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Isomorphisms of Twisted Hilbert Loop
Algebras

Timothée Marquis and Karl-Hermann Neeb

Abstract. The closest infinite-dimensional relatives of compact Lie algebras are Hilbert-Lie alge-
bras, i.e., real Hilbert spaces with a Lie algebra structure for which the scalar product is invariant.
Locally affine Lie algebras (LALAs) correspond to double extensions of (twisted) loop algebras over
simple Hilbert-Lie algebras £, also called affinisations of €. They possess a root space decomposition
whose corresponding root system is a locally affine root system of one of the 7 families

AW, B, ¢ p®, 3P, ¢, and BC?

for some infinite set J. To each of these types corresponds a “minimal” affinisation of some simple
Hilbert-Lie algebra €, which we call standard.

In this paper, we give for each affinisation g of a simple Hilbert-Lie algebra € an explicit isomor-
phism from g to one of the standard affinisations of £. The existence of such an isomorphism could
also be derived from the classification of locally affine root systems, but for representation theoretic
purposes it is crucial to obtain it explicitly as a deformation between two twists that is compatible
with the root decompositions. We illustrate this by applying our isomorphism theorem to the study
of positive energy highest weight representations of g. In subsequent work, this paper will be used to
obtain a complete classification of the positive energy highest weight representations of affinisations
of £.

1 Introduction

Locally affine Lie algebras (LALAs) are natural generalisations of both affine Kac-
Moody algebras and split locally finite Lie algebras. They were first introduced in
[MYO06] as a subclass of the so-called locally extended affine Lie algebras (LEALAs)
and were later classified up to isomorphism in [MY15] (see also [Neel0]). The LALAs
roughly correspond to double extensions of (twisted) loop algebras over locally fi-
nite simple split Lie algebras (algebraic point of view), or equivalently, over simple
Hilbert-Lie algebras £ (analytic point of view); in the latter case, we call such a LALA
an affinisation of €. The LALAs possess a root space decomposition with respect to
some maximal abelian subalgebra, whose corresponding root system is a so-called
locally affine root system (LARS). The LARS were classified in [Yosl0], and those of
infinite rank fall into 7 distinct families of isomorphism classes, parametrised by the
types ASI), B;l), C}l), D;l), B}z), C}z), and BC;Z) for some infinite set J. To each of
these types corresponds a “minimal” affinisation of some simple Hilbert-Lie algebra
€, which we call standard.
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In this paper, we give, for each affinisation g of a simple Hilbert-Lie algebra £, an
explicit isomorphism from g to one of the standard affinisations of €. The existence
of such an isomorphism can also be derived from the classification of locally affine
root systems, but for representation theoretic purposes it is crucial to obtain it in an
explicit form. We illustrate this by applying our isomorphism theorem to the study of
positive energy highest weight representations of g, building on previous results from
[NeelO] on unitary highest weight representations of LALAs.

Note that our results do not rely on the classification of LALAs from [MY15] or of
LARS from [Yos10].

We now present the main results of this paper in more detail, referring to Sections 2
and 3 below for a more thorough account of the concepts presented. A Hilbert-Lie
algebra € is a real Lie algebra as well as a real Hilbert space, whose scalar product
(-, -) is invariant under the adjoint action, that is, such that ([x, y],z) = (x, [y, 2])
for all x, y,z € €. By a theorem of Schue ([Sché1]), any infinite-dimensional sim-
ple Hilbert-Lie algebra is isomorphic to the space € := u,(Hk) of skew-symmetric
Hilbert-Schmidt operators on some Hilbert space Hx over K € {R, C, H}. Any max-
imal abelian subalgebra t of £ (a Cartan subalgebra of £) yields a root space decompo-
sition

tc=tco @ €&

aeA
of the complexification of ¢, whose corresponding set of roots A = A(&,t) c it* isan
irreducible locally finite root system of infinite rank, hence of one of the types Ay, By,
Cy, or Dy (see [NSO1, LN04]). More precisely, if K = C or K = H, then £ possesses
only one conjugacy class of Cartan subalgebras and A = Aj or A = Cj, respectively.
If K = R, then ¢ possesses two conjugacy classes of Cartan subalgebras, yielding the
root systems A = Byand A = D;.

Given an automorphism ¢ € Aut() of finite order N € N, there is a Cartan subal-
gebra t of £ such that t? is maximal abelian in €9 = {x € ¢ | ¢(x) = x}. In particular,
¢ possesses a ¢-invariant root space decomposition

tc=the & £
ach,
with respect to ty := t?, with corresponding root system A, = A(¥, ty) S it.
The ¢-twisted loop algebra' on € is defined as

Ly(8) = {EE C®(R,€) | &(t+2m) = ¢ " (&(t)) Vte R}.

The scalar product (-, -) on £ can be extended to a non-degenerate invariant sym-
metric bilinear form on £, (¢) by setting

(6= 5 [ o) a

We denote by (-, -) the hermitian extension of this scalar product to the complexifi-
cation of £, (£).

Un the literature, the ¢-twisted loop algebra is also defined as a space of 27-periodic smooth maps,
instead of 2w N-periodic smooth maps as in our definition. The reparametrisation needed to pass from
one definition to the other is detailed in Remark 4.3 below.

https://doi.org/10.4153/CJM-2016-003-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-003-x

Isomorphisms of Twisted Hilbert Loop Algebras 455

Let derg(L,(€),(-,-)) denote the space of skew-symmetric derivations D of
L, (€) that are diagonal, in the sense that D preserves each space ent/Ng £t forn e Z
and o € Ay. Let Dy € derg(L4(8), (-, -)) be defined by Dy (&) := &'. Given a weight
v € it;, we also define the derivation D, of £ by setting

D,(x) =iv(at)x forallx el aeA,,

where al € it is such that (h, at) = a(h) for all h € t. Then D, restricts to a skew-
symmetric derivation of €, which we extend to a diagonal derivation of £, () by set-
ting D, (&) (t) := D, (&(t)) forall € € L, (€) and ¢ € R. Note that derg(Ly (), (-, -))
is spanned by Dy and all such D, (see [MY15, Theorem 7.2 and Lemma 8.6]). We set

D, =D, +Bv € dero(L¢(E),(~, ))

Then D, defines a 2-cocycle wp, (x, y) = (D,x, y) on £,(€) and extends to a deriva-
tion D, (z,x) := (0, Dyx) of the corresponding central extension R Sup, Lo(E). The
double extension

Ly (6) = (R, Ly(t)) x5 R
is called the (v-slanted and ¢-twisted) affinisation of the Hilbert-Lie algebra
(& (-, -)). If v = 0, we also simply write Zw(é) = Z;({%) The Lie bracket on Z;(E) is
given by

[(Zl, X15 t1)> (ZZr X2 tz)] = (wDV (xlr x2)’ [x13x2] + tlexZ - t2Dvx1: 0) .

The subalgebra t := R&t®R is maximal abelian in /L\; (%) and yields a root space de-
composition of £{ ()¢ with corresponding set of roots &, = A(Z; (8),¢5) ci(t5)™.
One can realise Z¢ as a subset of (A, U{0}) x Z, where the root space ™ Ng E((C“’")
with
B o (e | o7l (x) = 2V

corresponds to (a,n) € A,. The set (A,). := A, N (A, x Z) of compact roots of
Z¢ is then a LARS, hence isomorphic to one of the root systems X;l) or YI(Z), for
X e{A,B,C,D}and Y € {B, C, BC}. The root systems of type X}l) can be realised as
A(Ly(8), 1)) with v = id and € such that A(¢, t) = X;. The three root systems of type
Y](z) can be realised as A(Zw({?) ,t5 ). for some order 2 automorphism y of € and some
suitable £. The corresponding three automorphisms y are described in [Nef14, §2.2]
(see also Section 6) and are called standard. The above seven Lie algebras £, (¢) are

also called standard.
Here is the promised isomorphism theorem.

