UNITS OF THE GROUP RING

ву N. J. GROENEWALD

ABSTRACT. If R is a ring such that $x, y \in R$ and xy = 0 imply yx = 0and $G \neq 1$, an ordered group, then we show that $\sum \alpha_g g$ is a unit in RG if and only if there exists $\sum \beta_h h$ in RG such that $\sum \alpha_g \beta_{g^{-1}} = 1$ and $\alpha_g \beta_h$ is nilpotent whenever $gh \neq 1$. We also show that if R is a ring with no nilpotent elements $\neq 0$ and no idempotents $\neq 0, 1$ then RG has only trivial units. Some applications are also given.

Introduction. In the first section of this paper we determine the units of the group ring RG where R is a ring with identity and G an ordered group. For example, we show that RG has only trivial units if R has no non-zero nilpotent elements and no idempotents $\neq 0, 1$. Corresponding results for the group ring, with R commutative, have been obtained by Parmenter [4] and for polynomial rings by Coleman and Enochs [2]. In Section 2 we give some applications. For example, we show that if the set of nilpotent elements of R form an ideal \mathcal{N} , then $J(RG) = \mathcal{N}G$ where J(RG) denote the Jacobson radical of RG. We also show that if R and S are local rings with no non-zero nilpotent elements and $\sigma: RG \rightarrow SG$ is an isomorphism, then $\sigma(R) = S$.

§1. Units. In this section, we find the units of the group ring RG where R is a ring with identity and G an ordered group. Let U(RG) denote the units of RG.

PROPOSITION 1.1. Let R be any ring with identity and let G be an ordered group $\neq 1$. Then the following are equivalent.

(i) $U(RG) = \{\sum \alpha_g g | \text{ there exists } \beta_g \text{ in } R \text{ with } \sum \alpha_g \beta_{g^{-1}} = 1 \text{ and } \alpha_g \beta_h = 0 \text{ whenever } gh \neq 1.$

(ii) R has no nonzero nilpotent elements.

Proof. Assume (i) holds and let $\gamma \in R$ be nilpotent. Say $\gamma' = 0$. Then

$$(1+\gamma g)(1-\gamma g+\gamma^2 g^2-\gamma^3 g^3+\cdots\pm\gamma^{t-1} g^{t-1})=1.$$

Hence $1 + \gamma g$ is a unit in RG. If $\gamma \neq 0$, $1 + \gamma g$ does not satisfy condition (i). Hence $\gamma = 0$ and (ii) holds. Conversely, assume (ii) holds and let ab = 1 where $a = \sum_{i=1}^{n} \alpha_i g_i$ and $b = \sum_{i=1}^{m} \beta_i h_i$. We will show that $\alpha_i \beta_j = 0$ whenever $g_i h_j \neq 1$. The other statement follows immediately. Suppose that $g_1 < g_2 < \cdots < g_n$ and $h_1 < h_2 < \cdots < h_m$. For $i \neq n$ or $j \neq m$ we have $g_i h_j < g_n h_m$ and, hence,

Received by the editors November 22, 1978 and, in revised form, April 26, 1979.

[December

 $g_i h_j \neq g_n h_m$. We want to show $\alpha_i \beta_j = 0$ whenever $g_i h_j > 1$. If $g_n h_m \leq 1$ there is nothing to show. If $g_n h_m > 1$ we have $\alpha_n \beta_m = 0$ from the above. Assume that we know that $\alpha_r \beta_s = 0$ whenever $g_r h_s > g_{i_1} h_{k_1} = g_{i_2} h_{k_2} = \cdots = g_{i_p} h_{k_p} > 1$ (the $g_{i_s} h_{k_s}$ being a complete list of products equal to $g_{i_1} h_{k_1}$). We see that $\alpha_i \beta_{k_1} + \cdots + \alpha_{i_p} \beta_{k_p} = 0$ and we may assume that $i_1 < i_2 < i_3 < \cdots < i_p$. Since $\alpha_r \beta_s = 0$ whenever $g_r h_s > g_{i_1} h_{k_1}$, we have $(\beta_s \alpha_r)^2 = \beta_s \alpha_r \beta_s \alpha_r = 0$. From our assumption, that **R** has no non-zero nilpotent elements, it follows that $\beta_s \alpha_r = 0$ whenever $g_r h_s > g_{i_1} h_{k_1}$. Now, multiplying the above equation on the right by α_{i_p} we obtain:

