Corrigenda

Volume 88 (1980), 199-204

'On projective planes of type ($6, m$)'
By P. LORIMER
(Received 22 March 1982)
Alan Rahilly has pointed out to me that the proof of the Theorem in my paper (2) is incomplete. This correction will now complete it. I would also like to acknowledge here that the results which are actually established in (2) can also be found in the paper (5) by Praeger and Rahilly.

The trouble was in the proof of Proposition 2. Although the group G has a subgroup H_{1} which intersects each of its conjugates trivially, the same is not necessarily true of the image $H_{1} N / N$ of H_{1} in the 2 -transitive representation G / N of G referred to in the paper. A theorem of M.E.O'Nan from (4) was used along with Proposition 2 to establish my theorem. What should have been done was to look at O'Nan's results more deeply and combine them with other results. Here is the way that it is done.

There is nothing actually wrong with the argument in my paper; it is just that it is not complete. The proof here will continue the argument of (2) using the notations established there.

First, a straightforward lemma.
Lemma 4. If $i \neq j$ then
(1) $H_{i} \cap K_{j}$ has order $m^{2}-m$ and index $m^{2}+m$ in H_{i};
(2) $K_{i} \cap K_{j}$ is the direct product of $H_{i} \cap K_{j}$ and $H_{j} \cap K_{i}$;
(3) $N \neq K_{i} \cap K_{j}$.

Proof. The argument at the end of section 1 in (2) establishes that $H_{i} \cap K_{j}$ has index at least $m^{2}+m$ in H_{i}; as this is the maximum possible it must actually be the index. As the order of H_{i} is $m^{4}-m^{2}, H_{i} \cap K_{j}$ must have order $m^{2}-m$. Then $H_{i} \cap K_{j}$ and $H_{j} \cap K_{i}$ are two normal subgroups of order $m^{2}-m$ in the group $K_{i} \cap K_{j}$ of order ($\left.m^{2}-m\right)^{2}$. As $\left(H_{i} \cap K_{j}\right) \cap\left(H_{j} \cap K_{i}\right) \subseteq H_{i} \cap H_{j}=1$, result (ii) follows.

To prove (iii) suppose that $N=K_{j} \cap K_{j}$. Then N contains the $m^{2}-m$ members of $H_{i} \cap K_{j}$. As H_{i} has $m^{2}+m+1$ conjugates intersecting one another trivially and N is a normal subgroup of G, N has order at least

$$
1+\left(m^{2}+m+1\right)\left(m^{2}-m-1\right)=m^{4}-m^{2}-2 m .
$$

But, as N has order $\left(m^{2}-m\right)^{2}$,

$$
m^{4}-m^{2}-2 m \leqslant m^{4}-2 m^{3}+m^{2}
$$

therefore

$$
m^{3} \leqslant m^{2}+m
$$

which is impossible.
This proves Lemma 4.
In that proposition 3 of (2) relies on proposition 2, its proof is also incomplete. However, what is written there can be interpreted as a proof of the following proposition which can also be found in (5).

Proposition 5. If $P S L(n, q) \subseteq G / N \subseteq P \Gamma L(n, q)$ then $N=1, n=3$ and $q=2$ or 3 .
The clue to completing the proof is O'Nan's concept of an (H, K, L) configuration: this is a triple of groups with L a proper subgroup of K, H a subgroup of the automorphism group of K and with the centralizer of each nonidentity member of H equal to $L((4), \mathrm{p} .2)$; it is called constrained if H is isomorphic to L.

Proposition 6. $\left(H_{2} \cap K_{1}, H_{1}, H_{1} \cap K_{2}\right)$ is a constrained ($H_{2} \cap K_{1}, H_{1}, H_{1} \cap K_{2}$) configuration and either
(i) $K_{1} \cap K_{2}$ is abelian or
(ii) H_{1} and $H_{1} \cap K_{2}$ are Frobenius groups and $H_{1} \cap K_{2}$ intersects the centre of the Frobenius kernel of H_{1} nontrivially.

Proof. The fact that this triple is a constrained ($H_{2} \cap K_{1}, H_{1}, H_{1} \cap K_{2}$) configuration is clear.

From Proposition 4.9 of $\mathrm{O}^{\prime} \mathrm{Nan}(4)$, it can now be concluded that either
(i) $H_{2} \cap K_{1}$ is a Frobenius complement or
(ii) $H_{2} \cap K_{1}$ is abelian or
(iii) $H_{2} \cap K_{1}$ and H_{1} are Frobenius groups and $H_{1} \cap K_{2}$ intersects the centre of the Frobenius kernel of H_{1} nontrivially.