Theorem A  Let € be a simple Hilbert-Lie algebra and let ¢ € Aut(t) be of finite order
N e N. Then there exist

* an automorphism y € Aut(¥) that is either the identity or standard,
* asmooth one-parameter group (¢, ) ter of automorphisms of € commuting with ¢ such

that ¢ = $1y,
* amaximal abelian subalgebra t of € such that t? =tV =: t, and such that ty is maximal

abelian in both €% and ¢V,
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* alinear functional y € it}
such that, for any v € ity, the following assertions hold:
(i) The map

®: Z;(E) — L) (21, E(1),22) — (2104 (E(1)), 22)

is an isomorphism of Lie algebras fixing the Cartan subalgebra t§ := R @ t, ® R
pointwise.
(ii) @ induces an isomorphism of locally affine root systems given by

7 ATy (0),85)c —> AT (8),6)c s (m) — (@ Ny - (% - u(a?)) ),

where Ny € {1, 2} is the order of y.
(iii) The Weyl groups on; (¢) and Zﬁw(?) with respect to t{ coincide.

For each given pair (£, ¢), the parameters v, (¢¢)sr, t and g whose existence
is asserted in Theorem A are described explicitly in Section 6 below. The proof of
Theorem A can be found at the end of Section 6.

Along with the proof, we obtain an explicit description of the structure of finite
order antiunitary operators on complex Hilbert spaces that may be of independent
interest (see Proposition 5.1).

We next state an application of our results to positive energy highest weight rep-
resentations of g, := Zg(?) Let A € i(t§)* be an integral weight of g,, in the sense
that A takes integral values on all coroots (a, 1)", (@, n) € (Ay)c (cf. §2.2). Assume
moreover that 1(c) # 0, where ¢ := (i,0,0) € it§. It then follows from [Neel0, Theo-
rem 4.10] that g, admits an integrable (irreducible) highest-weight representation

pr=py: @ — End(Ly(1))

with highest weight A and highest weight vector v) € L, (). In fact, p; is even unitary
with respect to some inner product on L,(A) that is uniquely determined up to a
positive factor (see [NeelO, Theorem 4.11]).

Let v/ € it}, and extend the derivation D,s = Dy + D, of L4 (E) < gy to a skew-
symmetric derivation of g, by requiring that D,/ (t5) = {0}. Then p, can be extended
to a representation

Py =Py gy »RD, — End(L,(1))

of the semi-direct product g, x RD, such that g, (D, ) annihilates the highest weight
vector v,. The representation p) is said to be of positive energy if the spectrum of
H, = —ip)(D,r) is bounded from below. If this is the case, the infimum of the
spectrum of H,- is called the minimal energy level of p).

In the following theorem, we identify it; with the subspace

{uei(ty)” [ u(c) = u(d) = 0}
of i(t§)*, where d := (0,0, —i) € it{.

Theorem B Let (Z;(E), t5) be as above, and let A € i(t{)* be an integral weight with
A(c) #0. Let u € ity and y € Aut(¥) of order Ny, € {1,2} be the parameters provided by
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Theorem A, and denote by WV/ c GL(i(t§)*) and A, < i(t5)* the Weyl group and root

system of the standard affinisation Zl,,({%) of €. Then for any v,v' € itg, the following

assertions are equivalent:

(i)  The highest weight representation p): Z;({%) xRD,s - End(L, (1)) is of positive
energy.

(i) My, = inf Y(Wy.Ausy = Aysy) > —00, where

Muvv = A=A(e)(u+v) €i(t))" and x: Z[Ay] > R: (a,n) = (u+v")(ah) + n/Ny.

Moreover, if My, ., > —oo, then My, is the minimal energy level of p).

The proof of Theorem B can be found at the end of Section 7. Note that the “stan-
dard" Weyl groups W,, were given an explicit description in [HN14, §3.4], making the
computation of My, ,,, in the above theorem tractable. Using Theorem B, we will give

in [MN15b] a characterisation of all pairs (v, v') yielding a positive energy representa-

tionp,”" asabove, analogous to the characterisation obtained in [MN15a] for positive

energy highest weight representations of locally finite split simple Lie algebras.

2 Hilbert-Lie Algebras

The general reference for this section is [Neel4, Section 1].
2.1 Hilbert-Lie Algebras

A Hilbert-Lie algebra £ is a real Lie algebra endowed with the structure of a real Hilbert
space such that the scalar product (-, -} is invariant under the adjoint action, that is,

([x,y].2) = {x,[y,2]) forallx,y,ze€t.
By a theorem of Schue [Sché61], every simple infinite-dimensional Hilbert-Lie algebra
is isomorphic to
s (H) := {x € Bo(H) [ x™ = -x}
for some infinite-dimensional Hilbert space H over K € {R, C, H}, with scalar prod-
uct given by
{x.y) = tre(xy”) = ~tre(xy).

Here, gl, () = B,(H) denotes the space of Hilbert-Schmidt operators on H. Note

that if K = C, the complex conjugation on gl (J) is given by o(x) = —x*, and hence
gl () can be identified with the complexification €¢ of € := u, ().

2.2 Root Decomposition

Let g be areal Lie algebra and let g¢ be its complexification, with complex conjugation
o fixing g pointwise. Write x* := —g(x) for x € g¢, so that g = {x € g¢ | x* = —x}.
Let t € g be a maximal abelian subalgebra (a Cartan subalgebra) with complexification
tc S gc. For alinear functional « € {g, let

gc={xegc|[hx]=a(h)x Vhetc}
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denote the corresponding root space. Let also
A= A(g,t) = {actc N {0} | ot # {0}}
be the root system of g with respect to t. Then g2 = tc and [g&, gﬁ] c ggﬁ for all
a,feAu{0}.
Assume that g is the Lie algebra of a group G with an exponential function. Then
tis called elliptic if the subgroup e*d' = Ad(expt) ¢ Aut(g) is equicontinuous. This
implies in particular that

acitt ={fetr|B(t) ciR} forallacA,
and hence that
o(g¢) =gc" foralla e A.
Aroota € Ais called compact if g& = Cx, is one-dimensional and a([ x4, x;]) > 0,
so that
spang{xa, Xy, [Xa, Xy |} N g 2 s5u,(C).
We denote by A, the set of compact roots. If « € A, there is a unique element & ¢

to n (g, gc*] with a(&) = 2, called the coroot of a. Note that & € it. The Weyl group
W =W(g,t) of (g,t) is the subgroup of GL(t) generated by the reflections

ra(x)=x—-a(x)d foracA,.
2.3 Locally Finite Root Systems

Let Hg be some infinite-dimensional Hilbert space over K ¢ {R,C,H}, and let
¢ = u,(Hk) be the corresponding simple Hilbert-Lie algebra, with invariant scalar
product (-, - ). Let t C £ be a maximal abelian subalgebra. It then follows from [Sch61]
that t is elliptic and that tc C €c defines a root space decomposition
tc=tco® @ £,
ael

which is a Hilbert space direct sum with respect to the hermitian extension, again
denoted (-, - ), of the scalar product to £c. Moreover, all roots in A = A(&,t) ¢ it*
are compact. In addition, there is an orthonormal basis B = {E; | j € J} ¢ it of
tc = £2(J, C) consisting of diagonal operators with respect to some orthonormal basis
{ej| jeJ'} of Hx (or of bloc-diagonal operators with 2 x 2 blocs if K = R), such that
B contains all coroots & (« € A) in its Z-span, such that A is contained in the Z-span
of the linearly independent system {¢; | j € J} ¢ it* defined by €;(Ex) = 8, and
such that A is one of the following four infinite irreducible locally finite root systems
of type Ay, Bj, Cj, or Dy:

Ap={ej-ex|jyke], j#k},
By = {+ej, x(ejxex) | joke], j#k},
Cy={+2¢,+(ejxex) | joke], j#k},
D)= (sl 2e) | ik e, j# ).
If K = Cor K = H, then £ possesses only one conjugacy class of Cartan subalgebras

and A = Aj or A = Cj, respectively (see [Neel4, Examples 1.10 and 1.12]). If K =
R, then ¢ possesses two conjugacy classes of Cartan subalgebras, yielding the root
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systems A = By and A = Dy (see [Neel4, Example 1.13]). The above root data for ¢ will
be described in more detail in Section 6 below.
Set

’f\:: { ZXJE] | Xj € IR} c U(J{]%),
jel

where

3 = spang {e | j< 1)
is a pre-Hilbert-space with completion Hk. Note that any element of t is determined
by its restriction to F(%; we will also view t as a subset of t. The reason for this unusual
convention is that we wish to define an inverse map for the injection of t in its dual
t* that is defined on the whole of t*. More precisely, the assignment ¢; ~ Ej, j € ],
defines an R-linear map f: it* — it: u + u! such that

a(u?) = (uh, af) = u(at) forall y e it* and a € A,
where we have extended the scalar product ( -, - ) on itx it to itx it. Foreach a, f € A,
we set (a, B) := (af, Bt). Then & = (Tzu)(x“ forall « € A.
2.4 Automorphism Groups

Let € = up (Hg ) for some infinite-dimensional Hilbert space Hy over K € {R, C, H}.
By [Neel4, Theorem 1.15], every automorphism ¢ of £ is of the form

p=mma b —> Eix— AxA™,

for some unitary (for K = R, C, H) or antiunitary (for K = C) operator A on Hk. In
particular, every automorphism of £ is isometric.> We recall that an operator A on Hc
is called antiunitary if it is antilinear and satisfies

(Ax, Ay) = (x,y) forallx,ye Hc.

3 Affinisations of Hilbert-Lie algebras

In this section, welet (&, (-, - }) be a simple Hilbert-Lie algebra and ¢ be an automor-
phism of £ of finite order N € N. We set { := ¢?™/N ¢ C. The general reference for this
section is [Neel4, Section 2].

3.1 Finite Order Automorphisms

Let t; be a maximal abelian subalgebra of

P ={xect|p(x)=x}.

Then the centraliser in £ of {y is a maximal abelian subalgebra t of £ by [Neel4, Lem-
ma D.2]. Thus, to = t¢ = t n £%.

2In the classification theorem [Neel4, Theorem 1.15], the automorphisms ¢ of € are assumed to be
isometric: this is used to show that if p(xa) = y(@)x, for x4 € £& and a homomorphism x: (A)grp —
C*, then im(y) < T. But this also follows from the fact that ¢ preserves the real form € of ¢c.
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Since ¢(t) = t, it follows from Section 2.3 that the Lie algebra £¢ decomposes as
an orthogonal direct sum of ¢-invariant t¥-weight spaces Ef: for B ei(t?)*. Let

Bg = A1) = {Bei(t?)" ~ {0} | £ {0}}
denote the set of nonzero t?-weights in €, and for each n € Z and f € A, U {0}, set
gPm) —¢f e, where A= {xete|ol(x) = {"x).
Thus,

B NS ()
t = Z%EC’ )

Moreover, dim E((Cp ™) <1 for all B € A, and n € Z by [Neel4, Appendix D]. For each
n e Z, welet A, € i(t?)* denote the set of nonzero t?-weights in £, that is, the set

of 8 € A, such that dimﬁg’") = 1. Note that A, = Ag = A(E, 1) if ¢ = id.

As (E(‘(":,Eé) = {0} forall @, 8 € A, U {0} with a # f3, and as (¢, ) = {0} if
m +n ¢ NZ, the restriction of (-, - ) to t& = Eg)’o) is non-degenerate. In particular,
the map §: it* — it from Section 2.3 factors through a map

fri(t?) — it c ity ub
making the diagram

it —bL 7

.

ity —L i@
commute. In other words, if 4 € i(t?)*, then u! is the unique element of i? satisfying
(ut, h) = u(h) for all h € it?. As before, we set

(o, B) := (af, pt) foralla,f € A,
For x € Eg’") (B e Ay, nel), wehave [x,x*] € E((CO’O) =t%, and for h e t{,
(h, [, x7]) = ([h. x],x) = B(h){x, x) = (h, (x, x) B*),

and hence [x,x*] = (x,x)B". In particular, choosing x € Efcﬁ’”) such that (x,x) =

(ﬁzw’ we can define, as before, the coroot of f3 as

v

Bi=[xx"] =

2
GH"

3.2 Loop Algebras

Consider the ¢-twisted loop algebra
Ly(8) = {Ee C®(R,€) | &(t+2m) = ¢ " (&(t)) Vte ]R},

with Lie bracket [&, #](t) = [£(¢), n(t)]. If ¢ = id, we simply write £(£) := L;q(£)
for the corresponding untwisted loop algebra. We extend the scalar product (-, - ) on
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£ to a non-degenerate invariant symmetric bilinear form on £, (€) by setting

Y AR ORTOI

We again denote by (-, - ) the unique hermitian extension of this form to £, (£)c, and
we write

o(§)(1) =-&(1) =-8(1)", e Ly(t)c,
for the corresponding complex conjugation on £, (€)c.

Given n € Z and t € R, we set e, (t) := e™/N, 5o that e, ® x € C*(R, ¢) for all
x € £. Note then that for any x € £c,

Ei=e,@x€Ly(b)c < xekf,
because &(t +2m) = ("&(t) and ¢ ' (&(1)) = en(t) ® 97 (x).
3.3 Derivations

Let der(L4 (%), (-, -)) denote the space of derivations D of L, (¢) that are skew-
symmetric with respect to (-, - ), that is, such that (D&, ) = —(¢,Dy) for all £, 7 €
Ly (€). Let Dy € der(Ly (), (-, -)) be defined by

Dy (&) =& forall &e L,(8).
Given y € i(t?)*, we also define the derivation D, of £¢ by setting
Dy(x) =iu(at)x forallx € €&, a € A,

Since p(at) € Rforall a € Ay, D, restricts to a skew-symmetric derivation of €. Note
that D, commutes with ¢ since it stabilises each {’,((Cﬁ ") for B € Ay, n € Z. Hence, it
extends to a skew-symmetric derivation of £, () by setting

D, (&)(t) :=Dy(&(t)) forallée Ly(t)andteR.
Finally, we set D, := Do + Dy, € der(£, (%), (-, -)), so that

(3.1) Dy(en®x)=i(2+pu(at))(en®x)
foralla € Ay and x € {’((C“’").

