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1. Introduction

An investigation has been made into the numerical solution of non-singular
linear integral equations by the direct expansion of the unknown function
f{x) into a series of Chebyshev polynomials of the first kind. The use of
polynomial expansions is not new, and was first described by Crout [1]. He
writes f{x) as a Lagrangian-type polynomial over the range in x, and deter-
mines the unknown coefficients in this expansion by evaluating the functions
and integral arising in the equation at chosen points xt. A similar method
(known as collocation) is used here for cases where the kernel is not separable.
From the properties of expansion of functions in Chebyshev series (see, for
example, [2]), one expects greater accuracy in this case when compared
with other polynomial expansions of the same order. This is well borne out
in comparison with one of Crout's examples.

The most common method of solution of integral equations is by the use of
finite differences. Fox and Goodwin [3] have made a thorough investigation
of these methods, using the Gregory quadrature formula for the evaluation of
the integral. Other methods for the algebraization of the integral equation
using Gaussian quadrature have been described by Kopal [4].

The methods of this paper are not as versatile as the finite-difference
techniques, since they depend to a much greater extent on the form
of the given functions eg. kernel, arising in the equation. However, in
cases where the method can be used without a prohibitive amount of labour,
we obtain the value of the function throughout the range of x, instead of at a
discrete number of points. Also, with the Chebyshev expansion of the function
known, some estimate can generally be made, a posteriori, to its accuracy.

The crux of the problem is to find easily the Chebyshev expansion of the
given functions in the equation. To find these, we confine ourselves to func-
tions which can be represented as the solution of some linear differential
equation with associated boundary conditions. The solution of the differen-
tial equation can then be found by a direct expansion of the function in Che-
byshev polynomials. This method has been described by Clenshaw [5], and
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frequent use of it will be made throughout this paper. It is assumed that the
reader is familiar with the methods and notation of [5]. For functions whose
Chebyshev expansions cannot readily be found in this way, or which are
given numerically, some curve fitting technique can be used [2]. It is felt
that in such cases, the labour might better be spent using a finite-difference
technique.

2. Method of Solution

Linear integral equations can be divided into two types depending upon
the limits of the integral. An equation of the form

f(x)= F(x)+x\bK(x,y)f(y)dy,

where F, K are given functions; X, a, b are finite constants and f(x) is the
unknown function is known as a "Fredholm equation". When the upper
limit of the integral is not a constant, but is the variable x, the equation
takes the form

x\xK{x,y)f{y)dy,
J a

and is known as a "Volterra equation".
We shall be concerned with equations of the Fredholm type, and in order

to use the Chebyshev polynomials we must change the range of the variable
x from [a, b) to either (—1, 1) or (0, 1). In the former case we use the poly-
nomials Tn(x) where

Tn(x) = cos nd, x = cos d; — 1 ^ x ^ 1.

When the range of a? is (0, 1), we use the T*(x) polynomials where

T*(x) = cos nd, 2x — 1 = cos d; 0 ^ x ^ 1.

For tables and properties of these polynomials, see [2].
Before proceeding with the discussion of methods of solution, we shall need

results for
(i) the product of two Chebyshev expansions

and (ii) the integral of a function whose Chebyshev expansion is given.

2.1 Product of two Chebyshev expansions

Suppose f(x) = i«0 + 2 anTn{x)
(1)

and g{x) = J60 + 2 b
nTn{x),

and we want to find the Chebyshev expansion of the product of f(x) and
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g(x). From the relation,

2Tm(x)Tn(x) = Tm+n(x) + T]m_nl(x)

we find that,

[3]

(2)
n = l

oo

where dn = J [«„&„ + 2 ««(&|»-«| + &«+„)], n ^ 0.
n » = l

An exactly similar result holds for expansions in terms of the T*{x) poly-
nomials. If,

oo

(3)

and

then f{x)g{x) =

BnT*n{x)

•2DnT*n{x)
n=l

where,

(4)
0 0

Dn = i[A0Bn + 2 ^«(^|m-»| + Bm+n)], n^

2.2 TA^ Integral of f(x)
We suppose that f(x) is given in terms of its Chebyshev expansion in Tn(x),

and we want the expansion of I{x), where

Following the methods of [5], we have that I(x) is the solution of

dl

dx
= f{x) w i th / ( - I ) = 0.

