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Abstract

Two classical stochastic processes are considered, the Ehrenfest process, introduced in
1907 in the kinetic theory of gases to describe the heat exchange between two bodies,
and the Engset process, one of the early (1918) stochastic models of communication
networks. In this paper we investigate the asymptotic behavior of the distributions of
hitting times of these two processes when the number of particles/sources goes to infinity.
Results concerning the hitting times of boundaries in particular are obtained. We rely
on martingale methods; a key ingredient is an important family of simple nonnegative
martingales, an analogue, for the Ehrenfest process, of the exponential martingales used
in the study of random walks or of Brownian motion.
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1. Introduction

1.1. The Ehrenfest process

In this paper we consider the following continuous-time version of the classical Ehrenfest
urn model. This process has been introduced to study the heat exchange between bodies. We
assume that each particle of a set of N particles is located in one of two boxes (bodies), 0 and
1 say. A particle in box 0 goes into box 1 at rate ν and a particle in box 1 goes into box 0 at
rate µ. We denote by EN(t) the number of particles in box 1 at time t ≥ 0. This birth-and-death
process can also be represented as EN(t) = Y1(t)+· · ·+YN(t), where (Yi(t), 1 ≤ i ≤ N) are
N independent and identically distributed (i.i.d.) Markov jump processes with values in {0, 1}.

Initially, the model describes a discrete-time process (ZN(k)) and at each unit of time a
particle is taken at random (i.e. all particles are equally likely) to be moved from one box to the
other; ZN(k) is the number of particles in box 1 at time k. This corresponds to the symmetrical
case, µ = ν, and, clearly, EN(t) can be represented as ZN(NNµ((0, t])) if NNµ is a Poisson
process with rate Nµ. The process (EN(t)) follows the same path as (ZN(k)), but on a time
scale with a factor Nµ. The Markov chain (ZN(k)) is also a random walk on the graph of
the hypercube {0, 1}N , where edges connect elements that differ in only one coordinate. The
equilibrium properties of (EN(t)) and (ZN(k)) are fairly well known, in particular a quite
precise estimate of the duration of time to reach equilibrium is available. See [2].
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Transient behavior of Ehrenfest and Engset processes 563

Results on transient quantities of this process, like the distribution of the first time when the
box 0 is empty, are rarer. There are generic results on birth-and-death processes which describe
some of these distributions in terms of spectral characteristics of the associated infinitesimal
generator: the spectral measure and a family of orthogonal polynomials. See [11] and [12]. In
practice, the corresponding orthogonal polynomials and, sometimes, their spectral measure do
not have a simple representation; this significantly complicates detailed investigations of these
hitting times. In the symmetrical case, µ = ν, Palacios [16] gave closed-form expressions
for the averages of hitting times, and Bingham [1] and Flajolet and Huillet [7] obtained a
representation of their distributions. In the general case Crescenzo [3] and Flegg et al. [9]
provided expressions of the densities. It turns out that the expressions obtained in these papers
involve, in general, sums of combinatorial terms for which asymptotic results (when N goes to
infinity) may be difficult to obtain. Note that this is nevertheless done in the symmetrical case
in [7].

1.2. The Engset process

This is one of the oldest stochastic models of communication networks; see [4]. For this
model, there are N sources of communication which are active (state 1) or inactive (state 0).
An active source becomes inactive at rate µ. The total number of simultaneous active sources
cannot exceed the quantity CN , the number of circuits of the network. An inactive source
can therefore become active only if there are already strictly less than CN active sources, in
which case it occurs at rate ν. If XN(t) is the number of active communications at time t ,
when CN = N , the process is just the Ehrenfest process. Otherwise, (XN(t)) can be described
as a reflected version of (EN(t)). At equilibrium the expression for the probability that XN

is equal to CN is known as the Engset formula. For transient characteristics, the important
quantity is the time it takes to have the full capacity CN of the network used. For this reason,
the distribution of the hitting time of CN by (XN(t)) is of special interest. To the best of the
authors’ knowledge, results concerning this hitting time are quite rare, in particular for possible
asymptotics when N goes to infinity.

1.3. A storage system

Another, more recent, motivation for considering (XN(t)) is the stochastic analysis of a stor-
age system where files are duplicated on CN servers. Each server breaks down independently
at rate µ, in which case it is repaired but all its files are lost. As a simplified model, XN(t) is
defined as the number of copies of a specified file. If XN(t) = x then a copy of the file is lost
if one of the servers breaks down, i.e. at rate xµ. If XN(t) = 0, there is no copy of the file in
the system, it is lost, so 0 is an absorbing point. If 0 < x < CN then a new copy of the file
may be added but at rate N − x; N is the maximal capacity of duplication of the system. It is
easily seen that as long as (XN(t)) does not hit 0, (XN(t)) is precisely the Engset process. In
this context it is of special interest to study the distribution of the first time when the file is lost,
i.e. the hitting time of 0. See [6].

1.4. A collection of exponential martingales

In this paper we rely heavily on the use of martingales to derive explicit, simple, expressions
of the Laplace transforms of the hitting times of a state of the system. We obtain expressions
of these transforms as ratios of simple integrals for which various asymptotic results, when N

goes to infinity, can be derived quite easily with standard technical tools. In particular, we do
not need to cope with the asymptotic behavior of sums of combinatorial expressions. Quite
surprisingly, up to now, martingales have not played a major role in the previous studies of
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the Ehrenfest process. We mention the work by Simatos and Tibi [22], who used a martingale
approach to estimate certain exit times for multidimensional Ehrenfest processes. It is one of
the aims of this paper to show that a simple and important family of martingales allows a quite
detailed investigation of this process, and also of its variants, such as the Engset process.