3.4 Double Extensions

We define on £, () the 2-cocycle
wp,(x,y) = (Dyx,y) forallx,yeL,(E).
LetR @), Lo (£) be the corresponding central extension with Lie bracket
[(z1,x1), (22,%2) ] = (wD,,(xhxz)> [x1>x2])~
Extend D, to a derivation D, of R Dup, Lo(t) by
Du(z,x) = (0, D,x).

Let
g:=Lh(t) = (R@a,, Ly(8)) x5, R
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denote the corresponding double extension, with Lie bracket

(ZI) X1» tl)a (ZZ) X2, tZ) =\wp (-xla -xZ)s [-xlxe] + tlDyxZ - tZDyxl)O .
u

The Lie algebra g is called the (u-slanted and ¢-twisted) affinisation of the Hilbert-Lie
algebra (£, (-, -)). If ¢ = ide (resp. p = 0), we also simply write £ () (resp. L, (£))
instead of EZ(E) Note that in terms of the hermitian extension of (-, ) to £, (£)c,
the Lie bracket on gc is given by

[(Zl)xl) tl)) (ZZ) X25 tz)] = (<Dl,¢x1> _x;>) [-xlﬁxZ] + tlD[txZ - tZD[Axb 0) .

One can endow g with the non-degenerate invariant symmetric bilinear form
k: g x g —> R defined by

K( (21, %1, t1), (22, X2, tz)) = (x1,%2) + 2162 + 2211,
thus turning g into a quadratic Lie algebra. Moreover, the subalgebra
tg=Ret’eR

is maximal abelian and elliptic in g. The root system A := A(g, t5) can be identified
with the set

Ag={(a,n) |neZ, ac A, u{0}}~{(0,0)},
where
(a,n)(z,h,t) = (0,a,n) (2, h, 1) := a(h) + it( ¥+ p(at)).
For (a, n) € Ay, the corresponding root space is

gl = e, @ 8",

The root (a, n) is compact if and only if a # 0. Hence,
N-1
(Ag)e= U Apx(n+NZ)c {0} xi(t?)" xR.
n=0

Given n € Z and x € Eg"") with [x,x*] = & (« € A,,), we deduce from (3.1) that

(Du(en®x),—(e-n®x*)*) = (i( Z+u(at)) en®x,—e,@x) = —i( L+u(at))(x,x).

Since (x,x) = 2/(a, a), the element e, ® x € g((c“’") satisfies

—2i( £ +u(at)) |
T, 06,0) .

As (a, n) has value 2 on this element, we deduce that the coroot associated with («, )
is

[en®x, (e, ®x)"]=[en®x,.,®x"] = (

—2i( = ol
(3.2) (a,n)” = (W,éc,o).
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3.5 Locally Affine Root Systems
We define on spang (A ). the positive semidefinite bilinear form (-, - ) by
((oc, m), (B, n)) =(a,B) forallm,neZ,acA,, andfeA,.

Then the triple (spang(Ag)c, (Ag)e, (> +)) is an irreducible reduced locally affine
root system in the sense of [Neel0, Definition 2.4] (see also [Yosl0]).

Such root systems have been classified (see [Yosl10, Corollary 13]) and those of in-
finite rank fall into 7 distinct families of isomorphism classes, parametrised by the

types Agl), B;l), C}l), D;l), B;z), C;Z), and BC;Z) for some infinite set J. Denoting
by Q) the free Q-vector space with canonical basis {¢; | j € J} and scalar product
(€j,€x) = 8k, these can be realised in Q) x Q as

X\V:=X;xZ forXe{A,B,C,D},

B = (B x2Z) u ({x¢€j | je J} x (2Z+1)),

2
C? = (Cyx2Z) U (Dy x (2Z+1)),
BC®) := (By x2Z) U ((B;U Cy) x 2Z +1)),
where A}, B}, C, and D; are as in Section 2.3 and where the scalar product on Q) xQ
is given by ((a, 1), (o, t')) = (a, ).
If A = A(%,t) has type X; for some X € {A,B,C,D} (see §2.3), then the root

system of type X}l) is obtained as the set of compact roots

(Ag)e=AoxZ=AXZ

of the untwisted doubly extended loop algebra g = £(£) (¢ = id¢). The root system of
type X}z) for X € {B, C, BC} can similarly be obtained as the set of compact roots

(Ag)e = (8o x2Z) U ( Ay x (1+2Z))

of a twisted doubly extended loop algebra g = Z(,,(E) for some suitable choice of a
simple Hilbert-Lie algebra ¢ = £x and of an automorphism ¢ = ¢x € Aut(t) of
order 2. The three involutive automorphisms ¢x, X € {B, C, BC}, are described in
[Neel4, §2.2] and are called standard (see also Section 6). We will also call the 7 Lie
algebras g described above standard affinisations of the corresponding Hilbert-Lie
algebra €. We will describe these 7 standard affinisations and the corresponding root
data in more detail in Section 6.

3.6 Weyl Group
For each (&, n) € (Ag),, the reflection r(, ,) € GL(tq) is given by
(3.3) T(am) (2 1o t) = (2, b, t) = (2, n) (2, by t) - (a, )

—_2i( al
=(z,h,t)—(a(h)+it(%+y((x“))) -(W,&,O).
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In particular,

(a,0) (2 h,t) = (2, h, t) — (oc(h) + ity(a")) . ( - iy(&),&,o).
Denote by
W, = W(g, tg) = (T(amy | n€Z, a € Ay) € GL(tg)
the Weyl group of (g, t5), ang by W, the subgroup of W « generated by the reflections

"(«,0) for a € Ag. Note that W, preserves the invariant bilinear form x: g x g — R,
For each x € t?, define the automorphism 7, = 7(x) € GL(t4) by

Hx, x)
2

7oz, ht) = (2= (h,x) -

Then Ty, Ty, = Ty, 4x, for all x;, x, € t¥. Moreover, defining for each « € A, and n € Z
the reflection r(, ,) € GL(tg) by the formula (3.3) even if & ¢ A, one can check that
T(a,0)" (a,n) = Tin&/N (cf. [HN14, §3.4]).

Assume now that for each « € A, there exists some 3 € Ag such that 74,0y =
r(g,0)- For instance, this is the case if (Ag). is one of the 7 locally affine root sys-
tems from Section 3.5. Denoting by T, the abelian subgroup of t¥ generated by

,h+tx,t).

{ind/N |neZ, a € A,}, we deduce the following semi-direct decomposition of W#
inside GL(tg):

W, =1(Ty) » W,.

In Section 7, we will describe an explicit isomorphism between w x and Wo.

4 Isomorphisms of Twisted Loop Algebras

In this section, we fix some simple Hilbert-Lie algebra £ = u, (H) for some infinite-
dimensional Hilbert space Hy over K € {R, C,H]}, as well as some automorphism
¢ € Aut(t) of finite order.

