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Abstract
Atmospheric simulation data present richer information in terms of spatiotemporal resolution, spatial
dimension, and the number of physical quantities compared to observational data; however, such simula-
tions do not perfectly correspond to the real atmospheric conditions. Additionally, extensive simulation data
aids machine learning-based image classification in atmospheric science. In this study, we applied amachine
learning model for tropical cyclone detection, which was trained using both simulation and satellite
observation data. Consequently, the classification performance was significantly lower than that obtained
with the application of simulation data. Owing to the large gap between the simulation and observation data,
the classificationmodel could not be practically trained only on the simulation data. Thus, the representation
capability of the simulation datamust be analyzed and integrated into the observation data for application in
real problems.
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1. Introduction

Deep learning is a machine learning method that uses multilayered neural networks; recently, it has been
used to detect objects and structures in the field of atmospheric science. In particular, deep convolutional
neural networks (DCNNs) specialized for image pattern recognition have exhibited excellent perform-
ance in detecting and/or classifying tropical cyclones (TCs) (Matsuoka et al., 2018), cloud type (Gorooh
et al., 2020), weather fronts (Biard & Kunkel, 2019), and atmospheric river (Prabhat et al., 2021) from
atmospheric data.

In general, machine learning using DCNNs requires extensive training data to achieve high perform-
ance. However, in atmospheric science, the aforementioned targets such as TCs occur infrequently. In
addition, the reduction in detection accuracy for extreme phenomena is a limitation owing to the
inadequate number of observation cases.

Although numerical simulations employing an atmospheric model can generate data of extreme
events under various initial conditions and scenarios, they do not perfectly correspond to the real
atmospheric conditions. If the simulated data can interpolate a small number of observed cases, it could
contribute toward improving the performance of the machine learning-based models for recognizing
extreme events. This paper reports the initial results of applying a classification model developed by
training only simulation data to satellite observation data, considering typhoon classification as a simple
example.
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2. Materials and methods
2.1. Observation and simulation data

The satellite observation data included infrared (IR) from GridSat data, which corresponds to the
merging of multiple satellite observations into a grid with a horizontal resolution of 7 km (Knapp et al.,
2011). The simulation data included the outgoing longwave radiation (OLR) with a horizontal resolution
of 14 km, which was reproduced by the cloud-resolving model NICAM (Kodama et al., 2015).

To detect TCs, we prepared patch images of TCs (positive examples) and non-TCs (negative
examples) cropped from the original data using the TC track data in the northwest Pacific Ocean. The
size of the patch images was 64 � 64 for the simulation data and 128 � 128 for the observation data,
which was approximately 1,000 km square in real scale. The most suitable track data of actual TCs—the
International Best TrackArchive for Climate Stewardship (IBTrACS) provided byNCAR—were used for
the observation data. For the simulation data, the TCs were detected by employing a TC track algorithm
(Yamada et al., 2017) on 6-hourly outputs of the horizontal components of wind, air temperature, and
sea-level pressure. For the negative example data, the entire area was horizontally scanned in eight grids,
and the patch areas depicting portions of clouds were cropped.

Examples of a cloud image from the simulation and observation data are depicted in Figure 1. To
match the resolution of the simulation dataset to that of the observation dataset, the observation data
were resized to half their original resolution. To identically treat the distinct data, we applied a min–max
normalization (also known as min–max scaling) to IR and OLR.

Figure 1. Examples of (a) observation and (b) simulation data; left: TCs; right: nonTCs.
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The numbers of data for the positive and negative examples in the training and test data are listed in
Table 1, wherein the classifiers trained on observation and simulation data are referred to as ObsCNN
and SimCNN, respectively. Moreover, we randomly sampled a large number of negative examples to
construct both the classifiers, such that an equal number of data points were present for the positive and
negative examples, as same as the related work (Matsuoka et al., 2018).

2.2. Deep convolutional neural networks

Wedeveloped a binary classificationmodel using aDCNN to classify TC and nonTC images. Generally, a
DCNN comprises a stack of convolutional layers, pooling layers, and fully connected layers (LeCun &
Bengio, 1995). In classification, the output layer outputs a score, P 0ð Þ and P 1ð Þ, corresponding to the
probability for each class—negative (non-TCs) and positive (TCs). Ultimately, the final class by was
inferred using the following equation employing the threshold value.

by = 1, P 1ð Þ ≦ Thresholdð Þ,
0, otherwiseð Þ:

�
(1)

Here, P 0ð ÞþP 1ð Þ = 1:0, 0 ≦ P 0ð Þ ≦ 1:0, 0 ≦ P 1ð Þ ≦ 1:0, and 0 ≦ Threshold ≦ 1:0.
Although several DCNN models have been proposed in related research literature, we conducted

experiments in this study using the VGG16, which is known for its high recognition accuracy despite
being a relatively lightweight model (Simonyan & Zisserman, 2015). Based on the VGG16 model, we
constructed two types of classification models: one trained only on simulated data and the other trained
only on observed data for comparison.