The key ingredient of this paper is a set of nonnegative martingales which will be called
exponential martingales. If (M(t)) is a martingale on some probability space, the associated
exponential martingale is the solution (Z(t)) of the stochastic differential equation (SDE)

dZ(t) = Z(t−) dM(t), t ≥ 0,

where Y (t−) is the left limit of Y at t and dY (t) is the limit on the right of t of s �→ Y (s)−Y (t−).
It is called the Doléans exponential of (M(t)). See Chapter IV of [19] for example. Although
there is an exponential martingale for each martingale, a small subset of these martingales plays
an important role. For the standard Brownian motion (B(t)) this is the martingale(

exp
(
βB(t) − 1

2β2t
))

for a fixed β ∈ R. It is very helpful to derive explicit expressions for Laplace transforms of
hitting times associated to Brownian motion. See [17]. For jump processes, this is less clear.
It does not seem that a ‘classification’ of exponential martingales exists in general, even for
birth-and-death processes. See Chapter V of [5] and [20] for related questions. Some examples
of important processes are reviewed.

For ξ ∈ R+, Nξ denotes a Poisson process with rate ξ and (Nξ,i ) denotes an i.i.d. sequence
of such Poisson processes. All Poisson processes are assumed to be independent.

Random walks. The classical exponential martingale associated to the random walk (S(t)) =
(Nλ([0, t]) − Nµ([0, t])) is given by

(exp(−βS(t) − t (λ(1 − e−β) + µ(1 − eβ)))) for β ∈ R.

It is the exponential martingale associated to the martingale

(β(S(t) − (λ − µ)t)).

The corresponding reflected process is the M/M/1 queue with input rate λ and service
rate µ.

The M/M/∞ process. This is a classical Markov process on N whose Q-matrix Q = (q(x, y))

is, for x ∈ N, q(x, x + 1) = λ and qN(x, x − 1) = µx. It can also be seen as a kind of
discrete Ornstein–Uhlenbeck process, defined as the solution (L(t)) of the SDE

dL(t) = Nλ(dt) −
L(t−)∑
i=1

Nµ,i(dt).

The following martingale was introduced in [10]: for β ∈ R,(
(1 + βeµt )L(t) exp

(
−βeµtλ

µ

))
. (1)

It is the exponential martingale associated to the martingale(∫ t

0
(1 + βeµs)[Nλ(ds) − λ ds] −

+∞∑
i=1

∫ t

0

1

1 + βeµs
1{i<L(s−)}[Nµ,i(ds) − µ ds]

)
.
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The Ehrenfest process. Such a process, (EN(t)), with N particles can be seen as the solution
of the SDE

dL(t) =
N−L(t−)∑

i=1

Nν,i(dt) −
L(t−)∑
i=1

Nµ,i(dt).

It will be seen that the corresponding exponential martingale is given by

((1 − βµe(µ+ν)t )EN (t)(1 + βνe(µ+ν)t )N−EN(t)) for β ∈ R.

It is the exponential martingale associated to the martingale defined by, up to the multi-
plicative factor β(µ + ν),

( N∑
i=1

∫ t

0
e(µ+ν)s(1{Yi(s−)=1}[Nµ,i(ds) − µ ds] − 1{Yi(s−)=0}[Nν,i(ds) − ν ds])

)
,

where the (Yi(t)) are such that EN(t) = Y1(t) + · · · + YN(t). Recall that the Engset
process is a reflected version of this process.

From these exponential martingales, explicit expressions of Laplace transforms of the
distribution of hitting times associated with these processes can be derived. It may be not be
as straightforward as in the case of Brownian motion since the space variable t is not separated
from the space variable, but a convenient integration with respect to the free parameter β solves
the problem. See Chapters 5 and 6 of [18] for the M/M/1 and M/M/∞ processes, and Section 3
for the Ehrenfest process. See also [21].

From the point of view of potential theory, these martingales are associated to the set of
extreme harmonic functions. This statement can be made precise in terms of the space–time
Martin boundary. See [15] and the discussion in Section 3.

1.5. Organization of the paper

In Section 2, the two stochastic processes are defined precisely. In Section 3, the expo-
nential martingale for the Ehrenfest process is introduced, and, based on it, several interesting
martingales for the Ehrenfest process and the Engset process are constructed. As a corollary,
closed-form expressions of the Laplace transform of the hitting time of a given state are obtained
as the ratio of simple integrals. This holds in particular for the blocking time for the Engset
process. The last three sections are devoted to the analysis of the asymptotic behavior of the
distribution of the hitting time of CN and 0 when N goes to infinity in such a way that CN ∼ ηN

for some 0 < η ≤ 1. In each section we consider one of the following three possible regimes:
supercritical, when the difference CN −XN(t) converges to a finite process; subcritical, when
ν < η, the process ‘lives’ in the neighborhood of νN ; and, finally, critical, when CN − XN(t)

is of the order of
√

N . For each regime, by taking advantage of the simple expressions of
the corresponding Laplace transforms obtained, various convergence-in-distribution results are
derived.

2. The stochastic model

2.1. The Ehrenfest process

Let (Y (t)) be the simple Markov process on {0, 1} whose Q-matrix QY is given by

QY =
(−ν ν

µ −µ

)
.
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For N ∈ N, if (Yi(t)), 1 ≤ i ≤ N , are N independent copies of (Y (t)), the Ehrenfest process
(EN(t)) is also a birth-and-death process, but on the state space {0, 1, . . . , N}, defined as

EN(t) = Y1(t) + Y2(t) + · · · + YN(t). (2)

The Q-matrix of (EN(t)) will be denoted by QEN
= (qEN

(x, y)), where, for x ∈ {0, . . . , N},

qEN
(x, x − 1) = µx and qEN

(x, x + 1) = ν(N − x).

2.2. The Engset process

For 1 ≤ CN ≤ N , the Engset process (XN(t)) is a birth-and-death process on {1, . . . , CN }
which can be seen as a reflected version of (EN(t)) at the boundary CN , i.e. its Q-matrix
QXN

= (qXN
(x, y)) is given by, for 0 ≤ x ≤ CN ,

qXN
(x, x − 1) = µx and qXN

(x, x + 1) = ν(N − x) if x < CN.

In particular, the process (XN(t)) has the same distribution as the process (EN(t)) constrained
to the state space {0, . . . , CN }. In particular, when CN = N , the two processes (XN(t)) and
(EN(t)) starting from the same initial state have the same distribution.

As ergodic birth-and-death processes, the Markov processes (XN(t)) and (EN(t)) are
reversible and their stationary distribution at x is, up to a normalization constant, given by

(
N

x

)(
ν

µ

)x

,

if x is an element of their respective state space.