Lemma 4.1 Let v € Aut(¥) be of finite order, and assume that there exists a smooth
one-parameter group (d;)ser of automorphisms of € commuting with v such that ¢y =
@. Then the map

D: Ly(€) —> Ly(8) : E— D(E)(1) = /2 (E(2))

is an isomorphism of Lie algebras.
Proof Let&e L,(¢). Then (&) € C*(R,¢)and forall t € R,

OE)(t+27) = ¢ 2y (E(t+27)) = $uyamey™ (97 (E(1)))
= buan(E(1)) =y (@(8) (1))
Hence, ®(Ly(£)) < £, (£). Moreover,
[©(8), D(m)] (1) = [ 9e22(&(1))s 91/2(n(1))]
= 92 ([E(), n(1)]) = ©([&7]) (1)
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forall £, 77 € £,(€) and ¢ € R, so that @ is indeed a Lie algebra morphism. Similarly,
the map @71 L (8) = Ly () : &> O7(E)(t) := ¢_¢/2,(&(t)) is a well-defined Lie
algebra morphism. Since it is an inverse for @, the lemma follows. ]

Proposition 4.2  Let y € Aut(t) be of finite order, and let (U;) g be a smooth one-
parameter group of unitary operators U; € U(Hg) such that the corresponding auto-
morphisms ¢, = my, of & commute with y and such that ¢y = ¢. Let t be a maximal
abelian subalgebra of ¥, and assume that t* = tV =: t,. Assume, moreover, that ty is
maximal abelian in both ¥ and € and that t C t** for all t € R.

Let y,v € ity and assume that the skew symmetric operator A, := iut € u(Hg)
satisfying (Ay, h) = ip(h) for all h € ity is bounded. Assume, moreover, that

d
7Ut/27r = —A,u Ut/2n = _Ut/ZHA,u'

d
Then the following hold:
(i)  The isomorphism ®: L,(¢) — L (€) provided by Lemma 4.1 extends to an iso-
morphism

D: (R, Lo(8)) #5 R — (R B, Ly(¥) %5, R

fixing t§ == R @ to ® R pointwise.
(i) @ induces an isomorphism of locally affine root systems given by

7 AL (8),45)c — ALY (). 65)c = (,n) > (o Ny - (35— p(at))),

where N, and Ny, are the respective orders of ¢ and .
(iii) The Weyl groups W(Z; (£),%5), W(Zﬁ”(?), t5) € GL(t§) coincide.
Proof For short, write g, := Z;(E) and gy = Z;H (€), as well as Ay, and A, for
the corresponding root systems with respect to the Cartan subalgebra t;. Note that
Ay = A(%,tg) = Ay. For each n € Z let A} and A}, respectively denote the set of
nonzero ty-weights on

E<?:(<P) = {x etc | (pfl(x) _ eZinn/N'Px})
EE(y) = {x et |y (x) = 2Ny},
as in Section 3.1. Thus,

(qu))c = U Al x(n +NyZ) and (Agw)f = U A¥x (n+NyZ)
0<n<N, 0<n<Ny
(cf §3.4).
We extend the isomorphism ®: £, (¢) — £, () provided by Lemma 4.1 to a bijec-
tive linear map ®: gy — Oy by setting ®(1,0,0) := (1,0,0) and ®(0,0,1) := (0,0,1).
We first claim that D, = ad(A,) € der(&,(-, -)). Indeed, let {E; | j € J} be some
orthonormal basis of the real Hilbert space ity whose R-span contains all af, o € A,
(cf. 2.3 and $3.1). Write

Ay = Z;ijj, where y; := (A, Ej) = ip(E;) forall j € J.
j€

https://doi.org/10.4153/CJM-2016-003-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-003-x

466 T. Marquis and K.-H. Neeb

Then for any x in the to-weight space of ¢ corresponding to a € A, U {0}, we have

ad(A,)(x) = Z‘uj[Ej,x] = zyj(x(Ej)x = Zyj(Ej,(x“)x = (Ay,a“)x
jeJ jeJ Jjel

=ip(at)x = D,x,

as desired. Note that the above sums are finite, because a! is a (finite) linear combi-
nation of the E;.
We then obtain for all & € £, () that

(®(§)'(1) = %(Ut/an(t)U—t/ZH) = =M @(E)(1) + ©(E) (1) + ©(E) (1) A,
= O(&)(t) = Du(@(§)(1).

On the other hand, since ¢, (t € R) fixes t, pointwise, it preserves all t,-weight spaces
in €¢, and thus commutes with D,,. Hence,

[((0,0,1)), (&)] () = [(0,0,1), D(&)](¥) = Dyss (P (8))(£)
= ((8))'(t) + Du(®(§))(1) + Dy (®(§))(2)
= D(E) (1) + Dy( buy22(8(1)))
= (&) (1) + ¢t/27‘[(ﬁv(£(t)))
= ®(D,(8))(t) = B([(0,0,1),€]) (1),

so that @ is indeed a Lie algebra isomorphism. Moreover, the restriction of ® to t¢ is
the identity, because ¢, fixes to pointwise. This proves (i).

As O fixes tg» it preserves the root space decompositions of g, and gy, with respect
to t§ and hence induces an isomorphism of locally affine root systems

72 (Bgy)e — (Bgy)e : () — (o7 ()
such that
(@ n)(z ht) = a(h) +it( 5 +v(ad)) = a(h) +it( % +(p+v)(ah))
= (@, 7a(n)) (2, h, 1)
for all (z, h, t) € t§. In particular, this yields
Ta(n) = Ny - (e - u(a),
so that (ii) holds.

Since, moreover,

- —2i(NL¢+v(oc“)) o) —21'(%:)+(.“+V)(“u)) Y 0
(m”)‘( (a,a) ’“’)‘( (aa) ’“’)
= (@, 7a(n))"
for all (a, n) € (Aq, ). by (3.2), we deduce that

T(an) = (a7 (n)) € GL(t{) forall (a,n)e (qu,)c.
Hence, W(g,, t;) = W(gy. t§), proving (iii). [ |
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Remark 4.3 Recall from Section 3.2 that we defined the ¢-twisted loop algebra
L4 () as a subspace of the 27N, -periodic functions of C**(RR, £), where N, is the
order of ¢. Another convention that one finds in the literature is to consider 27-
periodic functions instead. We now explain how the characteristic data of these two
definitions are related.

For N € N, we set

Lon(8) = {EcC™(RE) [ §(t+22) = 97 (&(1))}.

For N = 1, this is the ¢-twisted loop algebra £, (€) that we consider in this paper; the
other convention that we alluded to above is to take N = N,,.

Let ty = t be maximal abelian in ¢ and let v € it;. Define the skew-symmetric
derivation D,, of £, n(£) as in Section 3.3. Thus,

Dv(eintN/Nq, ®X) _ l( r;\TN + V((X“)) (eintN/Nlp ®X)
¢
foralla € Ay and x € Eg""). Denote by

Lyn(8) = (R®up, Lo (1)) #5, R

the double extension of £, n(£) corresponding to D, as in Section 3.4, with Cartan
subalgebra t§ := R ® ty ® R. Then

©: Ty (&) — Ly (8)  E(1) — E(N),
(1,0,0) — (N,0,0), (0,0,1) — (0,0, 1)

is an isomorphism. Set
c¢:=(i,0,0) eit; and d:=(0,0,-i) € itg.
For a weight A = [A., A% A4] € i(t3)* with respect to t¢ < z;)l(E), where
20 = Mg)e €itgs  Ac:=A(c) €R, and A;:=A(d)€R,
the corresponding weight with respect to t; ¢ £ o, (£) is then given by
(4.1) Ao®7' =[21:,A% NAy].