Conclusion (ii) of the Proposition comes from the third case.
If $H_{2} \cap K_{1}$ is a non-abelian Frobenius complement then O'Nan also shows (Proposition 4•11) that $H_{1} \cap K_{2}$ is a Hall subgroup of H_{1}. That is not the case here as $H_{1} \cap K_{2}$ has order $m^{2}-m$ and H_{1} has order $m^{4}-m^{2}$. Thus the case that $H_{2} \cap K_{1}$ is a Frobenius complement is subsumed under the case that it is abelian.

If $H_{2} \cap K_{1}$ is abelian, so is $H_{1} \cap K_{2}$ and even $K_{1} \cap K_{2}$ because, by Lemma 4, it is the direct product of these two groups.

This proves Proposition 6.
The two possible outcomes of Proposition 6 are now considered and the following is proved.

Proposition 7. For some $n \geqslant 3$ and some prime power q

$$
P S L(n, q) \subseteq G / N \subseteq P \Gamma L(n, q)
$$

Proof. Suppose first that $K_{1} \cap K_{2}$ is abelian. As $N \subseteq K_{1} \cap K_{2}, G / N$ is a 2-transitive permutation group in which the stabilizer of two points is abelian and the result of M. Aschbacher (1) can be applied. The degree of G is $m^{2}+m+1$ and as $m^{2}+m$ cannot be a prime power it follows from his theorem that either $G / N=P S L(3,2)$, fitting in with the conclusion of this Proposition, or G / N has a normal regular subgroup. Suppose that the latter is the case.

As $m^{2}+m+1$ is odd, it follows from the remarks at the bottom of $p .114$ of (1) that if there is an involution in G / N fixing $s>1$ points, then $m^{2}+m+1=s^{2}$. Then $m+1=(s-m)(s+m)$ which is impossible. Thus $\left(K_{1} \cap K_{2}\right) / N$ is odd. As $H_{1} \cap K_{2}$ has even order $m^{2}-m, H_{1} \cap K_{2}$ intersects N nontrivially, and, because of the 2 -transitivity of G / N, so does each subgroup $H_{i} \cap K_{j}, i \neq j$. Suppose $H_{i} \neq H_{1}, H_{2}$ and $x \in H_{i} \cap N$, $x \neq 1$. Then $K_{1} \cap K_{2} \subseteq C(x) \subseteq K_{i}$. As N is the intersection of all the subgroups K_{i}, this means that $N=K_{1} \cap K_{2}$, contradicting Lemma 4.

Thus $K_{1} \cap K_{2}$ is abelian only when $G=P S L(3,2)$.
Following Proposition 6, the alternative is that H_{1} and $H_{1} \cap K_{2}$ are Frobenius groups and $H_{1} \cap K_{2}$ intersects the centre of the Frobenius kernel of H_{1} non-trivially.

Let L_{1} be the Frobenius kernel of H_{1}. As H_{1} has order $m^{2}\left(m^{2}-1\right), L_{1}$ has order at least m^{2}. As $H_{1} \cap K_{2}$ has order $m^{2}-m, L_{1}$ is not a subset of K_{2}; i.e. $L_{1} \cap K_{2}$ is a proper subgroup of L_{1}.

By a result of Thompson(6), L_{1} is nilpotent and hence so is its image $L_{1} N / N$ in G / N. As L_{1} is not a subgroup of K_{2} but N is, $L_{1} N / N$ is not the trivial group. Hence H_{1} has a characteristic abelian subgroup A_{1} such that $A_{1} N / N$ is non-trivial. In these circumstances theorem A of another paper (3) of O'Nan can be applied and it can be deduced that either $P S L(n, q) \subseteq G / N \subseteq P \Gamma L(n, q)$, fitting in with the result of this proposition, or $A_{1} N / N$ is semiregular.

Suppose the latter. Then $A_{1} \cap K_{2} \subseteq N$.
${ }^{\prime}$ Let p be a prime number which divides the order of L_{1} but not the order of $L_{1} \cap K_{2}$ and let P be a Sylow p-subgroup of L_{1} : then $P \cap K_{2}=1$. As L_{1} is nilpotent, P is a characteristic subgroup of L_{1} and hence a normal subgroup of K_{1}. Thus $H_{2} \cap K_{1}$ acts on P. Suppose $h \in H_{2} \cap K_{1}, x \in P$ and $h x=x h$. Then $h \in H_{2} \cap x^{-1} H_{2} x$ so that either $H_{2}=x^{-1} H_{2} x$ in which case $x \in N\left(H_{2}\right) \cap P=K_{2} \cap P=1$ or $h=1$: hence $H_{2} \cap K_{1}$ acts fixed point free on P. Thus $H_{2} \cap K_{1}$ is a Frobenius complement, contradicting the fact that it is a Frobenius group. This establishes the fact that if p is a prime divisor of the order of L_{1} it is also a divisor of the order of $L_{1} \cap K_{2}$.

