
Canad. Math. Bull. Vol. 31 (2), 1988 

NUCLEARITY 

BY 

K. A. ROWE 

ABSTRACT. The notion of nuclear object in an autonomous 
category is studied. It is shown that the full subcategory determined 
by the nuclear objects is also autonomous. 

The concept of a nuclear object arose out of an attempt on the part of the 
author to characterize finite-dimensional objects categorically. It soon appeared 
that the appropriate ideas could best be expressed in the context of symmetric 
monoidal closed categories, or "autonomous" categories in the sense of Linton. 
We originally called such objects "finite-dimensional", but have been persuaded 
that the present term is to be preferred. If one interprets the idea of "nuclear" as 
incorporating the concept of "finite-dimensional", then our definition is 
equivalent to, but simpler than, one which is apparently part of the folklore (see 
1.5, below). 

In this paper we define nuclear objects in such categories, study their 
elementary properties, and show that the full subcategory of an autonomous 
category determined by the nuclear objects is also autonomous. In addition, we 
briefly consider the form this concept takes in some of the categories considered 
in [1] by Banaschewski and Nelson. 

1. Nuclear Objects. Our starting point is the problem of characterizing 
finite-dimensional objects in the category of vector spaces over a field K (that is, 
the finite-dimensional vector spaces). Let V denote a finite-dimensional vector 
space over K, and let / : V —> V denote any linear operator on V. For any ordered 
basis a = (al9. . . , an) of V let 

/[a] = 2 V « 0 f l / G V®KV\ 

where V* is the dual space of V, A = (At) is the matrix representing / with 
respect to the basis a, and (af,. . . , a*) is the dual basis of a. It is easily veri­
fied that the element of V ®K V* determined by / and a above is independent 
of the choice of a and that the map / i—» /[a] is inverse to the "natural" map 
<t>v:V ®K V* h-> H o m ^ F , V) given by §v(a ® a)(x) = a(x)a, and so is an 
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isomorphism. On the other hand, if F i s not finite-dimensional, then <j>v cannot 
be an isomorphism. For, if f is in im(<£F) then the rank of f is finite. But then 
the identity is not in im($F). Hence, V is finite-dimensional if <f>v is an 
isomorphism. 

Since the analogue of <j>v can be constructed in any autonomous category, it 
would be natural to say that an object is finite-dimensional if the corresponding 
morphism is an isomorphism. However, other examples, some of which will be 
considered below, show that this is not quite the appropriate term, and we have 
adopted the term "nuclear" to describe such objects. 

Throughout, E will denote a fixed autonomous category. This is a category 
equipped with: 

a "tensor product" ®:E X E -> E; 
an "internal horn" [_, _]:Eop X E -» E; 
a "base object" K; 
a "unit" i4:B-+[A, B ® A]; 
an "evaluation" ev%:[A, B]® A -> B; 
an "identity" oA:K ® A « A; 
"symmetry isomorphisms" rA B:A ® B « B ® A. 

We suppress explicit mention of the associativity isomorphisms (A ® B) ® 
C ^ A ® (B ® C). This will cause no difficulty. \A\A -> A will denote the 
identity morphism. It is of course also assumed that we have natural iso­
morphisms [A, [B, C] ] « [A ® B, C] for all objects A, B, C of E. 

The remaining data are defined by: 

JA = VA> oA] - 4:K-> [A, A]; 

iA = [\K,oAiT
A

K]-iik
A:A ~[K,A]; 

rA,B,c = VA> evB
c] ' VA* W J ® evB^ ' ti'\B> C l ® \.A> B^ "> lA> d 

where X = [B, C] ® [A, B]. 
If A is any object of E, we set A* = [A, K]. As usual, there is a natural 

transformation 0A:A —» A** and a morphism <j>A:A ® A* —> [A, A] whose 
internal adjoint is given by the morphism A®A*®A-^A®K^A. 

1.1. DEFINITION. A is nuclear if $A is an isomorphism. 
It is immediate that the base object K is nuclear. As usual, we say A is 

reflexive if 0A is an isomorphism. 

1.2. PROPOSITION. If A is nuclear then it is reflexive. 

PROOF. The inverse of the morphism 0A is given by the composition: 

A** « K®A** œ A** ® K^A** ®[A,A] -> A** ® A ® A* 

**A**®A*®A^K®A^A 

as is easily seen using (internal) adjointness. • 
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1.3. COROLLARY. IfJL is cartesian closed (with ® = product) and A is nuclear, 
then A « K. 