Similarly, for y = [xc, X% xa] := xec+ x° + yad € it§ © Z;,I(E), where x° € ity and
Xe» Xd € R, we have

(4.2) O(x) = [Nxe, x°, % xal-

Using identities (4.1) and (4.2), it is then easy to state the positive energy condition
for highest weight representations of £ f;f, ' (&) in terms of the corresponding condition

for Z;,l (£) (see Section 7.2 for more detail about the positive energy condition).
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5 The Structure of Finite Order Antiunitary Operators

Given a complex Hilbert space 3 with orthonormal basis B = {e; | j € J}, we de-
note by o the complex conjugation on J with respect to this basis. The following
proposition describes the structure of finite order antiunitary operators on 7.

Proposition 5.1 Let H be a complex Hilbert space, and let A be an antiunitary oper-
ator on H of finite order. Let N € N be such that A>N = idg and set { := ¢™N ¢ C.
Then the following hold:
(i) A? € U(H) and H has a decomposition
H=H,oeH & & (j‘f(n ® 9'{:(7271)

0<n<N/2

into A*-eigenspaces, where J, denotes the A*-eigenspace corresponding to the eigen-
value A.
(ii) There is some A-stable subspace ¥, of H, with dim H, < 1such that the follow-
ing hold:
o IfdimH, = 1, there is some unit vector €j, € H, such that Aej, = ej,.
* Foreachn € Zwith0 < n < N2, there exists an orthonormal basis {e], €; | j € Jrn }
of Hezw + He-zn (for n > 0) and of H 0 FE (for n = 0) such that A stabilises each
plane Ce} ® Ce;, j € Jpon, and has the form

0o
((—n 0 ) O'ej*,ej’

Proof The first statement of the proposition is clear. Since A is antilinear and com-
mutes with A%, we have for any eigenvalue A of A* and any v € J{, that

A% (Av) = A(A%) = A(Wv) = 1A,

and hence A.H, = Hy. Thus, A stabilises each of the subspaces H;, H_;, and
:]_C{'Zn (&) }C(—zn forne ZwithO<n< N/2

Since A acts as a conjugation on 3, the fixed-point space H;" is a real form of ;.
Choose an orthonormal basis { fj+, fj‘ | j € i} U S of 3 that is contained in H7,
where S; = {e jo} is a singleton if dim 7 is finite and odd and $; = & otherwise. Also,
let F(; denote the sub-vector space of J(; with basis S;. Thus, A fji = fji forall je J;
and Aej, = e, if diim H(; = 1. For all j € Ji, set

+ 1 i
e = ﬁ('f] +if] ).

Then {e}, e} | j € Ji} is an orthonormal basis of 3(; F(, and A has the desired form
in each of the bases {e], e; }, j € Ji.

Now let n € Z with 0 < n < N/2, and choose some orthonormal basis (e} ) je7,,
of He. Setej = ("Ae] € Hyan for each j € Jpn. Then {e],e; | j € Jrn} is an
orthonormal basis of 72« ® H -2, and A has the desired form in each of the bases

{ef.ej b jeTpn.

in the basis {e], e} }.
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Finally, note that for any unit vector v € J{_;, the subspace Cv & CAv is two-
dimensional and stabilised by A. Indeed,

(v, Av) = (Av, A%v) = —(Av,v) = (v, Av),

and hence (v, Av) = 0, so that {v, Av} is an orthonormal basis of Cv & CAv. Using
Zorn's lemma, we may thus choose an orthonormal subset (e}) jj_, in H{_; such that

{e,ej = (N/ZAeJ’T | j € J_1} is an orthonormal basis of H{_;. Again, A has the
desired form in each of the bases {e}f, eJT}, j € J-1. 'This concludes the proof of the

proposition. |

6 Root Data for Affinisations of Hilbert-Lie Algebras

Let £ = uy(Hg) for some infinite-dimensional Hilbert space Hk over K = R, C, or
H, and let ¢ € Aut(£) be of finite order.

Lemma 6.1 'There exists some unitary (if K = R,C,H) or antiunitary (if K = C)
operator A on Hy of finite order such that ¢ = m4.

Proof By Section 2.4, there exists some unitary (if K = R, C, H) or antiunitary (if
K = C) operator B on Hk with ¢ = mp. Let N € N be the order of ¢. Then BN
centralises €, and hence BN = 1 - idg, for some A, in the center of K with [1¢| = 1.
IfK = R or K = H, then Ay € {+1} and hence A := B satisfies A*N = id. If K = C
and B is unitary, we set A := vB for some N-th root v € C of A;%, so that AN = id.
Finally, assume that K = C and that B is antiunitary. Since for any nonzero v € H¢,

Lo(Bv) = BN(Bv) = B(B¥v) = B(Aev) = Ao(Bv),
we get Ao = A € R, and hence 1o € {1}. We then set A := B,so that A’N =id. m

For each pair (&, ¢ ), we now describe data v, (¢¢) g, t and g as in Proposition 4.2,
thus yielding the desired isomorphisms from Theorem A.

Example 6.2 Let t = u,(3() for some infinite-dimensional complex Hilbert space
JH and let ¢ € Aut(£) be of finite order. Let A be some unitary operator on K of finite
order N € N such that ¢ = 74 (see Lemma 6.1). Set { := e2™/N,

As every unitary representation of the cyclic group of order N on I is a direct sum
of 1-dimensional irreducible ones, we can choose some orthonormal basis (e;) j¢; of
J consisting of A-eigenvectors. Let t C £ be the subalgebra of all diagonal operators
with respect to the e}, j € J. Then t is elliptic and maximal abelian, and t¢ = €*(J,C)
with respect to the orthonormal basis {E; | j € J} < it given by Ejej := &jxex. The set
of roots of £¢ = gl, (3() with respect to tc is given by the root system

Arp={ej-ex|jtk jke]},

where €;(Ex) := §jx. The corresponding set of compact roots for L (%) is of type Agl)
(see [Neel4, Examples 1.10 and 2.4]).

For each j € J,let nj € {0,1,...,N — 1} be such that Ae; = {"/e;. For each t € R,
also let U; € U(H) be the diagonal operator defined by Uye; = {""ie;, and set ¢ =
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my, € Aut(t). Let y € it* be defined by u(E;) := yj := —n;/N. Setting A, := iyt =
Y je ipjEj € u(3(), we then have

LUjan = =DuUsjzn = —Uppay.

Finally, note that, for any ¢ € R and x € t, the operators U, and x are both diagonal
with respect to the e, j € ], and hence commute. In particular to := t? = t ¢ t* for
all t e R.

We may thus apply Proposition 4.2 (with y = id) and conclude that for any v € itg,
there is an isomorphism

®: Ly (8) — LF () : (21, E(1), 22) — (215 bey2n(E(1)), 22)

fixing the Cartan subalgebra t¢ := R ® to ® R pointwise. Moreover, ® induces an
isomorphism of locally affine root systems

e A(TY0.6), — AP = AT, 8): (aan) — (a5 — u(ah)),
where N, is the order of ¢. Finally, the Weyl groups W(Z; (€),5) and W(LH* (8), £5)

coincide.