$$\alpha_{i_1}\beta_{k_1}\alpha_{i_n} + \alpha_{i_2}\beta_{k_2}\alpha_{i_n} + \cdots + \alpha_{i_n}\beta_{k_n}\alpha_{i_n} = 0$$

For t < p, $g_{i_p}h_{k_i} > g_{i_i}h_{k_i}$. Hence by the remark above, $\beta_{k_i}\alpha_{i_p} = 0$. We conclude that $\alpha_{i_p}\beta_{k_p}\alpha_{i_p} = 0$. Hence $(\alpha_{i_p}\beta_{k_p})^2 = 0$ and $\alpha_{i_p}\beta_{k_p} = 0$ using (ii). Working back, we obtain $\alpha_{i_i}\beta_{k_i} = 0$ for $1 \le t \le p$. Therefore, we have shown that $\alpha_i\beta_j = 0$ whenever $g_ih_j > 1$. An identical argument to that given above, starting with g_1h_1 shows that $\alpha_i\beta_i = 0$ whenever $g_ih_i < 1$. This completes the proof. \Box

LEMMA 1.2. Suppose R is a ring such that if $x, y \in R$ and xy = 0 then yx = 0. Then the set of nilpotent elements of R forms an ideal.

Proof. [2], Lemma 2. □

THEOREM 1.3. Suppose that R satisfies the hypothesis of Lemma 1.2. Then $\sum \alpha_{g}g$ is a unit in RG if and only if there exist $\sum \beta'_{h}h$ in RG such that $\sum \alpha_{g}\beta'_{g^{-1}} = 1$ and $\alpha_{g}\beta'_{h}$ is nilpotent whenever $gh \neq 1$.

Proof. First assume $\sum \alpha_g g$ is a unit in RG. Let \mathcal{N} denote the set of nilpotent elements of R. From Lemma 1.2, \mathcal{N} is an ideal. Passing from RG to $(R/\mathcal{N})G$, $\sum \overline{\alpha}_g g$ is a unit in $(R/\mathcal{N})G$. Proposition 1.1 then says that there exists $\sum \overline{\beta}_h h$ in $(R/\mathcal{N})G$ such that $\sum \overline{\alpha}_g \overline{\beta}_{g^{-1}} = \overline{1}$ and $\overline{\alpha}_g \overline{\beta}_h = 0$ whenever $gh \neq 1$. Hence $\sum \alpha_g \beta_{g^{-1}} = 1 + n$ where $n \in \mathcal{N}$ and $\alpha_g \beta_h$ is nilpotent whenever $gh \neq 1$. If $n^s = 0$ we see that

 $\sum \alpha_{g} \beta_{g^{-1}} (1 - n + n^{2} - \dots \pm n^{s-1}) = (1 + n)(1 - n + n^{2} - \dots \pm n^{s-1}) = 1$

and $\alpha_{g}\beta_{h}(1-n+n^{2}+\cdots\pm n^{s-1})$ is nilpotent whenever $gh \neq 1$ since \mathcal{N} is an ideal. Putting $\beta'_{h} = \beta_{h}(1-n+n^{2}-\cdots\pm n^{s-1})$, then $\sum \beta'_{g}g$ satisfy the required conditions.