PROOF. In this case, K is a terminal object, so A* « K for any object A. 
Hence, if A is nuclear, we have A « A** « K. • 

1.4. PROPOSITION. A retract of a nuclear object is nuclear. 

PROOF. Let f:A —> B and g.B —» 4̂ be morphisms such that gf = \A, and let B 
be nuclear. Then the morphism 

[A, A] l-^Jd[B,B]-*B®B*6 4> A ® A* 

is easily seen to give the required inverse to the natural morphism A ® A * —» 

1.5. REMARK. There is a definition of nuclearity (under the name of 
"finite-dimensionality") in the "folklore" as follows: A is nuclear if 

(i) A is reflexive; and 
(ii) given any object B, the canonical morphism A ® B* —» [B, A] is an 

isomorphism. 

Clearly, the "folklore" definition implies ours. On the other hand, if A is nuclear 
in our sense then, as we have seen, it is reflexive and the morphism given as the 
composition: 

[B,A] « K® [B, A] --> [A, A] ® [B, A] -> A ® A* ® [B, A] -> A ® B* 

is readily seen to be the inverse of the canonical morphism used in the folklore 
definition. Hence, these two definitions coincide. 

2. The Autonomous Category of Nuclear Objects. In this section we give the 
method of proof of the following theorem: 

2.1. THEOREM. Let E be an autonomous category. Then the full subcategory of E 
determined by the nuclear objects of E is again an autonomous category. 

PROOF. We will not actually go through the laborious diagram-chasing 
required to prove this. We will instead simply describe the required morphisms, 
leaving the verification that they actually work to the reader. For this purpose, 
recourse may be had to Szabo's Theorem (see [2], page 103). 

As may be expected, the proof boils down to showing that if A and B 
are nuclear, then so are A ® B and [A, B], its being known that K is al­
ways nuclear. 

Suppose that A and B are nuclear. 
(i) A ® B is nuclear. Set X = A ® B. Then the morphism given as the 

composite: 
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[X, X] « [X, X] 0 K 0 K -> [*, X] 0 [^, v4] ® [B, B] 

**[X,X]®A®A*®B®B*-^ [X, X]®(A®B)® (A* ® B*) 

-> [X, X] ® X ® X* -> X 0 X*, 

where the penultimate morphism is given by the adjoint of the following 
composite: 

A*®B*®A®B^A*®A®B*®B->K®K^K, 

may be shown to be the inverse of <j>x:X ® X* —» [X, X]. 
(ii) [A, B] is nuclear. Set F = [A, B]. Then the morphism given by the 

composite: 

[Y, Y] « [Y, Y] ® K® K-*[Y, Y] ® [A, A] ® [B, B] 

^[Y,Y]®A®A*®B®B* 

« [ Y, Y] 0 B 0 v4* 0 A 0 5* « [ Y, Y] 0 Y 0 Y* -» Y 0 Y*, 

where the penultimate morphism is derived from the morphism described above 
in (i) and the morphism given as the composite: 

A 0 £* -> [ [A, B], A 0 B* 0 [A, B] ] -> [ [4, 5 ] , ,4 0 A*] ] -> M, 5 ] * 

may be shown to be the inverse of <#>y: Y 0 Y* —» [Y, Y]. 
These observations suffice to prove the theorem. • 

2.2. COROLLARY. If A is nuclear then so is A*. • 

2.3. PROPOSITION. If A and B are nuclear then 

A®B^[A, 5*]*. 

PROOF. We always have [A, B*] = [A, [B, K] ] « [A 0 B, K] = (A 0 £)*, so 
[̂ 4, B*]* ^ (A ® B)**. Hence, if A and B are nuclear then 

[A, B*]* ^ (A® B)** « A® B. • 

Suppose that A is a nuclear object in E. Then we have a morphism 

tA:[A,A] ^A®A***A*®A-^>K 

which, in the category of vector spaces, is easily seen to give the trace. In 
general, the trace function is "natural". This means that if A and B are nuclear 
and f.A —> J5 is any morphism, then the diagram 

[ i , / ] 
->[B, B] 
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commutes. (In the category of vector spaces this is merely the statement that 
trace(ST) = trace(7S).) 

If E denotes an autonomous category in which every object is nuclear (such 
categories are called "compact" in [2] ), then every object has a trace which is 
natural in the above sense. We refer to an autonomous category in which there 
is such a "trace" morphism for each object and which is natural as one which 
has a natural trace. 

2.4. THEOREM. Let E denote an autonomous category. Then the following are 
equivalent: 

(a) Every object of E is nuclear, 
(b) Every object of E is reflexive and E has a natural trace. 