Now, $H_{1} \cap K_{2}$ has order $m(m-1)$ and H_{1} has order $m^{2}(m-1)(m+1)$. Thus, if m is even, $m+1$ does not divide the order of L_{1} and so it does divide the order of the Frobenius complement of L_{1} in H_{1} : if m is odd the same applies to $\frac{1}{2}(m+1)$. Suppose the order of the complement is $\alpha(m+1)$ or $\frac{1}{2} \alpha(m+1)$ respectively.

Both A_{1} and $A_{1} \cap N$ are normal subgroups of K_{1} and thus the Frobenius complements act fixed point free on the factor group $A_{1} / A_{1} \cap N$. Hence the order of $A_{1} / A_{1} \cap N$ is $\alpha \beta(m+1)+1$ when m is even or $\frac{1}{2} \alpha \beta(m+1)+1$ when m is odd, for some integer β.

As A_{1} is a normal subgroup of K_{1}, the group $A_{1}\left(H_{1} \cap K_{2}\right)$ has order

$$
\begin{aligned}
\frac{\left|A_{1}\right|\left|H_{1} \cap K_{2}\right|}{\left|A_{1} \cap K_{2}\right|} & =\left|A_{1} N / N\right|\left|H_{1} \cap K_{2}\right| \\
& =\left(m^{2}-m\right)\left|A_{1} N / N\right|
\end{aligned}
$$

This is a subgroup of H_{1} which has order $\left(m^{2}-m\right)\left(m^{2}+m\right)$. Hence $m^{2}+m$ is divisible by $\alpha \beta(m+1)+1$ when m is even and $\frac{1}{2} \alpha \beta(m+1)+1$ when m is odd. In any case

$$
m^{2}+m=\gamma\left(\frac{1}{2} \delta(m+1)+1\right) \quad \text { for } \quad \delta=2 \alpha \beta \text { or } \alpha \beta \text { and some integer } \gamma .
$$

Thus $m+1$ divides γ, say $\gamma=\epsilon(m+1)$ and

$$
\begin{aligned}
m & =\frac{1}{2} \delta \epsilon(m+1)+\epsilon \\
& >\frac{1}{2} \delta \epsilon(m+1) .
\end{aligned}
$$

Thus

$$
\delta<\frac{2 m}{\epsilon(m+1)}<2
$$

which implies that $\delta=1$. Then

$$
\begin{aligned}
m^{2}+m & =\gamma\left(\frac{1}{2}(m+1)+1\right) \\
& =\gamma\left(\frac{1}{2} m+\frac{3}{2}\right) .
\end{aligned}
$$

But

$$
2\left(m^{2}+m\right)=(2 m-4)(m+3)+12 .
$$

Hence $m+3$ divides 12 . As $m>3$ the only solution is $m=9$. Suppose that this is the case. Then $A_{1} / A_{1} \cap N$ has order $\frac{1}{2} m+\frac{3}{2}=6$ and the Frobenius complement acting on it fixed point free has order at least $\frac{1}{2}(m+1)=5$ which is not possible.

This establishes Proposition 7.
Propositions 5 and 7 combine to finish the proof of the Theorem in (2).

REFERENCES

(1) Aschbacher, M. Doubly transitive groups in which the stabilizer of two points is Abelian J. Algebra 18 (1971), 114-136.
(2) Lorimer, P. On projective planes of type (6,m). Proc. Cambridge Philos. Soc. 88 (1980), 199-204.
(3) O'NaN, M. E. A characterization of $L_{n}(q)$ as a permutation group. Math. Z. 127 (1972), 301-314.
(4) O'NaN, M. E. Normal structure of the one-point stabilizer of a doubly-transitive permutation group. I. Trans. Amer. Math. Soc. 214 (1975), 1-42.
(5) Prafger, C. E. \& Rahilly, A. On partially transitive projective planes of certain Hughes types. Proceedings of the Miniconference on the Theory of Groups, Canberra, 1975. Lecture Notes in Mathematics (Springer-Verlag, Berlin.)
(6) Thompson, J. G. Finite groups with fixed-point-free automorphisms of prime order. Proc. Natn. Acad. Sci. U.S.A. 45 (1959), 578-581.