Before proving the converse, we show that $\mathcal{N}G$ is a nil ideal. Let $a = \sum_{i=1}^{n} \alpha_i g_i \in \mathcal{N}G$. The elements α_i are nilpotent with exponents k_i . Let $m = \sum_{i=1}^{n} k_i$. Now, using the property, $\alpha_i \alpha_j = 0$ implies $\alpha_j \alpha_i = 0$ it is easy to show that $a^m = 0$. Hence $\mathcal{N}G$ is a nil ideal. Suppose $\sum \alpha_g g$ satisfy the conditions, then from Proposition 1.1 $\sum \overline{\alpha}_g g$ is a unit in $(R/\mathcal{N})G$. Since $\mathcal{N}G$ is a nil ideal and $(R/\mathcal{N})G \cong RG/\mathcal{N}G$, we conclude that $\sum \alpha_g g$ is a unit in RG. \Box

REMARK. The class of rings for which the condition $\alpha\beta = 0$ implies $\beta\alpha = 0$ holds, includes the class of reduced rings.

COROLLARY 1.4. Let R be a ring with identity satisfying hypothesis of Lemma 1.2 with no idempotents $\neq 0, 1$. Then $\sum \alpha_{g}g$ is a unit in RG if and only if for some g, α_{g} is a unit and all the other α_{g} 's are nilpotent.

Proof. Suppose $\sum \alpha_{g}g$ is a unit in RG. Then by Theorem 1.3 there exist elements β_g in R such that $\sum \alpha_g \beta_{g^{-1}} = 1$ and $\alpha_g \beta_h$ is nilpotent whenever $gh \neq 1$. Hence $(\sum_{g} \alpha_{g} \beta_{g^{-1}}) \alpha_{h} = \alpha_{h} \beta_{h^{-1}} \alpha_{h} + \sum_{g \neq h} \alpha_{g} \beta_{g^{-1}} \alpha_{h} = \alpha_{h}$ for any α_{h} . For $h \neq g$ we have $\alpha_{e}\beta_{h^{-1}}$ nilpotent, say $(\alpha_{e}\beta_{h^{-1}})^{p} = 0$. Then, using the property that xy = 0implies yx = 0 and the fact that $(\alpha_g \beta_{h^{-1}})^p = 0$, we get $(\beta_{h^{-1}} \alpha_g)^p = 0$. Hence $\beta_{h^{-1}} \alpha_g$ is also nilpotent and consequently, since the set of nilpotent elements is an ideal, $\alpha_h \beta_{h^{-1}} \alpha_h = \alpha_h + n$ where *n* is nilpotent. Furthermore, $(\alpha_h \beta_{h^{-1}})^2 =$ $\alpha_h \beta_{h^{-1}} + m_1$ and $(\beta_{h^{-1}} \alpha_h)^2 = \beta_{h^{-1}} \alpha_h + m_2$ where $m_1, m_2 \in \mathcal{N}$. Therefore, $\alpha_h \beta_{h^{-1}}$ and $\beta_{h^{-1}}\alpha_h$ are idempotent modulo \mathcal{N} , and we conclude that $\alpha_h\beta_{h^{-1}}\in\mathcal{N}$ or $\alpha_h \beta_{h^{-1}} - 1 \in \mathcal{N}$ and $\beta_{h^{-1}} \alpha_h \in \mathcal{N}$ or $\beta_{h^{-1}} \alpha_h - 1 \in \mathcal{N}$, since idempotents can be lifted modulo \mathcal{N} and R has no idempotents $\neq 0, 1$ (see [3], Proposition 1, p. 72). If $\alpha_h \beta_{h^{-1}} \in \mathcal{N}$, then $\alpha_h \beta_{h^{-1}} \alpha_h \in \mathcal{N}$ and by the above $\alpha_h = \alpha_h \beta_{h^{-1}} \alpha_h - n \in \mathcal{N}$. Since $\sum \alpha_{g}\beta_{g^{-1}} = 1$, all the $\alpha_{g}\beta_{g^{-1}}$ cannot be elements of \mathcal{N} (this would imply that $1 \in \mathcal{N}$). Say $\alpha_h \beta_{h^{-1}} \notin \mathcal{N}$ for some specific h. Then $\alpha_h \beta_{h^{-1}} - 1 \in \mathcal{N}$ and hence we have $\alpha_h \beta_{h^{-1}} \alpha_k - \alpha_k \in \mathcal{N}$ for each α_k . If $k \neq h$, then $\alpha_k \beta_{h^{-1}} \in \mathcal{N}$ and consequently $\beta_{h^{-1}}\alpha_k \in \mathcal{N}$ as was shown above. Hence $\alpha_h\beta_{h^{-1}}\alpha_k \in \mathcal{N}$ and, therefore, $\alpha_k \in \mathcal{N}$. Furthermore, from the fact that $\alpha_h \beta_{h^{-1}} \notin \mathcal{N}$ we also have $\beta_{h^{-1}} \alpha_h \notin \mathcal{N}$, and consequently $\beta_{h^{-1}}\alpha_h - 1 \in \mathcal{N}$. Say $\alpha_h\beta_{h^{-1}} = 1 + n_1$ and $\beta_{h^{-1}}\alpha_h = 1 + n_2$, n_1 , $n_2 \in \mathcal{N}$. From this it now follows easily that $\alpha_h \beta_{h^{-1}}$ and $\beta_{h^{-1}} \alpha_h$ are units in R. Hence α_h has a left as well as a right inverse in R. Hence in $\sum \alpha_g g$ we have α_h a unit in R for some $h \in G$ and all the other α_g 's are nilpotent. The converse follows from Theorem 1.3.