Then, if

and

we find

(5)

oo

n=l

oo

n = l

oo

n=2

https://doi.org/10.1017/S144678870002601X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002601X


[4] The numerical solution of integral equations using Chebyshev polynomials 347

and

<•> *»-**£* *«•*••
In many problems we want / ( I ) ; this is given by

00 «,„

In solving Fredholm equations, we require the integral of the product of
two functions between the limits —1 and 1. Defining f(x) and g(x) as in
equation (1), and using equations (2) and (7), we find

(8)
ah -y*i"I" AA - l J

Similar results can be found for expansions in terms of the T*(x) poly-
nomials. Defining f(x) as in equation (3), then if

n=l
we find

— 4^1 — 2
oo (—1)»

/n\ n—2" — l

( 9 )

For §\f(x)dx, we have,

(10) 7(1) =
n=l

Finally for the integral of the product of two functions, if f(x) and g(x) are
defined as in equation (3), then

f{x)g{x)dx

(H) J °

We will now examine in detail the numerical solution of Fredholm-type
integral equations. The method depends entirely upon whether the kernel
K(x, y) is separable or not. In Section 3 we will discuss the case of a separable
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kernel; in Section 4 we will compare the method with one of Crout's examples,
and in Sections 5 and 6 we will investigate the case of non-separable kernels.

3. Separable kernel

In general, when the kernel is separable we will have

K(x,y)=fgm(x)hm(y).
m=l

The Fredholm integral equation can then be written

(12) /(*) = F(x) + m=l

where the range in x has been normalized to — 1 ^ x ^ 1. F{x), gm{x),
hm(y) are given functions and we assume that their expansions in Tn(x) can
be found by, for example, the method of [5] or some curve fitting technique.
We assume that f{x) is to be approximated by a polynomial of degree N,

N

f(x) =iao + 2anTn{x)
n=l

If F(x) ^k 0, we choose N to be the degree to which F(x) is given to the
required accuracy. If F(x) == 0, then N can only be estimated a priori from,
perhaps, some physical criterion. If N is originally chosen too small, this will
be apparent from the series expansion for f(x). The calculation will then have
to be repeated with larger N. If N is chosen too large initially, then un-
necessary extra work will have been done. Many integral equations, however,
arise from physical problems where something is known of the form of f(x)
which will enable us to make a reasonable guess for N. Now

= J1_1hm(y)f(y)dy

is a constant depending upon a0, alt • • •, aN and can be evaluated using
equation (8). If Cn(G) denotes the coefficient of Tn(x) in the Chebyshev
expansion of a function G(x), then on equating coefficients of Tn(x) on each
side of equation (12) we find,

Af

(13) an = Cn(F) + A 2 Cn(gJIm(a0, alt • • -, aN) for n = 0, 1, • • •, N
m=l

Equation (13) gives a system of (N + 1) linear equations for the (N + 1)
unknowns a0, av • • •, aN. These equations can be solved numerically by
standard methods to give the Chebyshev expansion of f(x). From this series
the value of the function can be found for any x in the range — 1 ^ x ^ 1.

An exactly similar analysis holds for the range 0 ^ x ^ 1, when the T* (x)
polynomials are used.
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EXAMPLE 1. Let us consider the integral equation

2 f1

/(*) = cos {%7ix) + 2 cos \n(x — y)f{y)dy,
n Jo

whose solution is given by f(x) = sin i^Ttx). The kernel is separable with
M = 2, where7X = J£/(«/) cos {\ny)dy, and/2 = JJ f(y) sin {\ny)dy, say. Using
the method of [5], we find that

fcosl ^^ i = + ° ' 6 0 2 194 ^ °*513 6 2 5 j*(a ; ) — °-1 0 3 5 4 6 r*0*0
=F 0.013 732 T*(x) + 0.001 359 T* (x) ± 0.000 107 T*(x)
— 0.000 007 T*(x).