PROOF. It remains only to see that (b) implies (a). The composite 

[A,A]-+[ [A, A], [A, A] ® [A, A] ] -> [ [A, A], [A,A]]-> [A, A]*, 

in which the penultimate morphism is derived from the internal composition 
and the last morphism is given by the trace, is easily seen to be the inverse of the 
canonical morphism A ® A* —> [A, A ], where we have used reflexivity to replace 
A® A* by [A, A]*. 

3. B-N Categories. In [1], Banaschewski and Nelson consider concrete 
categories E which are equipped with a "functional internal horn" [_, _] 
and have a "dualizer" D. By "functional" they mean that any function 
f:\A\ —> E(B, C) for which there exists for each b e B an actual mor­
phism hb:A —> C satisfying the obvious consistency condition is the underlying 
function of an actual morphism A —> [B, C], where \X\( \f\ ) denotes the 
underlying set (function) of the object X (morphism / ) , and, for any objects 
A, B there is a natural morphism A —> [ [A, B], B]. A "dualizer" D is an ob­
ject satisfying the condition that all the morphisms A —> [[A, D], D] are 
isomorphisms. 

We call a category equipped with this structure and a dualizer D a "B-N 
Category" and denote the object [A, D]by A#. 

It is implicit in [1] that if E is a B-N category with dualizer D then E is an 
autonomous category with tensor product defined by A ® B = [A, 2?#]# and 
base object K = D#. Thus, we have A* = [A, K] « (A ® Z))# and the concept 
of "reflexive" becomes the statement that (A ® D)# ® D# « A. In the 
following, by "Z> is self-dual" we mean that D « [D, D]. 

At present, we do not know how to characterize the nuclear objects of a B-N 
category. We can, however, show: 

3.1. PROPOSITION. The dualizer D of a B-N category is nuclear if and only if it is 
self dual. 
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PROOF. 

£>** = [/)*, D#] = [ [D, D#l D*]. 

Suppose D is nuclear. Then 

D# .= [D, D] « D ® £>* « D* 0 D = [D*, 2)#]# . 

Hence, 

D ^ D# ^ [D*, Z>#]## « [£>*, Z>#] - £>**. 

The reverse implication is obvious. • 

4. Some Examples. Most, but not all, of our examples are also examples of 
B-N categories and have been considered in [1]. 

Our first example, the category of vector spaces over a field, has already been 
discussed. Generalizing this basic example, we consider: 

.R-MODULES. Here, R is a commutative ring with unit. We show: 

4.1. PROPOSITION. Let R be a commutative ring and A an R-module. Then A is 
nuclear if and only if A is finitely-generated and projective. 

PROOF. Let A be nuclear. Then the canonical homomorphism <j>A:A ®R 

HomR(A, R)-+ Hom^(^4, A ) has an inverse. Set <f>A \lA) = ^ak®fk. Since for 
any a e A we have 

a = (<K4>-\\A)))(a) = 2fk(a)ak 

we deduce that A is projective by Proposition 3.1, p. 132, of [3]. This same 
formula shows that A is finitely-generated. 

Now suppose A is finitely generated, say by [ax, . . . , an), and projective. 
Then we have split exact sequence 

f 
Rn -4 A -» 0. 

Let g:A —> R" denote the splitting map and let, for k = 1, . . . , n, irk:R
n —» R 

denote that "/cth projection". Then it is easily shown that <t>A\h) = 
2 h(ak) 0 (7rkg). • 

POINTED SETS. This is the category S* in which an object X is a pair 
consisting of a set |X| and a point p(X) e |X|, while a morphism/: X —> Y is a 
function / : |X| —» |Y| such that f(p(X)) = p(Y). The internal horn in this 
category is the set of all morphisms with "base point" the morphism which 
takes every point in the domain to the specified point in the codomain. The 
tensor product is the so-called "smash product" obtained from the cartesian 
product by identifying the "wedge" to a point, where, if X and Y are pointed 

https://doi.org/10.4153/CMB-1988-035-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-035-5


1988] NUCLEARITY 233 

sets, their wedge is the set ( |X| X {p(Y) } ) U ( {p(X) } X |Y| ). The base 
object in this category is given by |K| = 2 = {0, 1}, p(K) = 0. 

For any two objects A and B in this category, let 77: A X B —> A ® B denote 
the canonical map. The isomorphism K ® A —» A is given by o(7r(0, a) ) = p(A), 
a(y(l, a) ) = a. The canonical morphism <#>A:A ® A* —» [A, A] is given by 

^Wa, / ) ) )W = 
(a iî f(x) = 1 

\p(A) if f(x) = 0 

as is easily seen. If <j>A has an inverse </>A ' set <J>A ' (1A) = "fao» / ) • Then, for all 
x G |A|, we have 

x = (</>A(T(«O> f) ) )(x) = 
a0 i f / (x) = 1 

[p(A) ii f(x) = 0. 