Moreover, we used recall and precision as metrics to evaluate the classification performance for the
test data. In particular, recall denotes the ratio of correctly classified TCs to those with the correct class as
TCs, whereas precision represents the ratio of correctly classified TCs to those with the inferred class as
TCs, and they can be represented by the following equation.

Recall =
TP

TPþFN
, (2)

Precision =
TP

TPþFP
, (3)

where TP denotes true positive, FN represents false negative, and FP denotes false positive.

3. Results

The classification performance of the ObsCNN and SimCNN on the observation data is illustrated in
Figure 2a as a precision–recall curve (P–R curve), which was plotted by varying the threshold for the
output value of the DCNN. In most cases, the models trained on the observation data delivered higher
classification performance than those trained on the simulation data. For a precision of 0.5, the recall of
ObsCNNwas 0.984, whereas that of SimCNNwas 0.829. Similarly, for a precision of 0.7 and 0.9, the recall
of ObsCNNwas higher than that of SimCNN. This signified that the classification of the simulation data

Table 1. Numbers of positive and negative examples in training and test data

Observation data (GridSat-IR) Simulation data (NICAM-OLR)

Training data (1980–2003) Positive: 18,302; Negative: 18,302 Positive: 15,521; Negative: 15,521

Test data (2004–2008) Positive: 2,683; Negative: 56,896 Positive: 3,644; Negative: 74,043
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was more challenging than that of the observation data. For reference, the classification performance of
both models when applied to simulation data is also shown in Figure 2a. SimCNN showed better
performance than ObsCNN for the simulation data.

The classification performance for each tropical cyclone intensity is presented in
Figure 2b. Accordingly, we classified the TCs into the following five categories using their maximum
wind speed (10-min average): TS (17–24m/s), STS (25–32m/s), TY1 (33–43m/s), TY2 (44–53m/s), and
TY3 (over 54m/s). The recall of bothObsCNN and SimCNN for each TC intensity for the precision fixed
at a specific value (0.5, 0.7, 0.9) is portrayed in Figure 2b. For both ObsCNN and SimCNN, the recall was
higher for a stronger TC intensity. In addition, the performances of the SimCNN and ObsCNN were
similar for strong TC intensities. The recalls of ObsCNN and SimCNN for TS were approximately 0.75
and 0.37, whereas they were approximately 1.0 and 0.94 for TY3, implying that the features of the
observation and simulation data were distinct for weaker TCs.

4. Discussion

The differences in the properties of ObsCNN and SimCNN were visualized using a technique called
Grad-CAM, which is a region visualization method with significant contributions toward CNN predic-
tion (Selvaraju et al., 2020). The important areas in the decision visualized by the Grad-CAMare depicted
in Figure 3. The correct inference obtained using ObsCNN and SimCNN for observation data (only TCs)
are indicated in Figure 3a,b. The results fromObsCNN revealed that the regions of high importance were
clustered around the center of the TC. On the contrary, the SimCNN results indicated that the regions of
high importance were clustered a little farther from the center of the TC. Especially in the TY3 example
with a clear eye of the TC, the ObsCNN indicated that the eye of the TC was a more important factor in
the classification.

The important regions inferred from the simulation data (only TCs) using the SimCNN is visualized
in Figure 3c. In any TC category, the pattern slightly outside the center of the TC was recognized to
determine it as a TC. Based on these results, with respect to the classification capability of CNNs, the
patterns outside the center in the simulation were similar to those in the observation data. The detection
performance of strong TCs is high for both ObsCNN and SimCNN shown in Figure 2b, suggesting that
the observed TCs also have a characteristic pattern around off-center region.

Figure 2. Classification performance of ObsCNN and SimCNN: (a) precision—recall curve and (b) recall for each category.
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Finally, the observed and simulated TC images (only TY2 and TY3) were dimensionally reduced and
mapped into two-dimensional feature space using Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) and t-distributed Stochastic Neighbor Embedding (t-SNE) (van der
Maaten & Hinton, 2008) as shown in Figure 4a,b. Both results show that some of the observed TCs have
similar features to the simulated TCs, while the rest have different features.

Figure 3. Visualization results of vital regions in the CNN trained on (a) observation data (ObsCNN) and (b) simulation data
(SimCNN).
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5. Conclusion

In this study, we developed a CNN-based classifier trained using simulation data and applied it to the
observation data.The classificationmodel trained on the simulation data cannot be directly applied to the
observation data due to differences in cloud patterns to be recognized. Although negative experimental
results were obtained, there is no doubt that the simulation data have great potential. Clarifying the
representation capability of both data and integrating the data will lead to advanced machine learning
models as well as simulation models.
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