherian; or if A is a ffCC-domain

(see C'S, Theorem 3.7] and [2, Corollary 4.3]). However, in general, the

implications are not reversible. For instance, if X is a Prufer domain

of dimension at least 2 , then A ( and each of its overrings) is a (are)

going-down domain(s). Moreover, a construction of Lewis (see [9, (4.4)])

shows that a treed domain need not be a going-down domain. This contrasts

with underring/subring behaviour, for Theorem 2.1 will show that each sub-

ring of A has dimension at most 1 if ( and only if) each underring of

A is treed.

THEOREM 2.1. For a domain R , the following conditions are

equivalent:

(1) dim (A) < 1 for each underring A of R;

(2) dim (A) z 1 for each subring A of R;

(3) each underring of R is a going-down domain;

(4) each subring of R is a going-down domain;

(5) each underring of R is treed;

(6) each subring of R is treed;

(7) A *2_B satisfies GD for each inclusion A £ B of underrings

of R;

(8) A c B satisfies GD for each inclusion A c_B of subrings

of R;

(9) A' is a Prufer domain for each underring A of R;

(10) A' is a Prufer domain for each subring A of R;

(11) either R is algebraic over 7L or t.d.(R/F ) £ 1 for

some p .

Proof. (11) => (2) : Deny. Then (JJ.) holds and we can select a sub-

ring A of R such that dim(A) > 1 . Thus, there exist distinct nonzero

prime ideals P £ Q of R . Choose 0 ^ a e P and b e Q\P . with D

denoting the prime ring of A , put B = Dia3bl . As P n B £ § n S are

distinct nonzero primes of B , we have dimCSJ > 1 . There are now two

cases.
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If char(W = 0 , D is essentially % } and so B is a subring of

the algebraic number field 0(a,b) . Then by the Krull-Akizuki theorem

(as in [7, Proposition 5, page 500]), dim(B) < 1 , the desired contra-

diction.

In the remaining case, D is essentially JF for some p . This

case also follows via Krull-Akizuki, but we shall give an alternate proof.

As B is a finite-type W -algebra, a well known corollary of Noether

Normalization gives dxm(B) = t.d.(B/F ). Hence, dim(B) <. t.d. (R/F ) <.l,

the desired contradiction.

(2) => (4): Any domain of dimension at most 1 is a going-down

domain.

(4) => (3) : Trivial.

(3) => (5): Any going-down domain is treed [3, Theorem 2.2].

(5) =5> (11): Let D denote the prime ring of R . Suppose the

assertion fails. Now, R contains a transcendence basis {X.} for the
If

f i e l d extension induced by D c R • moreover, |{-^.} | S i i f charfifj = 0

and \{X.}\ > 2 i f charfflJ > 0 . Observe tha t B = £>[{X.}] i s not
If If

treed. (The point is that if A is a domain but not a field and X is

transcendental over A , then AlXl is not treed.) Let E denote the

integral closure of B in R . As R is algebraic over S , the "clear-

ing denominators" trick shows that R is an overring of E . By (5), E

is therefore treed.

Since B is integrally closed (essentially by Gauss' lemma), the

going-down theorem of Krull C/6] yields that B c_E satisfies GD . More-

over, integrality assures that B c_ E satisfies L0 (see [J5, Theorem 44]).

It now follows easily from GD, L0 and the treedness of E that B is

treed, the desired contradiction.

We have now shown the equivalence of (2), (3), (4), (5), and (11).

Next, we bring (1), (7), and (8) into the fold.

(2) =o (1) : Trivial.

(1) => (3): See the above explanation for (2) => (4).

(4) => (8): If A c 3 are domains and A is a going-down domain,

then A c B satisfies GD .
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(8) => (7) : Trivial .

(7) => (11): (2*7z£s is the key implication in the theorem.)

Suppose the assertion fails. Let D and {X.} be as in the proof that

(5) => (11).

Suppose charlW = 0 . Pick X e {X.} and put B = Dl{X.:X. ^ X}].

t' % i*

Again by Gauss, 5 is integrally closed. Moreover, viewing B as the

direct limit of polynomial rings in finitely many variables, we infer from

LI, Exercise 12(e), page 44] that B is a coherent domain. (To apply the

cited exercise, invoke the Hilbert Basis Theorem and the fact that free

modules are flat.) As 2X is transcendental over B , we see similarly

that BL2X~\ is integrally closed and coherent. Consequently, by a result

of Papick (see [9, (3.14)]), in order to show that the overring extension.