Example 6.3 Let £ = u,(Hp) for some infinite-dimensional quaternionic Hilbert
space Hyg and let ¢ € Aut(€) be of finite order. Let A be some unitary operator on Hpy
of finite order N € N such that ¢ = 774 (see Lemma 6.1). Set { := e>™/N,

The quaternionic Hilbert space Hy can be constructed as Hy = H? for some
complex Hilbert space H with conjugation o, where the quaternionic structure on H?
is defined by the antilinear isometry’ (v, w) := (—ow, ov). With this identification,
we then have

t=u(Hy) = {x euy(FH?) | ox = x?i},

U(Hz) = {ge U(IC) | Gg7 ' = g}
Let
=)o (H)ae & ((H)po (H)en)
0<n<N/2

be the decomposition of H{? into A-eigenspaces, where (3(?), denotes the A-eigen-
space corresponding to the eigenvalue A. Since A € U(H?) commutes with &, the
antilinear isometry & maps (H?), to (H?)y for each A-eigenvalue A. In particular,
each of the subspaces (H?);, (H?*)_1, and (H*)m & (H?*)-n with 0 < n < N/2
is a quaternionic Hilbert subspace of Jy. Let (e;)je,, be an orthonormal basis of
(H?) 41 over H, and for each n with 0 < n < N/2, let (e;) jj., be an orthonormal
basis of (3*)n @ (H?*)-n over H that is contained in (H*)s. Then the reunion of
these bases yields an orthonormal basis (e;) jey of Hy over H.

Up to replacing H by the complex Hilbert space generated by (e;) jej, we can then
assume that Hp is constructed as above as Hy = H? for some complex Hilbert space
I with orthonormal basis (e;)je; (and complex conjugation ¢ with respect to this
basis) in such a way that for each j € J, the C-basis vectors (ej,0) and (0, ¢;) are

3Writing C=R+RJandH =C+CJ =R +RJ + RJ + RIJ, the isometry & corresponds to left
multiplication by J.
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A-eigenvectors of respective eigenvalues {"/ and {~"/ for some natural number #;
with 0 < n; < N/2.

Let t ¢ ¢ be the subalgebra of all diagonal operators with respect to the (e;,0)
and (0, e;), j € J. Then tis elliptic and maximal abelian, and t¢ consists of diagonal
operators in

E(C = uz(}CH)C = {( é _ir) € Bz(g'cz) | BT =B, CT = C}

of the form h = diag((h;), (~h;)), where BT := 0B*¢ for all B € B(H). Thus, t¢ =
€2(J, C) with respect to the orthonormal basis {E; | j € ]} it defined by E;(ex, 0) :=
djk(ex,0) and E;(0, ex) := —08x(0, ex). The set of roots of £ with respect to tc is
given by the root system

Cy={x2¢,(c;xex) | j# k. jukeJ},

where €;(Ex) := § . The corresponding set of compact roots for L (%) is of type C}l)
(see [Neel4, Examples 1.12 and 2.4]).

For each t € R, let U; € U(Hy) be the diagonal operator defined by U;(e;,0) =
{*"i(e;,0) (and hence U;(0, ;) = {"*"i(0, ¢;)) and set ¢, = 7y, € Aut(¥). Let y € it*
be defined by u(E;) := pj := —nj/N. Setting A, := ipt = ¥y iptjE; € u(IH), we
then have

7iUtfan = =MuUspan = ~Usppnly.
Moreover, for any t € R and x € t, the operators U; and x are both diagonal with
respect to the (e,0) and (0, ¢;), j € J, and hence commute. In particular, ¢, := t¢ =
tctf forallteR.

We may thus apply Proposition 4.2 (with ¥ = id) and conclude that for any v € itg,
there is an isomorphism

®: L7 (6) — LF7 () : (21, (1), 22) — (21, $1j22(E(1)), 22)

fixing the Cartan subalgebra t¢ := R @ t; ® R pointwise. Moreover, ® induces an
isomorphism of locally affine root systems

m ALy (8),8) — c = A(ZH(8),85) () — (a, N~ u(al)),

where N, is the order of ¢. Finally, the Weyl groups W(Z; (€),t¢) and W(LH* (£), £5)
coincide.

Example 6.4 Let t = u,(Hp) for some infinite-dimensional real Hilbert space Hg
and let ¢ € Aut(®) be of finite order. Let A be some unitary operator on Hp of finite
order N € N such that ¢ = 4 (see Lemma 6.1).

Note that A can be viewed as a unitary operator on the complexification H :=
(Hgr)c of Hg that commutes with complex conjugation. Since, moreover, H decom-
poses as an orthogonal direct sum of one-dimensional A-eigenspaces, Hr decom-
poses as an orthogonal direct sum

Hr = H; @g{_]@j{b

where J{,; is the A-eigenspace for the eigenvalue <1, and where J{; has an orthonor-
mal basis {ej, e} | j € J¢} such that A stabilises each plane Re; + Re and is of the
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form

cos(2mn;j/N) —sin(2nn;/N)
(6.1) (sin(Znn,]-/N) COS(Zﬂ"jJ/N))

in the basis {e;, ¢}, for some n; € Z with 0 < n; < N/2. We let also

{ej, e;' | jE ]tl} uS.
denote an orthonormal basis of J(,;, where S, := {ej,, } is a singleton if dim J(,, is
finite and odd and S,; := & otherwise. Up to replacing A by —A (this does not modify
¢), we may then assume that §; = {ej,} and S_; = @ in case [$; U S_4| = 1. Note that
N must be even if H_; # {0}.
Set nj := 0 (resp. nj := N/2) for each j € J; (resp. j € J_1). Writing J' := J;uyu ]y,
we thus get an orthonormal decomposition

Hr = Rej, @ Rej_, @ & (Rej @ Re))
jel’

such that A stabilises each plane Re; + Re; (j € J') and is of the form (6.1) in the basis
{ejs e;-}, and with the convention that e;,, € J{,; is omitted if S,; = @. If [S;US_| = 2,
we set e;-l i=e;_, and ] := J' u {ji}. Otherwise, we set ] := J.

We choose a maximal abelian subalgebra t C € such that

kert:={x e Hg |h.x =0Vhet}

is the one-dimensional subspace Rej, if |[S; U S_;| = 1 and kert = {0} other-
wise, such that t commutes with the orthogonal complex structure J on (kert)* =
® (Rej @ Re’) defined by Je; := ¢’ for all j € ], and such that all planes Re; + RJe;
Jjel

(j € J) are t-invariant (see [Neel4, Example 1.13]). For j € ], we define the elements

1 ) 1 .
fi= ﬁ(ej —iJej) and f;:= ﬁ(ej +iJej)
of H. If kert # {0}, we also set fj, := ej,. Then the f; form an orthonormal basis of
J consisting of t-eigenvector.
Note that for each j € J', the basis elements f; and f_; are also A-eigenvectors, with
respective eigenvalues (" and {7". For each t € R, we let U; € U(Hg) be defined by

the matrix
cos(2tmnj/N) —sin(2tmn;/N)
sin(2tmnj/N)  cos(2tmn;/N)
in the basis {e;, e} for each j € J, where we have set nj, := 0 in the case where

|S1uS_i1| = 2, and by Uyej, = ej, in the case where [S; US_;| = 1. We also set ¢; = 7y, €
Aut(t). Note then that ¢;¥ = @, where v € Aut(¥) is the order 1 or 2 automorphism
y = mp of ¢ corresponding to the matrix B € U(Hg) whose restriction to the space
®jey (Re; @ Rej) is the identity, and such that Bej,, = e;,, if S.1 # @. Thus y = id
unless |S; U S_;| = 2. Note also that ¢ commutes with ¢, for all t € R.

The restriction of any x € t to Re; ® Re/, j € , is of the form (%e ) in the basis
{ej, e}}, for some a € R. In particular, x commutes with U, for each t € R, so that
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t? ¢ t = t% for all t € R. The same argument implies that t* and t¥ both contain the
subspace

to={xet|xej=xe;=0VjeJ\]'}.

