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Abstract

We define, in a slightly unusual way, the rank of a partially ordered set. Then we prove that if X is a
topological space andW = {W(x) : x ∈ X} satisfies condition (F) and, for every x ∈ X ,W(x) is of the
form

⋃
i∈n(x)Wi (x), whereW0(x) is Noetherian of finite rank, and every otherWi (x) is a chain (with

respect to inclusion) of neighbourhoods of x , then X is metacompact. We also obtain a cardinal extension
of the above. In addition, we give a new proof of the theorem ‘if the space X has a base B of point-finite
rank, then X is metacompact’, which was proved by Gruenhage and Nyikos.

2000 Mathematics subject classification: primary 54D20; secondary 03E02.

Keywords and phrases: point-countable, metacompact, rank, Noetherian, refinement.

1. Introduction and terminology

The aim of this paper is to weaken the hypotheses of some results in [1, 4, 6] which
are related to condition (F) and covering properties.

Recall that a T1 topological space X has aW satisfying (F) if W = {W(x) : x ∈ X}

where eachW(x) consists of subsets of X containing x and the following condition is
satisfied:

(F)

if x ∈ U and U is open, then there exists an open set V = V (x, U )

containing x such that x ∈ W ⊆ U for some W ∈W(y) whenever
y ∈ V .

Any topological space clearly has such a family of open sets satisfying (F). If W
satisfies (F) then W is said to satisfy chain (F), or well-ordered (F), if each W(x)

is a chain with respect to inclusion, or eachW(x) is well ordered by ⊇.
In [1], it was established that if the space X has a W satisfying chain (F), then

it is necessarily monotonically normal and hence it is collectionwise normal. The
following results were also obtained in [1]:
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(i) if the space X has aW satisfying well-ordered (F), then X is paracompact;
(ii) if the space X has a W satisfying chain (F) and each W(x) consists of

neighbourhoods of x , then X is paracompact.
Furthermore, the following result was shown in [6]:

(iii) if the space X has aW satisfying chain (F) and, for each x ,

W(x) =W1(x) ∪W2(x),

whereW1(x) consists of neighbourhoods of x andW2(x) is well ordered by ⊇,
then X is paracompact.

Throughout this paper, let X be a T1 topological space, κ be an infinite cardinal
number, and α, β, γ , λ, µ, ρ, τ denote cardinal or ordinal numbers, ω being the first
infinite ordinal and cardinal. The interior of a subset A of X is denoted by int(A) and
the cardinality of a set B is denoted by |B|.

A family A of subsets of X is called point-< κ , if |{A ∈A : x ∈ A}| < κ , for each
x in X .

Let (P, ≤) be a partially ordered set. Two members a, b of P are said to be
independent if a � b and b � a. Also P is said to be independent if any two distinct
members of P are independent. If P is not independent, then P is said to be dependent.

We define the rank of a partially ordered set P , denoted by rank(P), in a slightly
unusual way as the smallest cardinal number κ such that, for each subset B of P with
|B| ≥ κ , B is dependent. This definition is more distinctive than the usual definition
of the rank of a partially ordered set P .

Let P be a partially ordered set. Let us say that P is of sub-κ-rank (of finite rank)
if rank(P) ≤ κ (respectively, rank(P) < ω).

A partially ordered set P is said to be Noetherian if every increasing subset of P is
finite.

Since the familyW(x) is partially ordered by inclusion for each x , we can mention
rank and Noetherianness of W(x). Then W is said to be Noetherian of sub-κ-rank
(F) if W satisfies (F), and each W(x) is Noetherian and of sub-κ-rank. Similarly,
one can defineW to be Noetherian of finite rank (F).

In [4], it was shown that if the space X has a W which is Noetherian of finite rank
(F), then X is hereditarily metacompact.

The notation and terminology not explained above can be found in [3, 7].

2. Main results

It is clear that any family consisting of subsets of X , which is well ordered by
reverse inclusion, is a chain (so it is of finite rank) and Noetherian. In [6], to assert
that X is metacompact, the authors required the hypothesis that the union ofW1(x) and
W2(x) is a chain (W1(x) and W2(x) are also defined above). Our approach differs
so that this condition is unnecessary (that is, the union of W1(x) and W2(x) need
not be a chain). The proof in [6] would not hold if W1(x), W2(x) are considered as
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different chains so that their elements are not comparable. In Theorem 2.2, the families
W(x) are given in a finite union of sets andW(x) is not a chain. The difficulties arising
from the fact thatW(x) is not chain are surpassed by employing the Erdös–Dushnik–
Miller theorem.

We utilize the following lemma.