COROLLARY 1.5. Let R be a ring with no nilpotent elements $\neq 0$ and no idempotents $\neq 0, 1$. Then the only units in RG are of the form ug where u is a unit of R and g is in G.

Proof. Since R has no nilpotent elements $\neq 0$ the hypothesis of Lemma 1.2 is satisfied. The result follows from Corollary 1.4. \Box

§2. Applications. Let J(R) denote the Jacobson radical of R. Amitsur [1] has proved that J(R[x]) = N[x], where $N = J(R[x]) \cap R$ and N is a nil ideal in R. Thus the following proposition is of some interest.

PROPOSITION 2.1. Suppose R is a ring with no idempotents $\neq 0, 1$, and whose nilpotent elements form an ideal \mathcal{N} . Then $J(RG) = \mathcal{N}G$ where G is an ordered group $\neq 1$.

Proof. Let $x = \sum_{i=1}^{n} \alpha_i g_i \in J(RG)$. Since $G \neq 1$, there is a $g \in G$ such that $g \neq g_1, g_2, \ldots, g_n$. Furthermore, since $x \in J(RG), g - x$ is a unit in RG. From Corollary 1.4 we have $\alpha_i, i = 1, 2, \ldots, n$ nilpotent. Hence $x \in \mathcal{NG}$. Similarly we have from Corollary 1.4 that $x \in \mathcal{NG}$ implies $x \in J(RG)$. \Box

1980]

We now study some isomorphic group rings. Recall that a ring R with 1 is called local if the non-units of R form an ideal.

PROPOSITION 2.2. Let R and S be local rings with no non-zero nilpotent elements. Let $G \neq 1$, be ordered. If $\sigma: RG \rightarrow SG$ is a homomorphism, then $\sigma(R) \subseteq S$.

Proof. It is clear that the hypothesis of Corollary 1.5 is satisfied for local rings with no non-zero nilpotent elements. We now use the same argument as in Proposition 4.4 of [4]. \Box

COROLLARY 2.3. Let R, S be local rings with 1, and with no non-zero nilpotent elements. Let $G \neq 1$, be ordered. If $\sigma : RG \rightarrow SG$ is an isomorphism, then $\sigma(R) = S$.

References

1. S. A. Amitsur, Radials of polynomial rings, Canad. J. Math. 8 (1956), 355-361.

2. D. B. Coleman and E. E. Enochs, Isomorphic polynomial rings, Proc. Amer. Math. Soc. 27 (1971), 247-252.

3. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass. (1966).

4. M. M. Parmenter, Isomorphic group rings, Canad. Math. Bull. Vol 18(4), 1975, 567-575.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF PORT ELIZABETH P.O. BOX 1600 PORT ELIZABETH 6000 REPUBLIC OF SOUTH AFRICA

448