2.3. Normalization of the time scale

By considering the time scale t → t/(ν + µ) in the analysis of the processes (EN(t)) and
(XN(t)), it can be assumed without any loss of generality that ν +µ = 1. This will be the case
in this paper.

2.4. A limiting regime

In the following it will be assumed that the constant CN is asymptotically of the order of N ,
i.e. that

η := lim
N→+∞

CN

N
, (3)

holds for some η ∈ (0, 1].
For large t , the probability that the variable Y (t) defined above is at 1 is given by its

equilibrium distribution at 1, that is, ν. It follows from the law of large numbers that EN(t)

is of the order of Nν. Roughly speaking, if Nν < CN for large N , i.e. ν < η, then the
boundary at CN should not play a significant role for first-order quantities related to (XN(t)),
and, therefore, the processes (XN(t)) and (EN(t)) should have the same behavior in the limit.
However, if ν ≥ η, due to the reflecting boundary at CN for (XN(t)), the Ehrenfest and the
Engset processes should behave differently. This phenomenon will be stated more precisely in
the last three sections of the paper.
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3. Positive martingales

Several families of positive martingales for the Ehrenfest and the Engset processes are
introduced in this section. More specifically, when (Z(t)) is either (XN(t)) or (EN(t)), we
identify a set of functions f : N × R+ �→ R+ such that the process (f (Z(t), t) is a martingale,
i.e. that, for t ≥ 0, the relation

E(f (Z(t), t) | Ft ) = f (Z(s), s) for s ≤ t

holds almost surely, where (Ft ) is the natural filtration associated with (Z(t)).
If QZ = (qZ(·, ·)) is the Q-matrix of (Z(t)), this probabilistic property is equivalent to the

fact that the function f is space–time harmonic with respect to QZ , i.e. that the relation

∂

∂t
f (x, t) + QZ(f (·, t))(x) = 0

holds for x ∈ N and t ≥ 0, where, for h : N �→ R+,

QZ(h)(x) =
∑
y∈N

q(x, y)h(y).

A space–time harmonic function of the Markov process (Z(t)) is just a harmonic function of
the transient Markov process ((Z(t), t)). See Appendix B of [18] for example. When (Z(t))

is (EN(t)), we will prove that there is a family fβ, β ∈ R, of such functions. As will be seen,
these martingales can be interpreted as exponential martingales. In particular, they will give
an explicit expression for the Laplace transform of the hitting times associated with both the
(EN(t)) and (XN(t)) processes.

For a given birth-and-death process, there is already a complete description of all such
positive martingales. This is the (space–time) Martin boundary of the birth-and-death process;
see [15]. This description is expressed in terms of the orthogonal polynomials associated with
the birth-and-death process which may be defined by an induction relation or by the measure
with respect to which they are orthogonal; see [11] and Chapter 2 of [23]. As long as moments
of some transient characteristics are investigated, these martingales can be used, but, in general,
they do not seem to be particularly helpful to analyze the distributions of hitting times.

This situation is quite classical for, e.g. Brownian motion, for which there is a family
of martingales indexed by N ∈ N: if HN is the Hermite polynomial of degree N then
(MN(t)) = (tN/2HN(B(t)/

√
t)) is a martingale. Another family of martingales is provided

by the exponential martingale (exp(βB(t) − β2t/2)) indexed by β ∈ R. This exponential
martingale can be expressed as a weighted sum of the martingales (MN(t)), but to obtain
explicit expressions of the distributions of hitting times, it is the most useful martingale.
See Propositions 3.4 and 3.8 of [17, Chapter 3] for example. In the case of birth-and-death
processes, a general result concerning the construction of such exponential martingales from
the martingales associated with the orthogonal polynomials does not seem to exist.

3.1. Exponential martingales for the Ehrenfest process

Owing to the simple structure of the Ehrenfest process, these martingales are really elemen-
tary. Nevertheless, they play a fundamental role; most of the asymptotic results obtained in this
paper are based on these martingales. A more general version in a multidimensional context
has been introduced by Simatos and Tibi [22].
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Proposition 1. (Exponential martingales.) For β ∈ R, the process

(M
β
N(t)) = ((1 − βµet )EN (t)(1 + βνet )N−EN(t)) (4)

is a martingale.

Proof. Define, for N ≥ 1, t ≥ 0, and 0 ≤ x ≤ N ,

h
β
N(x, t) = (1 − βµet )x(1 + βνet )N−x. (5)

Clearly, the relations

∂

∂t
h

β
1 (0, t) = βνet = −QY (h

β
1 (·, t))(0) and

∂

∂t
h

β
1 (1, t) = −βµet = −QY (h

β
1 (·, t))(1),

hold, where QY is the Q-matrix of (Y (t)) introduced in Section 2. Consequently, the function
h

β
1 is space–time harmonic for the matrix QY , or, equivalently, (f (Y (t), t)) is a martingale.

If ((Yi(t)), 1 ≤ i ≤ N) are N independent copies of (Y (t)) then, by using the independence
of the processes (Yi(t)), i = 1, . . . , N , and (2), we find that the process( N∏

i=1

f (Yi(t), t)

)
d= (M

β
N(t)) = (h

β
N(EN(t), t))

is also martingale with respect to the filtration (Ft ) = (σ 〈Yi(s), s ≤ t, 1 ≤ i ≤ N〉). In
particular, the function h

β
N is space–time harmonic with respect to QEN

.

3.2. Martingales associated with orthogonal polynomials

As remarked by Karlin and McGregor [11], [13], the polynomials associated with the
Ehrenfest process are the N + 1 Krawtchouk polynomials (KN

n , 0 ≤ n ≤ N) defined by

KN
n (x) =

(
N

n

)−1 n∑
�=0

(−1)�
(

x

�

)(
N − x

n − �

)(
µ

ν

)�

, 0 ≤ n, x ≤ N.

These polynomials are orthogonal with respect to the binomial distribution((
N

k

)
νkµN−k, 0 ≤ k ≤ N

)
.