In this example, we see that to 6D we can represent the expansion of F(x)
by a polynomial of degree 6. Consequently we take N = 6, and assume that

/ ( * ) = IAO + 2AnT*n(x)
n=l

Using equation (11), we find

r / n = + 0.318 309Ao =F 0.173 9 5 0 ^ - 0.249 298A2 ± 0.109 413Az

L/2J - 0.020 740 A± ± 0.022 008 Ah - 0.013 169 A6.

With these values we find on solving equation (13) the following Chebyshev
expansion for f{x)

f{x) = 0.60220 + 0.51362 T*(x) - 0.10355 T*(x) — 0.01373 T*{x)
+ 0.00136 T*(x) + 0.00011 T*(x) — 0.00001 T*(x).

This expansion can be compared with that for sin \nx from which we see
that there is an error of approximately 1 x 10~5. Although starting with the
expansion of all the given functions to 6D, some accuracy has been lost in
the sixth decimal place due to rounding errors.

With this Chebyshev expansion for f(x) we might conclude from the rate
of convergence of the last three coefficients, that the truncation error will be
less than 1 X 10~5. With a round-off error in each term less than \ x 10~5,
we might conclude just from the series expansion that its error is less than
4 x 10~5. Consequently we can assume that the expansion will give values
of f(x) correct to 4Z) for all values of x in 0 ^ x ^ 1. This we know to be
correct from the analytic solution.

Finally, we note that whenever the kernel is separable, the integral equa-
tion is satisfied for all values of x when determining the relations between the
coefficients A,

• • » •

4. Comparison with Crout's method

We shall now compare by means of an example, the Chebyshev series ex-
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pansion with the method of Crout. In this problem, the kernel is again
separable, although it has a discontinuity in the first derivative.

EXAMPLE 2.

— y)

where *(*•») ( i _ x )

This integral equation arises in the problem of the buckling of a beam of
length L. It is an eigen-value problem in which we want to find those values
of A for which a non-trivial solution exists. In particular we wish to find the
first mode of buckling where the mid-point of the beam is an anti-node. The
analytic solution for this mode of buckling is

nx . , El
f(x) = sin — with A = 7i2 — .

x y AL2

Defimng £=-=-, V =T ' ^ =

and writing,
f{U) = u(C) and f(Lri) =

the equation can be written as,

Again the kernel is separable although each integral contains the variable as
a limit. Write

oo

n=l

' a n d /(£)
The function /(^) satisfies the equation

^ with 7(0) = 0 .

00

Applying the methods of [5], if /(£) = Ja0 + 2 a n T *

we find at once that

*o = 2 f (-l)n+1<xw where <xw = — - (-4|)_, + 2ill l_1-2ilf l+1-il1l+1)f
w = l AOW

n > 1.
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A similar result can be found for the coefficients in the Chebyshev expansion
for /(£). Returning to the integral equation, if C*(G) denotes the coefficient
of T*(C) in the Chebyshev expansion of G(C) then,

C*(u) = fiC*lI - t(I - / ) ] for all ».

On simplifying this expression we find the following 3 term recurrence rela-
tion for An, valid for all n ^ 2,

(14) (« + I ) i 4 _ + [16n(»« - l)e - 2n]An + (n - l)An+2 = 0,

where e = 1/JU. Corresponding to n = 0, and using the values for <x0 and /?0

we find,

(15) | ^

A corresponding equation can be found for n = 1, but since we are interested
only in the first mode of buckling which gives a solution symmetrical about
C = 2> w e have,

Rewriting equation (14) with 2n in place of n we have,

(16) (2n+l)A2n_2+[Z2n{4:n*-l)e-4n]A2n+{2n-l)A2n+2 = 0, for w ^ l .