B[2X1 = BIX] does not satisfy GD , it is enough to prove that B[J] is

not B[2X]-flat.

For simplicity, put S = BL2X2 and T = B[X] . As the prime 2S of

5 survives in T , the "nonflatness" assertion will follow by showing

X i S.,,, (see [77, Theorem 2]). For this, notice that if X e £„„ , then

writing X as a fraction and cross-multiplying would lead to

X I a. (2X)V = l b i (.2X)1 3

where all a.} b. e B and some a. / 2B . However, by comparing coeffici-

ents of r , we would then find a .2r = b •.•,e , whence a . = 2b . c 2B ,

which is absurd. Thus, S c T does not satisfy GD .

Let V (respectively, W) denote the integral closure of 5

(respectively, T ) in R . By the going-down theorem of Krull, 5 c V

satisfies GD . Moreover, since {X.} is a transcendence basis, R is
%

algebraic over T (and S ); hence, by "clearing denominators," R is an

overring of V (and W). By (7) , V c_W satisfies GD . Thus, by com-

posing S £ V and V £ W , we see that S c_W satisfies GD . In con-

junction with the fact that integrality makes T £ W satisfy LO , this

forces S £ T to satisfy GD . This contradiction (to the preceding

paragraph) completes the characteristic zero case.

The case of positive characteristic is handled similarly. For this,

pick distinct X, I e {X.} and put B = Di{X.: X. ̂  X, I}] . Also, take
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S = BiXY, Yl and T = BlX, Yl. As XY is transcendental over BlYl ,

one shows as above that 5 is integrally closed and coherent. To show

that S c T does not satisfy GD , the above reasoning reduces us to

showing X £ S\,_ . By change of variable, this is equivalent to showing

XY / T Y . If this failed, there would exist polynomials f e T and

g e T\YT such that gX = fY . As Y { g and Y { X , this would lead to

Y not being a prime element of T , which is absurd. Now, having shown

that S £ T does not satisfy GD , one repeats verbatim all but the final

sentence of the preceding paragraph. This gives the desired contradiction

in the positive characteristic case, thus completing the proof that

(7) => (11).

To this point, we have shown the equivalence of (1), (2), (3), (4),

(5), (7), (8) and (11). To complete the proof, we shall show (4) => (6) =>

(5) and (11) => (10) => (9) => (11).

(4) => (6) : See the above explanation for (3) => (5).

(6) => (5) : Trivial.

(11) => (10): Assume (11). As (11) => (1), &im(R) < 1 . In

the same way, we see that if a domain B is contained in the quotient

field of R , then dimfBj £ 1 . (The point is that B "inherits" (11)

from i? .) In particular, the valuative dimension of any subring A of

R is at most 1 . Then (10) follows via [14, Corollaire 3, page 61] Csee

also C O , Theorem 6]).

(10) => (9) : Trivial.

(9) =̂> (11): Suppose the assertion fails. Let D and {X.} be as
Is

in the proof that (5) => (11). As above, B = Dl{X.}] is not treed; a
Is

fortiori, B is neither a going-down domain nor a Priifer domain. Let E

denote the integral closure of B in R . As in the proof that (5) =>

(11) , if is an overring of E . By (9) , E' is a Priifer domain and, a

fortiori, a going-down domain. As E' is integral over B (by trans-

itivity of integrality) and B is integrally closed, a descent

result of Heinzer (see [9, (4.5a)]) (respectively, of the author (see [9,

(4.6a)])) yields that B is a Priifer domain (respectively, a going-down

domain). This contradiction establishes (9) => (11) and completes the

proof of Theorem 2.1.
Apropos of conditions (9) and (10) in Theorem 2.1, it is well known
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that the integral closure of a domain A is a Priifer domain if and only

if A £ B satisfies INC for each overring B of A . We next use INC

to characterise the domains algebraic over their prime rings.

COROLLARY 2.2. For a domain R , the following conditions are

equivalent:

(1) A £ S satisfies INC for each inclusion A £ £ of subrings

of R ;

(2) Either R is algebraic over 7L or R is an algebraic field

extension of some JF .

Proof. Let D denote the prime ring of R . Observe that (2) is

equivalent to requiring that R be algebraic over D .