From the classical identity, see Karlin and McGregor [11] for example,

N∑
�=0

(
N

�

)
KN

n (x)u� = (1 + u)N−x

(
1 − µ

ν
u

)x

, u ∈ R,

and the above proposition, it follows that(
N∑

n=0

(
N

�

)
KN

n (EN(t))βnent

)
= (M

β/ν
N (t))

is a martingale. Consequently, for any 0 ≤ n ≤ N , the process (KN
n (EN(t)) exp(nt)) is a

martingale. The martingale (M
β
N(t)) can thus be seen as an encoding of these N +1 martingales

in the same way as the exponential martingale of the Brownian motion with the Hermite
polynomials, or the martingale (1) with the Poisson–Charlier polynomials. See [18], [20],
and [21].
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Note that the space variable EN(t) and the time variable t are not separated in the exponential
martingale (4). Provided that it can be used, Doob’s optional stopping theorem applied to some
hitting time of some specified state x does not give useful information on the distribution of
this variable. However, given that there is a free parameter β ∈ R in (4) and that the martingale
property is clearly preserved by integration with respect to β, we can try to find a measure on
R+ that will ‘separate’ the space and time variables. The following proposition uses such a
method.

Proposition 2. For any α > 0 and t ≥ 0, if

IN
α (t) = e−αt

∫ 1

0
(1 − u)EN(t)

(
1 + ν

µ
u

)N−EN(t)

uα−1 du,

JN
α (t) = e−αt

∫ 1

0
(1 − u)N−EN(t)

(
1 + µ

ν
u

)EN(t)

uα−1 du,

(6)

and
T EN

x = inf{t > 0 : EN(t) = x}, 0 ≤ x ≤ N,

then (Iα(t ∧ T
EN

0 )) and (Jα(t ∧ T
EN

N )) are martingales.

Proof. Since (N − EN(t)) is also an Ehrenfest process, but with the two parameters µ and
ν exchanged, we need only prove that the process (Iα(t ∧ T

EN

0 )) is a martingale.
Define

fN(x, t) :=
∫ e−t /µ

0
h

β
N(x, t)βα−1 dβ,

where h
β
N is defined in (5); then

∂fN

∂t
(x, t) =

∫ e−t /µ

0

∂h
β
N

∂t
(x, t)βα−1 dβ − e−αt

µα
h

e−t /µ
N (x, t).

Note that the last term of the above expression is 0 if x 
= 0. Consequently, for x 
= 0 and
t ≥ 0,

∂fN

∂t
(x, t) + QEN

(fN)(x, t) =
∫ e−t /µ

0

[
∂h

β
N

∂t
(x, t) + QEN

(h
β
N)(x, t)

]
βα−1 dβ = 0,

because h
β
N is space–time harmonic with respect to QEN

, as in the proof of Proposition 1. In
other words, the function fN is space–time harmonic for the Q-matrix of the stopped process
(EN(t ∧ T

EN

0 )); hence,

(fN(EN(t ∧ T
EN

0 ), t ∧ T
EN

0 )) = (IN
α (t ∧ T

EN

0 ))

is a martingale.

It is now easy to obtain a representation of the Laplace transform of the hitting times for the
Ehrenfest process.

Proposition 3. (Laplace transform of the hitting times.) For 0 ≤ x ≤ y ≤ N and if T
EN
x =

inf{t > 0 : EN(t) = x}, the relations

Ey(exp(−αT EN
x )) = Bx(α)

By(α)
and Ex(exp(−αT EN

y )) = Dx(α)

Dy(α)
(7)
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hold, with
Bx(α) =

∫ 1

0
(1 − u)x

(
1 + ν

µ
u

)N−x

uα−1 du,

Dx(α) =
∫ 1

0
(1 − u)N−x

(
1 + µ

ν
u

)x

uα−1 du.

(8)

There is in fact only one result here since (N −EN(t)) is, as already remarked, an Ehrenfest
process with the parameters µ and ν exchanged. The second relation of (7) is therefore a
consequence of the first relation.

Proof of Proposition 3. The martingale Iα(t ∧ T0) is bounded and so uniformly integrable.
Therefore, Doob’s optional stopping theorem gives the relation Ey(Iα(0)) = Ey(Iα(Tx)), and
the first relation of (7) follows.

By expanding one of the terms of the integrand of (8), we obtain

Bx(α) =
N−x∑
k=0

(
N − x

k

)(
ν

µ

)k ∫ 1

0
(1 − u)xuα+k−1 du

=
N−x∑
k=0

(
N − x

k

)(
ν

µ

)k

(x + 1)
(α + k)


(α + x + k + 1)
,

by Euler’s integral for beta and gamma functions. See [24, p. 254] for example. Laplace
transforms of hitting times can therefore also be expressed as the ratio of such sums, as is quite
common for hitting times of birth-and-death processes. See Equation (4.4) of [13] for example.
Flajolet and Huillet [7] used this kind of representation in the symmetrical case. As will be
seen, from the compact representation (8) with integrals, we will obtain asymptotic results for
the distribution of these variables with standard techniques.

3.3. Martingales for the Engset process

It has been seen that the Engset process (XN(t)) is a reflected version of the process (EN(t))

at the boundary CN . The two families of martingales in Proposition 2 cannot be used directly if
the sample path of (EN(t)) exceeds CN , when the hitting times of 0 are analyzed for example.
The idea is to construct a linear combination of the martingales (Iα(t)) and (Jα(t)) such that the
space–time harmonicity of the corresponding function, which is valid when the space variables
are in {1, . . . , CN − 1}, also holds at the boundary CN . This method has been used in [14] in
the case of reflected random walks.

Proposition 4. For α > 0, define

bN(α) = ν

∫ 1

0
(1 − u)CN

(
1 + ν

µ
u

)N−CN−1

uα du,

dN(α) = µ

∫ 1

0
(1 − u)N−CN−1

(
1 + µ

ν
u

)CN

uα du,

and

(KN
α (t)) = (dN(α)IN

α (t) + bN(α)JN
α (t)),

where (IN
α (t)) and (JN

α (t)) are defined by (6) with EN(t) replaced by XN(t). Then, if T
XN

0 is
the hitting time of 0 by (XN(t)), the process (KN

α (t ∧ T
XN

0 )) is a martingale.
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Proof. Define the function gα such that, for all t ≥ 0 and 0 ≤ x ≤ CN ,

gα(x, t) = dN(α)e−αt

∫ 1

0
(1 − u)x

(
1 + ν

µ
u

)N−x

uα−1 du

+ bN(α)e−αt

∫ 1

0
(1 − u)N−x

(
1 + µ

ν
u

)x

uα−1 du.