LEMMA 2.1. Let n be a finite ordinal (that is, a non-negative integer), let (Pi , ≤)

be a partially ordered set for each i ∈ n, and let P =
⋃

i∈n Pi . Let {aα : α < τ } be a
subset of P such that aρ � aα for each ρ, α in τ with α < ρ, where τ is a cardinal
number with τ ≥ κ . If P0 is Noetherian of sub-κ-rank and Pi is a chain for each i with
1 ≤ i ≤ n, then there exist a subset J of τ with |J | = κ and an i0 with 1 ≤ i0 ≤ n such
that {aα : α ∈ J } is an increasing subset of Pi0 .

THEOREM 2.2. If the space X has a W satisfying (F) and for each x there exists a
finite ordinal n(x) such that W(x) =

⋃
i∈n(x) Wi (x), where W0(x) is Noetherian of

sub-κ-rank and, for each i ∈ n(x)\{0}, Wi (x) is a chain of neighbourhoods of x with
respect to inclusion, then each open cover of X has a point-< κ open refinement.

PROOF. Let O = {Oα : α < τ } be an open cover for X and Pα = Oα\
⋃

β<α Oβ for
each α < τ . Define

X i = {x ∈ X : 1 ≤ i ≤ n(x) and ∃W ∈Wi (x), ∃α < τ, W ⊆ Oα},

for each i ∈ ω,

γ (x, i) = min{α < τ : ∃W ∈Wi (x), W ⊆ Oα},

for each x in X i , and

I (x) = {i ∈ n(x)\{0} : x ∈ X i }.

For each x ∈ X i and i ∈ I (x) choose a W (x, i) ∈Wi (x) with W (x, i) ⊆ Oγ (x,i). Let

Wx =

⋂
i∈I (x)

W (x, i) and Y =

⋃
i∈ω\{0}

X i ,

where Y is indexed by some ordinal λ: Y = {xβ : β < λ}. In the manner of the proof
of Theorem 5 in [1], we shall construct a subset Yβ of Y for each β < λ. Suppose that
Yγ has been constructed for each γ < β. Then define

Yβ =

{
∅ if xβ ∈

⋃
γ<β Yγ

{z ∈ Y : xβ ∈ Wz, z /∈
⋃

γ<β Yγ } otherwise.

It is clear that Y =
⋃

β<λ Yβ . Take any element x of X . There exists a unique α < τ

such that x ∈ Pα . If x belongs to Y , then there exists a unique β < λ such that x ∈ Yβ .
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Define an open neighbourhood Tx of x as

Tx =

Oα x ∈ X\Y
int(Wx ) ∩ Oα x ∈ Yβ and x = xβ

(int(Wx )\{xβ}) ∩ Oα x ∈ Yβ and x 6= xβ .

Then, for each α < τ , define Vα =
⋃

{V (x, V (x, Tx )) : x ∈ Pα} where V (x, Tx ) is
an open set arising from condition (F). Let V = {Vα : α < τ }. It is easy to see
that V is an open refinement of O. Suppose that V is not point-< κ . It follows
that there exist an x ∈ X and a subset I of κ such that the order type of I is
equal to κ and x ∈ Vα for each α ∈ I . From the definition of Vα , there exists a
yα ∈ Pα such that x ∈ V (yα, V (yα, Tyα )) and so there exists an Sα ∈W(x) such that
yα ∈ Sα ⊆ V (yα, Tyα ). Since yα ∈ Pα and Sα ⊆ Tyα ⊆ Oα for each α ∈ I , we have
yρ /∈ Sα for each α, ρ in I with α < ρ. This leads us to the fact that Sρ * Sα for
α < ρ. Since

{Sα : α ∈ I } ⊂W(x) and W(x) =

⋃
i∈n(x)

Wi (x),

there exist a subset J of I and an i0 such that |J | = κ , 1 ≤ i0 ≤ n(x) and the
family {Sα : α ∈ J } is an increasing subfamily of Wi0(x), by Lemma 2.1. It follows
that yα ∈ V (yρ, Tyρ ) for each α, ρ in J with α < ρ, and therefore there exists a
W α

ρ ∈W(yα) such that yρ ∈ W α
ρ ⊆ Tyρ . Thus, these facts and Lemma 2.1 lead us

to the fact that {yα : α ∈ J } ⊆ Y .
Now, let µ be any element of J . There exists a W µ

α ∈W(yµ) for each α ∈ J with
µ < α such that yα ∈ W µ

α ⊆ Tyα . Since

{W µ
α : α ∈ J, α > µ} ⊆W(yµ) and W(yµ) =

⋃
i∈n(yµ)

Wi (yµ),

there exist a subset M of J and a j0 such that |M | = κ , 1 ≤ j0 ≤ n(yµ) and

{W µ
α : α ∈ M, α > µ} ⊆W j0(yµ),

from Lemma 2.1. Since

{yα : α ∈ J } ⊆ Y and Y =

⋃
β<λ

Yβ ,

there exists a βα < λ with yα ∈ Yβα for each α ∈ M . We can assume that βα ≤ βρ for
each α, ρ in M with α ≤ ρ.