Equations (15) and (16) completely define the problem for symmetrical
solutions.

Following Crout, we assume that u(C) can be approximated by a poly-
nomial of degree four, so that

The three equations for Ao, A2, Ax obtained from equations (15) and (16) can
be written in the matrix form

and M is the matrix

1 .

where A is the column vector {A0) A2,

1

16

1

32

7

~~96

0 —
192

120

1

96

1

120

The largest eigenvalue of this matrix corresponds to fi = 9.86958 so that,

El
X = 9.86958 —
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Crout finds A = 9.87605 EI/L2 which must be compared with the analytic
solution of A = 9.86960 EI/L2, to 5D.

Using the Chebyshev expansion to the same order as Crout's Lagrangian-
type expansion we have found a much better approximation to the eigen-
value. The errors are of magnitude 2 x 10~5 and 645 x 10~6 respectively.
Such an accuracy in this case seems shghtly fortuitous since on repeating the
calculation with a sixth order polynomial, the eigen-value is X =
9.86966 EI/L2, an error of 6 x 10"5 which is slightly larger than for the
4th order case.

For the eigenf unction f(x), if we normalise the solution so that f{L/2) = 1,
we find

f{x) = 0.47230 - 0.49971 T* \~\ + 0.02799 T*(— J

The comparison with Crout's solution, and the analytic solution is shown in
Table 1.

TABLE 1

xjL

0.0, 1.0
0.1, 0.9
0.2, 0.8
0.3, 0.7
0.4, 0.6
0.5, 0.5

Exact

A=9.86960
E//L2

sin nx/L

0
0.30902
0.58779
0.80902
0.95106
1.00000

1010

Crout

A = 9.87605-EJ/L2

4 th degree

0
0.30716
0.58716
0.80918
0.95119
1.00000

27(error)2 .=

| error|
X 106

0
186

63
16
13

0

38990

Chebyshev expansions

A = 9.86958E//L2

4th degree

0.00058
0.30878
0.58862
0.81000
0.95142
1.00000

10102;(error)2 =

|error |
X 10&

58
24
83
98
36

0

21729

A = 9.86966E7/L2

6th degree

-0.00004
+ 0.30906

0.58785
0.80907
0.95107

+ 1.00000

| error|
X 105

4
4
6
5
1
0

For the given tabular points, the maximum error in the Chebyshev expansion
(98 x 10~5) is less than in Crout's case (186 x 10-5). Also the sum of the
squares of the errors at these points is less for the Chebyshev expansion.

Taking a sixth degree expansion for f(x) we find,

fix) = 0.47202 - 0.49943 T* (—J + 0.02795 T* I—\ - 0.00060 T* I—V

The maximum error at the given points has now been reduced to 6 x 10~5, a
considerable improvement in accuracy obtained with little extra computa-
tion.

5. Non-separable kernel
In most problems where a numerical approach is required the kernel will
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not be separable. There are two possible methods of approach. We can try
to approximate to the kernel by a function which is separable, and then use
the method of Section 3. Alternatively, we can consider the equation as it
stands and proceed by a method of collocation.

Suppose that the range of the independent variable x has been normalised
to — 1 ^ x ^ 1 and we have the following Fredholm equation,

(17) f(x) = F(x)+XJ1_iK(x,y)f(y)dy)

where X, F(x), K(x, y) are given and we have to find f(x). As before, write

n=l

where N in general is not known a priori but might be estimated from per-
haps, some physical grounds. In order to determine the (N + 1) constants
a0, ax, • ' % aN we write down the integral equation at each of (N + 1) points
xt, say, where i = 1, 2, • • •, N + 1. Equation (17) is then replaced by the
(N + 1) equations