The function gα is space–time harmonic for the matrix QXN
on {1, . . . , CN − 1}, that is,

[
∂gα

∂t
+ QXN

(gα)

]
(x, t) = 0, 0 < x < CN,

since the two matrices QXN
and QEN

are identical as long as the starting point is in {1, . . . , CN −
1}, and (IN

α (t ∧ T
EN

0 )) and (JN
α (t ∧ T

EN

N )) are martingales by Proposition 2.
The space–time harmonicity of gα for the matrix QEN

at CN < N gives

[
∂gα

∂t
+ QXN

(gα)

]
(CN, t) = −ν(N − CN)[gα(CN + 1, t) − gα(CN, t)].

For 0 ≤ y ≤ 1, we have

(1 − y)CN+1
(

1 + ν

µ
y

)N−CN−1

− (1 − y)CN

(
1 + ν

µ
y

)N−CN

= − y

µ
(1 − y)CN

(
1 + ν

µ
y

)N−CN−1

,

and, similarly,

[
∂gα

∂t
+ QXN

(gα)

]
(CN, t) = N − CN

µ
(dN(α)bN(α) − bN(α)dN(α)) = 0.

The function gα is therefore space–time harmonic for the Q-matrix of the stopped process
(XN(t ∧ T

XN

0 )); hence, the process (KN
α (t ∧ T

XN

0 )) is a martingale.

Proposition 5. (Laplace transform of the hitting times for the Engset process.) For 0 ≤ x ≤
y ≤ CN , if T

XN
x = inf{s ≥ 0 : XN(s) = x} then, for α ≥ 0,

Ex(exp(−αT XN
y )) = Dx(α)

Dy(α)
and Ey(exp(−αT XN

x )) = dN(α)By(α) + bN(α)Dy(α)

dN(α)Bx(α) + bN(α)Dx(α)
,

using the notation given in Propositions 3 and 4.

Proof. The first identity comes from the fact that the two processes (XN(t)) and (EN(t)),
starting from the same initial state, are identical in distribution as long as they do not reach CN .
In particular, if XN(0) = EN(0) = x, the variables T

EN
y and T

XN
y have the same distribution.

The second identity is a direct consequence of the martingale property of (KN
α (t ∧ T

XN

0 ))

proved in the above proposition.
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4. A fluid picture

In this section we give a short description of the first-order properties of the Ehrenfest and
Engset processes as N goes to infinity. Its purpose is mainly to introduce the three natural
possible asymptotic regimes that will be investigated in detail in the last sections. The proofs
of the asymptotic results are quite standard and will therefore be omitted.

From now on, it is assumed that relation (3) holds, that is,

lim
N→+∞

CN

N
= η > 0.

The Engset process (XN(t)) can also be seen as the unique solution of the SDE

dXN(t) = 1{XN(t−)<CN }
N−XN(t−)∑

i=1

Nν,i(dt) −
XN(t−)∑

i=1

Nµ,i(dt),

starting from XN(0), where, for ξ > 0, the (Nξ,k) are independent Poisson processes with
rate ξ .

The initial state is assumed to satisfy

lim
N→+∞

XN(0)

N
= x0 ∈ [0, η];

then, by complementing Poisson processes in order to get martingales, the above equation can
be rewritten as

dXN(t) = dMN(t) + [ν(N − XN(t)) 1{XN(t)<CN } −µXN(t)] dt,

where (MN(t)) is a martingale of the order of
√

N . In the same way as for the Erlang process,
see Chapter 6 of [18] for example, we can prove the following convergence in distribution of
processes:

lim
N→+∞

(
XN(t)

N

)
= (min(η, ν + (x0 − ν)e−t )).

This first-order description of the Engset process shows that there are three different asymptotic
regimes.

Supercritical regime: ν > η. Under this condition, the renormalized process is at the boundary
CN at time

t∗ := log

(
ν − x0

ν − η

)
. (9)

A more detailed picture can be obtained by looking at the process

(ZN(t)) =
(

CN − XN

(
t

N

))

of empty spaces with a ‘slow’ time scale. As N goes to infinity, it is easily seen that the
Q-matrix of this birth-and-death process converges to the Q-matrix of an ergodic M/M/1
process with input rate η and service rate ν. In particular, this gives the asymptotic
expression of the Engset formula: for t ∈ R+,

lim
N→+∞ P(XN(t) = CN) = 1 − η

ν
.
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Subcritical regime: ν < η. In this case we have

lim
N→+∞

(
XN(t)

N

)
= (ν + (x0 − ν)e−t ) = lim

N→+∞

(
EN(t)

N

)
.

As expected, the boundary at CN does not play a role: at first order, the Engset process
and the Ehrenfest process are identical.

Critical regime: ν = η. From the fluid limit picture we know that the system saturates ‘at
infinity’, which, as we will see, is a too rough description of its evolution.

The next sections are devoted to the asymptotic analysis of the distributions of hitting
times. For simplicity, it is assumed that the initial state is on the boundary, either 0 or CN .
Similar results could be obtained without any additional difficulty when the initial state is in
the neighborhood of some �zN� for 0 ≤ z ≤ η.

5. Supercritical regime

As we have seen, under the condition ν > η and at time t∗ defined in (9), the system is
saturated in the fluid limit. This implies in particular that the hitting time of the boundary CN ,

T
XN

CN
= inf{s ≥ 0; XN(s) = CN },

converges in distribution to t∗. The following proposition gives a more precise asymptotic
result. See [7] for a related result in the symmetrical case.

Proposition 6. If CN = ηN + O(1), η < ν, and XN(0) = 0, then the sequence of random
variables (√

N

[
T

XN

CN
− log

(
ν

ν − η

)])
converges in distribution to a centered normal random variable with variance

√
η(1 − η)

ν − η
.