(1) => (2): It is enough to observe that if X e R is transcendent-

al over D , then D £ DlX~\ does not satisfy INC . (For this, notice

that if M is a maximal ideal of D , then M is lain over by the non-

maximal prime MDLXl of DLX1.)

(2) => (1): Assume (2), and let A £ B be subrings of R . By

Theorem 2.1 [(11) => (2)] , A and B each have dimension at most 1 .

To show that A £ B satisfies INC , it is therefore enough to show

P n A ^ 0 for each nonzero (prime) ideal P of B . This, in turn,

follows from (2) , as B is algebraic over (D c_)A . (In detail, choose

nonzero u e P , and notice that P (\ A contains the necessarily nonzero

constant term of any minimal-degree algebraicity equation of u over A .)

The proof is complete.

We next use GD , L0 (and, implicitly, INC ) to get a new

characterisation of the rings featured in [7].

COROLLARY 2.3. For a domain R with quotient field K , the

following conditions are equivalent:

(1) A £ B satisfies both GD and L0 for each inclusion A c_ B

of underrings of R ;

(2) A £ B satisfies both GD and L0 for each inclusion A £ B

of subrings of R ;

(3) R is integral over each of its underrings;

(4) Either (i) R is (isomorphic to) a subring of the ring of all

algebraic integers; or
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(ii) R = K is an algebraic field extension of some
Fp i or

(iii) R has positive characteristic and precisely one

valuation ring of K does not contain R .

Proof. (1) => (3): Assume (1), and let A be an underring of R .

By Theorem 2.1 [(7) =s> (1)], A and R each have dimension at most 1 .

If R = K , then A = K also, since A £ R satisfies LO ; in particular,

R is integral over A in this case. Thus, without loss of generality,

dim(W = 1 = dim(A) . We may now apply [4, Remark 3.12(b)] (which

explicitly used IWC-theoretic considerations) , to conclude that if is

integral over A .

(3) <*=> (4) : This is the principal result in [7].

(4) => (2): Assume (4), and hence (3). As for the assertion about

GD in (2), Theorem 2.1 [(11) => (8)] shows that we need only prove that

either R is algebraic over Z or t.d. (R/F ) < 1 for some p . This

is clear if either (i) or (ii) obtains. Moreover, given (iii), we have

t.d.(R/JF ) = 1 (see [7, Theorem 2.3 (iii)]).

P

Next, we shall establish the assertion about LO in (2). As

integrality implies LO (see [75, Theorem 44]), we may assume that (iii)

holds. It will suffice to show that A £ R satisfies LO for each sub-

ring A of R . There are two cases.

Suppose first that R is not algebraic over A . Then

t. d. (R/A) = 1 , and so we may pick X e R transcendental over A . Let

B denote the integral closure of J4[.X] in S , As R is algebraic over

AZ.X1 , the "clearing denominators" trick shows that R is an overring of

B . As each of the three extensions A £ ALXl , ALXl £ B , and B c_ R

satisfies LO , so does their composite, A £ R , as asserted.

In the remaining case, R is algebraic over A . Let D denote

the integral closure of A in R . By "clearing denominators," R is an

overring of D . Then, as the composite of £0-extension.s A £ D and

D £ R , the extension A <= R also satisfies LO (and, in fact, is

integral in this case) . This completes the proof that (4) =*• (2) .

As (2) =s- (1) trivially, the proof of Corollary 2.3 is complete.
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Remark 2.4. In the context of Theorem 2.1, consider the conditions

(a) A £ i? satisfies GD for each underring A of R , and

(b) A £ R satisfies GD for each subring A of R .

Trivially, (b) => (a). In fact, (a) => (b) as well. To see this,

assume (a) and let A be a subring of R . By [72, Proposition 1.1],

A £ D £ R for some underring D of R such that D is a free A-

module. Then A <^_D satisfies GD , essentially because of flatness

(see [75, Exercise 37, page 44]). As (a) assures that D £ R also

satisfies GD , it follows that A £ R satisfies GD . Thus, (a) «*> (b).

Clearly, (a) and (b) are implied by the equivalent conditions in

Theorem 2.1. However, the converse is false. To see this, let R be a

field such that either t.d. (R/f#) > 0 or t.d.(R/F ) > 1 for some p .