(18) /(*,) = F(xt) + Aj^Kfo, y)f(y)dy; i = 1, 2, • •., N + 1

For each value of xit we now compute the Chebyshev expansion for K(xt, y)
either from a differential equation or by some curve fitting process. Using
equation (8), we obtain the value of

in terms of the coefficients a0, av • • •, aN. The quantity F(xt) is known im-
mediately and using tables of Chebyshev Polynomials [2] we can write down
f{xi) in terms of a0) av • • •, aN for each value of x{. Equation (18) becomes

(19) /(*,) = Fix,) + U{xit 1) for i = 1, 2, • • -, N + 1

which is a system of (N + 1) linear equations for the (N + 1) unknown
coefficients. These can be solved by standard methods.

We shall illustrate the method by means of an example taken from [3].

EXAMPLE 3.

/ ( ) f/ ( * ) ± f TTJ7T
TiJ-i [1 + (x — y)2

Let us consider first the equation with positive sign. We approximate to the
function f(x) by means of a polynomial of degree 6. Since f(x) is an even
function of x, we write

f[x) = \aQ + a2T2(x) + a^T^x) + a6T6(x),

and only consider positive values of x€ which have been chosen as,

https://doi.org/10.1017/S144678870002601X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002601X


354 David Elliott 11]

* x. = 0, 0.5, 0.8, 1.0.
The kernel K(xi,y) can be considered as satisfying the differential equation of
zero order with polynomial coefficients, given by
(20) (1 + x*)K(xit y) - 2xiyK(xi, y) + y*K(xit y) = 1.
If we write

oo

K(Xi> V) = ^oiXi) + Z, °n\Xi)l n{y)>

then substitution into equation (20) and using the formulae for Cn(yK(xi, y))
and Cn(y

2K(Xi, y)) gives immediately the recurrence relation between the bn

for each value of xt. The coefficients in the expansion of K(xi, y) for xt = 0,
0.5, 0.8, 1.0 are given in Table 2.

TABLE 2

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

6»(0)

+ 1.414 214
0

-0.24264
0

+ 0.04163
0

-0.00714
0

+ 0.00123
0

-0.00021
0

+ 0.00004
0

-0.00001

6«(0.5)

+ 1.361 549
+ 0.31920
-0.12703
-0.08453
-0.00300
+ 0.01245
+ 0.00385
-0.00091
-0.00085
-0.00009
+ 0.00011
+ 0.00004
-0.00001
-0.00001

0

M0.8)

+ 1.252 701
+ 0.42286
-0.00841
-0.06081
— 0.02218
-0.00023
+ 0.00293
+ 0.00116
+ 0.00004
-0.00014
-0.00006

0
0
0
0

6.(1-0)

+ 1.137 729
+ 0.43457
+ 0.04965
-0.03079
-0.01912
-0.00449
+ 0.00037
+ 0.00070
+ 0.00025
+ 0.00003
-0.00002
-0.00001

0
0
0

K(xt, y) =
oo

+ Xbn(xi)Tn(y)
n=l

With these coefficients known for K(xi, y), the evaluation of I(xi, 1) for
each value of xt can now be made by means of equation (8), to give

== 0.78540a0 — 0.71238a2 0.03686«4 — 0.04217a6

7(0.5, 1) = 0.72322a0 — 0.57161a2 — 0.04902a4 - 0.02328«6

1(0.8, 1) = 0.63055a0 — 0.41763a2 — 0.10331a4 — 0.02458a6

1(1, 0.55358a0 — 0.32602a2 — 0.11278a4 - 0.02975a6

Substituting these values into equation (19) gives the following system of
equations,

0.75000a0 — 1.22676a2 1.01173a4 - 1.01342a6 =
0.73021a0 — 0.68195«2 — 0.51560a4 0.99259a6 =
0.70071a0

0.67621a0

— 0.87608a4 — 1.00494a6 =
0.89622a2 + 0.96410a4 0.99053a6 =

https://doi.org/10.1017/S144678870002601X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002601X


[12] The numerical solution of integral equations using Chebyshev polynomials 355

the solution of which gives,

f(x) = 0.70758 + 0.04937 T2 (a) — 0.00102 T4 (a) — 0.00022 T9[x).