Proof. Proposition 3 gives

E0(exp(−α
√

NT
XN

CN
))

=
∫ √

N

0

(
1 − u√

N

)N

u
√

Nα−1 du

×
(∫ √

N

0

(
1 − u√

N

)N−CN
(

1 + µ

ν

u√
N

)CN

u
√

Nα−1 du

)−1

(10)

for α ≥ 0. The integrand in the numerator of (10) can be expressed as exp(fN(u)), with

fN(u) = N log

(
1 − u√

N

)
+ (

√
Nα − 1) log u.

The function has a unique maximum at

yN = α
√

N − 1√
N + α − 1/

√
N

= α − 1 + α2

√
N

+ o

(
1√
N

)
,
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and

fN(yN) = (α log(α) − α)
√

N − α2

2
− log(α) + o(1),

f
′′
N(yN) = −1 + α2

α2 −
√

N

α
+ o(1).

Laplace’s method, see Section B.6 of [8] for example, therefore gives the relation

∫ √
N

0
efN (u) du ∼

√
2π√−f
′′
(yN)

efN (yN )

∼
√

2πα

N1/4 exp

(
(α log(α) − α)

√
N − α2

2
− log(α)

)
. (11)

Similarly, the integrand in the denominator of (10) can be expressed as exp(gN(u)), with

gN(u) = (N − CN) log

(
1 − u√

N

)
+ CN log

(
1 + µ

ν

u√
N

)
+ (

√
Nα − 1) log u.

This concave function on the interval (0,
√

N) has a unique maximum at zN = z0 − δ/
√

N +
o(1/

√
N), with

z0 = α
ν

ν − η
and δ = ν

α2(ν2 + η − 2ην) + (ν − η)2

(ν − η)3 ,

and, with some calculations, we find that

gN(zN) =
(

−α + α log(α) + α log

(
ν

ν − η

))√
N + (2νη − ν2 − η)

(ν − η)2

α2

2

− log(α) − log

(
ν

ν − η

)
+ o(1)

and

g′′
N(zN) = −

(
1 − η + η

(1 − ν)2

ν2

)
− α

√
N − 1

z2
0

+ o(1).

Again, by Laplace’s method we obtain

exp

(
−α

√
N log

ν

ν − η

)∫ √
N

0
egN (u) du

∼
√

2πα

N1/4 exp

(
(α log(α) − α)

√
N + 2νη − ν2 − η

(ν − η)2

α2

2
− log(α)

)
. (12)

Equation (10) together with (11) and (12) finally give

lim
N→+∞ E

(
exp

(
−α

√
N

[
T

XN

CN
− log

(
ν

ν − η

)]))
= exp

(
η(1 − η)

(ν − η)2

α2

2

)
.
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5.1. An informal proof

The limit theorem obtained in Proposition 6 is a consequence of some detailed, but simple,
calculations that use Laplace’s method. We can quite quickly gain an idea of the possible limit
with the help of the exponential martingale (M

β
N(t)) of Proposition 1 through a nonrigorous

derivation. As will be seen, it gives the correct answer, but its justification seems to be difficult.
The main problem comes from the fact that, in this martingale, the term et stopped at some
random time may not be integrable. For example, it is easily seen that the first jump of the
martingale (M

β
1 (t)) is not a regular stopping time for this martingale, i.e. the optional stopping

theorem is not valid here.
Define ZN = √

N(exp(T
XN

CN
) − exp(t∗)), where t∗ is, as before, log(ν/(ν − η)). Using

martingale (4) and assuming that the stopping time T
XN

CN
is regular for it, we obtain

E

((
1 − µ exp(T

XN

CN
)β√

N

)CN
(

1 + ν exp(T
XN

CN
)β√

N

)N−CN
)

=
(

1 + νβ√
N

)N

.

This can be written as E(exp(UN)) = 1, with

UN = CN log

(
1 − µ exp(T

XN

CN
)β√

N

)
+ (N − CN) log

(
1 + ν exp(T

XN

CN
)β√

N

)

− N log

(
1 + νβ√

N

)
;

hence,

UN = −β(η − ν)ZN − ((ηµ2 + (1 − η)ν2)e2t∗ − ν2)
β2

2
+ o

(
1

N

)

= −β(η − ν)ZN − ν2η(1 − η)

(ν − η)2

β2

2
+ o

(
1

N

)
,

provided that the limit can be taken under the integral. We finally obtain

lim
N→+∞ E(e−βZN ) = exp

(
β2

2

ν2η(1 − η)

(ν − η)4

)
.

Expressed as a limit theorem for T
XN

CN
, this is precisely the above proposition.

6. Subcritical regime

It is assumed in this section that ν < η, so that the Ehrenfest process ‘lives’ in the interior
of the state space; the hitting time of the boundary CN should therefore be quite large. The
following propositions give asymptotic results concerning this phenomenon.

The first result concerns the time it takes for the Ehrenfest process to have all particles in
one box when, initially, they are all in the other box. This is of course a very natural quantity
for this process. In the discrete-time case, representations of the average of this quantity have
been obtained in a symmetrical setting. See [1], [16], and the references therein.

Proposition 7. If ν < 1, XN(0) = 0, and CN = N , then the sequence of random variables
(NνNT

XN

CN
) converges in distribution to an exponentially distributed random variable with

parameter 1 − ν.
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Proof. We use (7) to obtain, for N ≥ 1,

E(exp(−αNT
XN

N )) =
∫ 1

0
(1 − u)NuαN−1 du

/∫ 1

0

(
1 + µ

ν
u

)N

uαN−1 du, (13)

with αN = αNνN for some α > 0.
The numerator in this expression can be written, after an integration by parts, as∫ 1

0
(1 − u)NuαN−1 du =

∫ 1

0
N(1 − u)N−1 uαN

αN

du

= N−αN

∫ N

0

(
1 − u

N

)N−1
uαN

αN

du

∼ 1

αN

,

by dominated convergence.
By subtracting 1/αN from the denominator on the right-hand side of (13), we obtain


N :=
∫ 1

0

((
1 + µ

ν
u

)N

− 1

)
uαN−1 du

= Nµ

ν

∫ 1

0

(
1 + µ

ν
u

)N−1 1 − uαN

αN

du

= 1

νN

∫ N

0
µ

(
1 − µ

u

N

)N−1 1 − (1 − u/N)αN

αN

du;

hence,

αN
N = αN

NνN

∫ N

0
µ

(
1 − µ

u

N

)N−1 1 − (1 − u/N)αN

αN/N
du ∼ α

∫ +∞

0
µe−µuu du = α

µ
.