We claim that the only objects in this category which are nuclear are those 
whose underlying sets have cardinality 1 or 2. For, if A is nuclear, ^ A V ^ A ) *S 

given as above, and if f̂ e |A|, then a = a0 if f(a) = 1 while if f(a) = 0 then 
a = p(A). Hence, card( |A| ) ^ 2. On the other hand, if card( |A| ) â 2 it is easy 
to see that A is nuclear. 

BANACH SPACES. Let Ban denote the category of (real or complex) Banach 
spaces in which the morphisms are just bounded (not necessarily bounded by 1). 
This is an autonomous category as may be found in, for example, [5]. An object 
in this category is nuclear if and only if it is a nuclear as a vector space, as may 
easily be checked. Indeed, the only thing to show is that the inverse to the 
(vector space) isomorphism <j>v, for any nuclear Banach space V9 is itself 
bounded. On the other hand, if we consider the category Baiij of Banach spaces 
with morphisms bounded by 1, we find that if <j>:A ® A* —> [A, A], which is 
easily seen to be in Banl5 has an inverse, such inverse is a vector space inverse 
and is bounded but, if dim(^4) > 1, then the inverse cannot be in Baiij. Indeed, 
we claim that if <f> has a (vector space) inverse then \\<j>~ || ^ dim(A). For it is 
easily seen that if (al9. . ., an) is a basis of the (necessarily finite-dimensional) 
Banach space A then <j>~1 must be given by 

<t>~\f) = 2 M - ) ® f l f , 

where (af,. . . , a*) is the "dual" basis of A*. In particular, <>~ \l) = 2 at ® af. 
Now, 

\af{x)\\af{ai)\ 1 
""*" — sup — * * 0 \\X\\ Û, 

so that \\af\\ \\at\\ = 1 for each i. Summing, we have 2 ||fl*|| ||tf/|| = n. But we 
also have | | 2 at ® af\\ = 2 Ik*II \\at\l Since 
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In <, II* (J) , i irr» 

II*"1!! ^ 

IMII 

the claimed inequality follows. 

C O M P L E T E SEMILATTICES. This is the category CSL whose objects are pairs 
(X, sup^) consisting of a set X and a function supx:P(X) —» A", where P ( X ) 
denotes the "power set" of X, satisfying: 

(1) sup^( {*} ) = x for all x ^ X; and 

(2) s u p ^ U , - ^ , . ) = sup^( ( s u p ^ ) | / e 7} ) 

and whose morphisms F:(X, supx) —> (Y, supy) are functions F:X —> Y 
satisfying supy( {F(a) \ a ^ A}) = F{supx{A) ). 

The present author and D. A. Higgs have shown [4] that the nuclear complete 
semilattices are precisely the completely distributive semilattices. 

5. Appendix. One of the properties of B-N categories which seems to have 
been overlooked in [1] and which might be useful in this connection is contained 
in the following: 

5.1. THEOREM. Let E be a B-N category in which the dualizer D is self-dual 
{that is, nuclear). Then, given any morphism f.A —» [B, C] and any b e \B\ there 
exists a morphism hb:A —» C such that \hb\(a) = | \f\(a) \(b) for all a e \A |. 

PROOF. Since D# « 7>, we may identify these objects. Hence, we may 
identify A# = [A, D] and A* = [A, 7>#] for any object A. In the following, we 
let oA:A —> A** denote the natural isomorphism. 

By Proposition 5 of [1], there is an isomorphism 0:[A, [B, C] ] « 
[ [A, B*]*, C] and hence a bijection \0\:E{A, [B, C] ) « E( [A, B*]*9 C). Since, 
in general in a B-N category, we have [X, Y] » [y*? x*], we may regard 0 
as an isomorphism 9:[A, [B, C]] « [C*, [B, A*]], which induces a bijec­
tion \0\:E(A, [B, C]) « E(C*, [B, A*]). Thus, to be given a morphism 
yl —» [1?, C] is equivalent to being given a morphism g:C* —» [5, ^4*]. Given 
such a g and a è e \B\, we may define mb:\C*\ —> (A, D) by mb(y) = 
I lgl(y) l(^)- By the functionality condition, there is a unique morphism 
kb:C* —> A* such that \kb\ = mb. Finally, we define hb by requiring that 

°c ' h = (kby • oB. a 

5.2. COROLLARY. Every morphism f A —> B in a B-N category with a self-dual 
dualizer is given by a family of morphisms h^.A —» D {where fi e \B*\ ) such that 
\hp\{a) = \P\(\f\(a))foralla e \A\. 

PROOF. Simply apply the above theorem, regarding / as a morphism 
,4->£**. • 
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