Let α1 ∈ M such that α1 > µ. So W µ
α1 ⊆ Tyα1

⊆ Oα1 , W µ
α1 ∈W j0(yµ) and

minimalities of γ (yµ, j0) lead us to the fact that γ (yµ, j0) ≤ α1. Choose an α2 ∈ M
such that α2 > α1 and yα2 6= xβµ . Since γ (yµ, j0) ≤ α1 < α2 and yα2 ∈ Pα2 , we have
that yα2 /∈ W (yµ, j0), and, since W j0(yµ) is a chain with respect to inclusion, we
have W (yµ, j0) ⊆ W µ

α2 . So yµ ∈ Yβµ and the definition of the set Yβµ lead us to the
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fact that xβµ ∈ Wyµ , and we know that Wyµ ⊆ W (yµ, j0) ⊆ W µ
α2 ⊆ Tyα2

. Therefore
xβµ ∈ Tyα2

. Since µ < α2, we have βµ ≤ βα2 .
Suppose that βα2 = βµ. Then Tyα2

⊆ Wyα2
\{xβµ} by the definition of the set Tyα2

.
But this contradicts the fact that xβµ ∈ Tyα2

. Suppose that βµ < βα2 . Since xβµ ∈ Tyα2
and Tyα2

⊆ Wyα2
, we have xβµ ∈ Wyα2

. So βµ < βα2 , yα2 ∈ Yβα2
and the definition

of the set Yβα2
lead us to the fact that yα2 /∈

⋃
{Yρ : ρ < βµ}. At the same time,

since xβµ ∈ Wyα2
, yα2 has to belong to Yβµ by the definition of the set Yβµ . But this

contradicts the fact that βµ < βα2 . So the family V is point-< κ . 2

From Theorem 2.2, the following result can be concluded immediately.

COROLLARY 2.3. If the space X has a W satisfying (F), and if, for each x,
there exists a finite ordinal n(x) such that W(x) =

⋃
i∈n(x) Wi (x), where W0(x)

is Noetherian of finite rank and, for each i ∈ n(x)\{0}, Wi (x) is a chain of
neighbourhoods of x with respect to inclusion, then X is metacompact.

COROLLARY 2.4. If the space X has a W satisfying (F), and if, for each x, there
exists a finite ordinal n(x) such that W(x) =

⋃
i∈n(x) Wi (x), where Wi (x) is a

chain of neighbourhoods of x with respect to inclusion for each i ∈ n(x), then X is
metacompact.

In [6], the authors pointed out that the Sorgenfrey line has aW satisfying chain (F)

and, for each x , W(x) =W1(x) ∪W2(x) where W1(x) consists of neighbourhoods
of x and W2(x) is well ordered by ⊇. (Put W1(x) = {[x − δ, x + δ] : δ > 0} and
W2(x) = {{x}} for each x .)

The Sorgenfrey line is also an example of a space which satisfies the hypotheses of
Corollary 2.4: one just puts, for each x ,

W(x) = {[x, x + δ] : δ > 0} ∪ {[x − δ, x + δ] : δ > 0}.

(Note that hereW(x) is not a chain for each x .)
Dilworth’s lemma, mentioned in [2, 7], says that ‘if P is a partially ordered set

such that every subset of n + 1 elements of P is dependent while at least one subset
of n elements is independent, then P can be expressed as the sum of n disjoint totally
ordered sets’. So, if W(x) is of finite rank for each x in X , then there exists a finite
ordinal n(x) for each x such that rank(W(x)) = n(x) + 1. Therefore, there exists an
independent subset Ax of n(x) elements of W(x) and we have that each subset of
n(x) + 1 elements of W(x) is dependent. Hence, from Dilworth’s lemma, W(x) can
be expressed as the union of n(x) chains. So, Corollary 2.4 and Dilworth’s lemma give
us the following result.

COROLLARY 2.5. If the space X has aW which is of finite rank (F), and eachW(x)

consists of neighbourhoods of x, then X is metacompact.

By means of the above corollary, the following result proved by Gruenhage and
Nyikos [5, 7] is obtained in a different manner.
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COROLLARY 2.6. If the space X has a base B of point-finite rank (that is, for each x,
the family {B ∈ B : x ∈ B} is of finite rank), then X is metacompact.
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