These two asymptotic results substituted into (13) give the desired convergence in distribution.

Theorem 2 of [1] provides a similar result in the symmetrical case, µ = ν, and in discrete
time. In the present case, there is an additional factor N in the scaling of T

XN

CN
which is due to

the fact that the continuous-time dynamics are N times faster than the discrete-time dynamics.

Proposition 8. If CN = ηN + O(1), ν < η < 1, and XN(0) = 0, then, if

H = (1 − η) log

(
1 − η

1 − ν

)
+ η log

(
η

ν

)
,

the sequence of random variables( √
η(1 − η)

(η − ν)
√

2π

√
Ne−NH T

XN

CN

)
(14)

converges in distribution to an exponentially distributed random variable with parameter 1.

We note that the exponential decay factor H in the above proposition is in fact a relative
entropy of Bernoulli random variables with respective parameters η and ν. Despite similar
‘entropy’ expressions appearing at several occasions in the study of these processes, we have
not been able to find a simple explanation for the occurrences of these constants.
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Proof of Proposition 8. For α > 0, denote by αN the product of α and the coefficient of
T

XN

CN
in (14). Equation (7) is again used:

E(exp(−αNT
XN

N )) =
∫ 1

0
(1−u)NuαN−1 du

/∫ 1

0
(1−u)N−CN

(
1+ µ

ν
u

)CN

uαN−1 du. (15)

The asymptotic behavior of the numerator of this Laplace transform has already been obtained
in the proof of the above proposition.

To study the denominator, we proceed as before. For u ∈ [0, 1], write

fN(u) = (N − CN) log(1 − u) + CN log

(
1 + µu

ν

)
.

This function has a unique maximum at

y0 := CN/N − ν

1 − ν
= η − ν

1 − ν
+ O

(
1

N

)
,

given by

fN(y0) =
[
(1 − η) log

(
1 − η

1 − ν

)
+ η log

(
η

ν

)]
N + o(1)

and

f ′′
N(y0) = − (1 − ν)2

η(1 − η)
N + o(1).

The denominator in (15) is

∫ 1

0

[
(1 − u)N−CN

(
1 + µ

ν
u

)CN

− 1

]
uαN−1 du

=
∫ 1

0
[efN (u) − 1]uαN−1 du

=
∫ 1

0
f ′

n(u)efN (u) y
αN

0 − uαN

αM

du + 1 − y
αN

0

αN

,

by integration by parts. The integral IN on the right-hand side can be written as

IN =
∫ (1−y0)

√
N

−y0
√

N

1√
N

f ′
N

(
y0 + u√

N

)
efN (y0+u/

√
N) y

αN

0 − (y0 + u/
√

N)αN

αN

du;

hence,

IN = y
αN−1
0

−f ′′
N(y0)

N3/2 efN (y0)

∫ +∞

−∞
u2 exp

(
f ′′

N(y0)

N

u2

2

)
du + o

(
1

N

)

= 1

y0

√
2π

−f ′′
N(0)

efN (y0) + o

(
1

N

)
.

Combining,

lim
N→+∞ E(exp(−αNT

XN

N )) = 1

1 + α
.
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Proposition 9. (Hitting time of the empty state.) Under the condition ν < η and if CN =
ηN + O(1) for η > 0 and XN(0) = CN , then the sequence of variables

(N(1 − ν)NT
XN

0 )

converges in distribution to an exponential random variable with parameter ν.

Note that this result can, informally, be justified by the result of Proposition 7. Without the
boundary CN , we could obtain the result by exchanging µ and ν and using Proposition 7. This
result shows in particular that the boundary does not change the limiting behavior of T

XN

0 in
the subcritical regime.

Proof of Proposition 9. Define αN = N(1 − ν)N . Proposition 5 gives

ECN
(exp(−αNT

XN

0 )) = dN(αN)BCN
(αN) + bN(αN)DCN

(αN)

dN(α)B0(αN) + bN(αN)D0(αN)
.

We start with the asymptotic behavior of (dN(αN)):

dN(αN) = µ

∫ 1

0
(1 − u)N−CN−1

(
1 + µ

ν
u

)CN

uαN du

= µ√
N

∫ √
N

0

(
1 − u√

N

)N−CN−1(
1 + µ

ν

u√
N

)CN

du + o

(
1√
N

)

= 1√
N

exp

(
η − ν

ν

√
N

)∫ +∞

0
exp

(
−
(

η

ν2 + 1 − η

(1 − ν)2

)
u2

2

)
du + o

(
1√
N

)
.

The other coefficient bN(αN) is such that

bN(αN) = ν

∫ 1

0
(1 − u)CN

(
1 + ν

µ
u

)N−CN

uαN du

= ν

N

∫ N

0

(
1 − u

N

)CN
(

1 + ν

µN
u

)N−CN−1

du + o

(
1

N

)

= ν(1 − ν)

ν − η

1

N
+ o

(
1

N

)
.

The proof of Proposition 7 provides the relations

D0(αN) =
∫ 1

0
(1 − u)NuαN−1 du ∼ 1

αN

and

B0(αN) =
∫ 1

0

(
1 + ν

µ
u

)N

uαN−1 du ∼ 1

αN

+ 1

νN(1 − ν)N
.

The two remaining terms to estimate are

BCN
(αN) =

∫ 1

0
(1 − u)CN

(
1 + ν

µ
u

)N−CN

uαN−1 du,

DCN
(αN) =

∫ 1

0
(1 − u)N−CN

(
1 + µ

ν
u

)CN

uαN−1 du.
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As in the proof of Proposition 8, we can show that BCN
(αN) and DCN

(αN) can be written as
1/αN + o(B0(αN) − 1/αN). More informally, the term (1 − u)N · under the integral for these
two expressions reduces their asymptotic behavior by an exponential factor.