Evidently, R does not satisfy condition (11) in Theorem 2.1. Neverthe-

less, R satisfies (a) (and hence (b)), for any field is flat over each

of its underrings (see IS, Proposition 2.1(a)]).

It seems natural to ask whether the domains R satisfying (a) and

(b) can be characterised by augmenting condition (11) in Theorem 2.1 with

"or R is a field." We do not know the answer to this question.

In Remark 2.4, we appealed twice to the fact that flatness implies

GD . In our final result, we shall consider the flat-theoretic analogues

of conditions (7) and (8) in Theorem 2.1. The upshot will be new

characterisations of a much-studied class of domains. (For background on

other characterisations of these domains, see the Corollary and

the references cited in the first paragraph of [5].)

PROPOSITION 2.5. For a domain R , the following conditions are

equivalent:

(1) B is A-flat for each inclusion A c B of underrings of R ;

(2) B is A-flat for each inclusion A g B of subrings of R;

(3) Either R is (isomorphic to) an overring of 22 or R is an

algebraic field extension of some JF .

Proof. (3) => (2): Assume (3), and let A £ B be subrings of R .

If char(W = 0 j then A is a Prufer (in fact, Euclidean) domain, and so

the torsion-free A -module B is j4-flat. If ciiax(R) > 0 , then

integrality forces both A and B to be fields (see [7, Lemma 2, page

326]) and so, being 4-free, B is thus 4-flat.
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(2) •=> (1) : Trivial.

(1) => (3) : Assume (1) , and let B be an underring of R . As B

is flat over each of its underrings, [S, Theorem 2.4] yields that either

B is (isomorphic to) an overring of Z or 5 is a field. Thus, without

loss of generality, we may assume that each underring of R is a field.

It now follows easily from the extension theorem for valuations (see [75,

Theorem 56]) that R is algebraic over some JF .

References

[7] N. Bourbaki, Commutative algebra (Addison-Wesley, Reading, Mass.,

1972).

[2] J . Dawson and D.E. Dobbs, "On going-down in polynomial r i ngs , " Canad.

J. Math. 26(1974), 177-184.

[3] D.E. Dobbs, "On going-down for simple overrings, I I , " Corrm. Algebra

1(1974), 439-458.

[4] D.E. Dobbs, "Lying-over pa i r s of commutative r i n g s , " Canad. J. Math.

33(1981), 454-475.

[5] D.E. Dobbs, "On seminormal subrings," Math. Japon. 32 (1987), 11-15.

[6] D.E. Dobbs and M. Fontana, "Locally pseudo-valuation domains," Ann.

Mat. Pura Appl. 134(1983), 147-168.

C7] D.E. Dobbs and S.B. Mulay, "Domains integral over each underring",

(submitted).

[S] D.E. Dobbs and S.B. Mulay, "Flat underrings," Arch. Math., (to

appear).

[9] D.E. Dobbs and I.J. Papick, "Going-down: a survey," Menu Arch.

Wisk. 26(1978), 255-291.

[70] R. Gilmer, "Domains in which valuation ideals are prime powers,"

Arch. Math. 17(1966), 210-215.

[7 7] R. Gilmer, "Integral domains with Noetherian subrings," Comment.

Math. Helv. 45(1970), 129-134.

[7 2] R. Gilmer and W. Heinzer, "The quotient field of an,intersection

of integral domains," J. Algebra 70(1981), 238-249.

[7 3] J.R. Hedstrom and E.G. Houston, "Pseudo-valuation domains," Pacific

J. Math. 75(1978), 137-147.

[74] p. jaffard, Theorie de la dimension dans les armeaux de polynomes

(Gauthier-Villars, Paris, 1960).

https://doi.org/10.1017/S0004972700003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003816


Going-down underrings

[75] I. Kaplansky, Corrmutabive rings, rev. ed. (Univ. of Chicago Press,

Chicago, 1974).

[16] W. Krull, "Beitrage zur Arithmetik konnnutativer Integritatsbereiche

III," Math. Z., 42 (1937), 745-766.

[7 7] F. Richman, "Generalized quotient rings," Proa. Amer. Math. Soa. 16

(1965), 794-799.

[IS] p.B. Sheldon, "Prime ideals in GCD-domains," Canad. J. Math. 26

(1974) , 98-107.

Department of Mathematics

University of Tennessee

Knoxville, Tennessee 37996

U.S.A.

https://doi.org/10.1017/S0004972700003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003816