The comparison of this solution with that obtained by Fox and Goodwin is
given in Table 3.

TABLE 3

X

0
±0.25
±0.5
±0.75
±1.0

i r1

m +
n J - iFox and

Goodwin
to 4£>

0.6574
0.6638
0.6832
0.7149
0.7557

1

[l + {x-y)>:

Chebyshev
(6th degree)

0.65741
0.66385
0.68318
0.71482
0.75571

f(y)dy = 1

Legendre
(4th degree)

0.65745
0.66397
0.68323
0.71432
0.75576

1 f1

n J — 1

Fox and
Goodwin

to 4Z>

1.9191
1.8997
1.8424
1.7520
1.6397

[1

1

+ {x-y)*

Chebyshev
(6tr

1
1
1
1
1

Idegree)

91903
89958
84240
75208
63971

- f{y)dy - 1

Legendre
(4th degree)

1.91925
1.89966
1.84261
1.75318
1.63987

X

0

±0.
±0.
±0.
±1.

25
5
75
0

Taking the integral equation with negative sign and proceeding as before,
we find

f{x)= 1.77447 — 0.14003r2(x) + 0.00490T4(z) + 0.00037r6(x).

The comparison of this solution with Fox and Goodwin's is also given in
Table 3. Fox and Goodwin have presented their results only to 4Z) with an
estimated maximum error of 1 X 10~4 due to round-off, and we see that the
results found here agree exactly to within the prescribed error.

Of the computational labour in this solution of the problem, most was
spent in the determination of the Chebyshev expansions of K{xi, y). With
these expansions found, comparatively little labour was necessary for the
evaluation oil(xit 1) and the solution of the equation for the coefficients an.
Had we found it necessary to use a higher degree polynomial for f(x), all
previous results for K{xi, y) and I(xi, 1) can be used again. When the degree
of the polynomial approximation to f(x) is not known a priori, we can start
with a low N and increase the degree until the necessary accuracy in the
solution is reached.

6. Use of Legendre Polynomials
In the above example, since the limits of integration are from —1 to + 1 ,

this suggests expanding all functions in terms of the Legrendre polynomials
Pn{x). The evaluation of I(xi, 1) is then almost trivial due to the orthogonal-
ity property of the Legendre polynomials, in the range — 1 5S x ^ 1. For
suppose

n=0
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and for a given xt we find that
M

K(xi,y)=Zbn(xi)Pn(y)
n=0

where M =£ N in general, take M > N. Then since

we have that

(23) /(*,, 1) = i f (*„ y)/(y)<% = 2 -f-±jL •
J-l n=0 Zfl -\- 1

This equation is considerably simpler than equation (8) for Chebyshev
polynomials. The problem is now one of finding the expansion of K(xit y) in
terms of Legendre polynomials. This can be done in a similar way to the
Chebyshev expansion from the direct solution of differential equations in
Legendre polynomials. This method has been described by the author, [6].
However, we shall find in general that the recurrence relation between the
coefficients bn are more complicated for Legendre polynomials than for
Chebyshev polynomials. The computing time saved in using equation (23)
instead of equation (8) will generally be more than off-set in the computation
of the expansions K(xit y).

The integral equation of Example 3 has been solved by writing f{x) as the
fourth degree polynomial,

f{x) = a0P0(x) + a2P2(x) + a4P4(z).

To determine the three unknown coefficients a0, a2, a4 we have used colloca-
tion at the points xi = 0, 0.5, 1. The following solutions were found

+ resign; f(x) = 0.69107 + 0.06615P2(z) — 0.00146P4(z)
— vesign; f\x) = 1.82129 — 0.18971P2(a;) + 0.00829P4(x)

Th e results are also tabulated in Table 3, and agree excellently to 3D with
the previous results.
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