These various estimations finally give

lim
N→+∞ E(exp(−αNT

XN

0 )) = lim
N→+∞

BCN
(αN)

B0(αN)
= 1

1 + α/ν
.

7. Critical regime

In this section, it is assumed that CN ∼ νN ; if XN(0) = 0, the fluid limit of the process is
given by ν(1−exp(−t)); the fluid boundary ν is reached at time t = +∞. In fact, with a second-
order description, the process XN(t) can be written as XN(t) ∼ ν(1 − exp(−t))N + Y (t)

√
N

for some ergodic diffusion process (Y (t)), so the hitting time T
XN

CN
of the boundary is such that

exp(−T
XN

CN
) ∼ Y (T

XN

CN
)

ν
√

N
,

which gives a rough estimation T
XN

CN
∼ log(

√
N). The following proposition shows that this

approximation is in fact quite precise. See also Theorem 4 of [7].

Proposition 10. If CN = νN + δ
√

N + o(
√

N) with ν < 1, δ ∈ R, and XN(0) = 0, then the
sequence of random variables (

T
XN

CN
− 1

2 log(N)
)

converges in distribution to a random variable Z on R whose Laplace transform at α > 0 is
given by

E(e−αZ) = 
(α)

/∫ +∞

0
exp

(
u

δ

ν
− u2

2

1 − ν

ν

)
uα−1 du.

If δ = 0 then the variable Z − log(ν/(1 − ν))/2 has the following density on R:

x �→
√

2

π
exp

(
−x − e−2x

2

)
.

Note that the Laplace transform of the limit in distribution is the ratio of the Mellin transforms
of the functions

u �→ exp(−u) and u �→ exp

(
−u

δ

ν
− u2

2

1 − ν

ν

)
.

See Section B.7 of [8] on Mellin transforms.

Proof of Proposition 10. Proposition 3 gives

E0(exp(−αT
XN

CN
)) =

∫ 1

0
(1 − u)Nuα−1 du

/∫ 1

0
(1 − u)N−CN

(
1 + µ

ν
u

)CN

uα−1 du

for α > 0. The asymptotic behavior of the numerator is easy to obtain since

∫ 1

0
(1 − u)Nuα−1 du = 1

Nα

∫ N

0

(
1 − u

N

)N

uα−1 du ∼ 
(α)

Nα
.
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The denominator can be expressed as

1

Nα/2

∫ √
N

0
efN (u)uα−1 du,

with

fN(u) = (N − CN) log

(
1 − u√

N

)
+ CN log

(
1 + µ

ν

u√
N

)

= −1 − ν

ν

u2

2
+ δ

ν
u + o

(
1√
N

)
.

By dominated convergence, we therefore obtain, for α > 0,

lim
N→+∞ E0

(
exp

(
−α

[
T

XN

CN
− log

N

2

]))

= 
(α)

/∫ +∞

0
exp

(
−1 − ν

ν

u2

2
+ δ

ν
u

)
uα−1 du,

completing the proof of the first part of the proposition.
For δ = 0, a change of variable gives∫ +∞

0
exp

(
−u2

2

1 − ν

ν

)
uα−1 du = 1

2

(
2ν

1 − ν

)α/2




(
α

2

)
.

The Laplace transform of Z can therefore be expressed as

E(e−αZ) = 2

(
1 − ν

2ν

)α/2

(α)


(α/2)
=
(

1 − ν

ν

)α/2 2α/2

√
π




(
α + 1

2

)
,

by using Legendre’s duplication formula for gamma functions (see, e.g. [24, p. 240]). Since

2α/2

√
π




(
α + 1

2

)
= 1√

π

∫ +∞

0
exp

(
α log(2u)

2
− log(u)

2
− u

)
du

=
√

2

π

∫ +∞

−∞
e−αu exp

(
−u − e−2u

2

)
du,

with a change of variable, we obtain the desired result on the distribution of Z.

We conclude with the hitting time of the empty state. We remark that, at the correct time
scale, the time is half the corresponding variable in the subcritical case. See Proposition 9.
A simple, naive explanation is as follows. For the subcritical regime, the process lives in a
region centered at νN and whose width is of the order of

√
N , and, therefore, makes many

excursions in this region before reaching CN . In the critical case the process lives near, but
only on one side of, νN . In particular, it cannot go above CN and, consequently, does not waste
time on such excursions.

Proposition 11. (Hitting time of the empty state.) If CN = νN + o(
√

N) with ν > 0 and
XN(0) = CN , then the sequence of random variables

(N(1 − ν)NT
XN

0 )

converges in distribution to an exponential random variable with parameter 2ν.
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Proof. Define αN = N(1 − ν)N . Recall that

ECN
(exp(−αNT

XN

0 )) = dN(α)BCN
(α) + bN(α)DCN

(α)

dN(α)B0(α) + bN(α)D0(α)
.

We start with the asymptotic behavior of (dN(αN)). By definition,

dN(αN) = µ

∫ 1

0
(1 − u)N−CN−1

(
1 + µ

ν
u

)CN

uαN du

= µ
1√
N

∫ √
N

0

(
1 − u√

N

)N−CN−1(
1 + µ

ν

u√
N

)CN

du + o

(
1√
N

)
.

Since η = ν and µ = 1 − ν, ν(1 − η) = µη, so

dN(αN) = (1 − ν)
1√
N

∫ +∞

0
exp

(
−1 − ν

ν

u2

2

)
du + o

(
1√
N

)

= 1√
N

√
π

2

√
ν(1 − ν) + o

(
1√
N

)
.

Note that, up to a term −1 in an exponent which does not play a role in the limiting behavior,
the quantity bN(α) is almost dN(α) with ν replaced by 1 − ν. Consequently, bN(α) has the
same asymptotic expansion as dN(α).

The asymptotic behaviors of B0(αN), D0(αN), BCN
(αN), and DCN

(αN) are the same as
those obtained in the proof of Proposition 9. By gathering these various estimations we find
that

lim
N→+∞ E(exp(−αNT

XN

0 )) = 2

2 + α/ν
,

as required.
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