We now claim that t? and t¥ coincide with t, and are maximal abelian in £ and
€Y, respectively. Indeed, if v = id, so that ¢ = ¢;, we have t¥ = t = t¥ = {;. Assume
now that v = 7 has order 2, so that |S; U S_;| = 2. Then kert = {0} and t¥ = t; = t¥
because the restriction of ¢ (resp. ) to Re;j, @ Re;_, is of the form (§ °,) in the basis

{ej,ej_,} and
1 o\(o0 a\(1 o) (0 -a
(0 —1)(—a 0)(0 —1)_(61 0)'

Let x € €% (resp. £¥) be such that ty + Rx is abelian. Then x stabilises each plane
Re; + Re; (j € J') and hence decomposes as x = xo + x; for some x € t; and some
x; € £ with xje; = xe;- = 0forall j e J'. Since x; = x — xp is skew-symmetric, it
stabilises Re;, ® Re;_,. Moreover, x is fixed by ¢ (resp. ), and hence we conclude as
above that x; = 0. Thus, x € o, and hence t, is maximal abelian in £ (resp. £¥), as
desired.

The complexification (to)c of to is precisely the set of all those elements in £ that
are diagonal with respect to the orthonormal basis of J{ consisting of the f;. Thus,
(to)c = €2(J',C) with respect to the orthonormal basis {E; | j € J'} < ity defined by
Ejfi = 8jifi forall k € J'. Also define ¢; € ity by €;(Ex) = 0k, k€ J'.

If y = id, the set of roots of £}. = £c with respect to t}- = tc is given by

Dy={x(ejxex) |j#k j.ke]} ifkert={0},

By={x(ejxex) |j#k jokeJbu{zej|je]} otherwise.
The set of compact roots for ZW(B) = £ (k) is then respectively of type D;l) and B;l)
(see [Neel4, Examples 1.13 and 2.4]).

If w = 75 has order 2 (so that |S; U S_;| = 2), then, up to replacing B by —B (which
does not modify y), the operator B is the orthogonal reflection in the hyperplane e; .

Thus, y is the standard automorphism from [Neel4, Example 2.8]. As observed above,
t¥ = t; is maximal abelian in

& ={xet|xe, =0}

and ker(t¥) n e}_l = Re;, is one-dimensional. The set of roots of % with respect to
t:é is then of type By, while the set of compact roots for Z,,,(E) is of type B;Z) (see
[Neel4, Example 2.8]).
Back to the general case (y of order 1 or 2), let u € ity be defined by u(E;) = u; :=
—nj/N forall j e J'. Setting A, := iyt = ¥y ipjE; € u(IHr), we then have
7iUtfan = =MuUspan = ~Usppnly.

We may thus apply Proposition 4.2 and conclude that for any v € itj, there is an
isomorphism

D: Z;({3) - 35”(?) : (Zl,f(t),zz) — (Zl>¢t/2n(£(t))’22)
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fixing the Cartan subalgebra t¢ := R @ t, ® R pointwise. Moreover, ® induces an
isomorphism of locally affine root systems
m AL (), ) — ALY (8),45)c  (Df", B", B} :
(a,n) — (o, Ny - N% —u(ah))),

where N, is the order of ¢ and Ny, € {1,2} is the order of y. Finally, the Weyl groups
W(f‘q’, (8),t5) and W(Z;W (8),t5) coincide.
Example 6.5 Lett = uy(3) for some infinite-dimensional complex Hilbert space
J and let ¢ € Aut(£) be of finite order. Let A be some antiunitary operator on H of
finite order 2N for some N € N and such that ¢ = 74 (see Lemma 6.1).

We set { := e'™N and apply Proposition 5.1 to A. Let J(; and {ej.ej | jepn}s
0 < n < N/2, be as in Proposition 5.1(ii). Thus, A stabilises each plane (Ce;f @ Ce;,

j € Jpn, and has the form
0o "
((" 0 ) Teje;

in the basis {e], e} }. If diim H, = 1, we also choose some basis S; := {ej, } of H; such
that Aej, = e;j; if diim J{; = 0, we set §; := @. Set
Ji= U Jpr» and Bi={ef|je]}.
0<n<N/2

Then B := B, uB_uU §; is an orthonormal basis of J{. For each j € J and n € Z with
0<n<NJ2,wesetn;:=nif je o

To treat both cases S; = @ and S; # @ at once, we adopt the convention that when-
ever e;, appears in what follows, it should be omitted if S; = &. We also sete := i € C
if S; = @ and € := 1 € C otherwise.

Let Hj be the closed subspace of H spanned by B*. We define on | the complex
conjugation 0y = g, with respect to eB, = {ee] | j € J} and on H{; the complex
conjugation o, = o5_ with respect to B_. Write 3{ as

H=H; ®Cej, ® Hy,

which we endow with the conjugation ¢ extending gy and oy, and such that oe;j, =
ej,- Consider the automorphism y € Aut(¢) defined by

y(x) =Sox(Sa)™" forx ek,

where
0 0 1 0 1
§S=10 1 0] ifS;#@ and S:( ) if §; = @.

1 00 1o

Setting ¢ := So, we thus have

~s 7 . ~
oej =¢; forallje] and oej, = e;j,.

Note that y is the standard automorphism of [Neel4, Example 2.9] if §; = @ and of
[Neel4, Example 2.10] if S; # @.
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Let (U;)er be the one-parameter group of unitary operators on H defined by

Uteji = (*”f‘e]* forallje] and Usej, = ¢ej,.

Then A = U0 and U; commutes with ¢ for each t € R. Set ¢, := my, € Aut(¥) for all
t € R. Thus, ¢, commutes with y and ¢,y = ¢.

Let t be the set of elements in £ that are diagonal with respect to the orthonormal
basis B. Hence, t is maximal abelian in ¢ (see Example 6.2) and t = % foreach t € R.
For each j € ], define the operator E; € it by

Ejej = +0;cex forallke] and Ejej, :=0.
Let
to == spanp {iE; | jeJ} ct.
Since for each j € Jand t € IR, the operator iE; commutes with U; and &, the subalge-
bras t? € £ and t¥ C £¥ both contain t, and are contained in t?*. On the other hand,
if x € £ centralises ty, then x is diagonal with respect to B, that is, x € t. In particular,

x commutes with AG™! = Uj, so that x € £ if and only if x € €Y. If, moreover, x € £¢
(or equivalently, x € £¥), then for any j € J and A € iR such that xe] = Ae}, we have

Since in addition
xej, = X0ej, = 0xej, = —Xej,
so that xe;, = 0, we deduce that x € t;. This shows that t¢ = t¥ = t; and that t; is

maximal abelian in both €% and €Y. The set of roots of £~ with respect to t is then of
type By if S; # @ and of type C; if S; = @. Accordingly, the set of compact roots for

ZW(E) is of type BC}Z) or C}Z) (see [Neel4, Examples 2.9 and 2.10]).
Now let € it} be defined by y(E;) := p; := —5% forall j € J. Setting A, := iut =
Y jey it Ej € u(3(), we then have

%Ut/Zn = _Ay Ut/271 = _Ul’/27TA,M'

We may thus apply Proposition 4.2 and conclude that for any v € itg, there is an
isomorphism

®: Ly (8) — L8 (6) 1 (21,E(1), 22) — (21, beyan(E(1)), 22)

fixing the Cartan subalgebra t¢ := R ® to ® R pointwise. Moreover, ® induces an
isomorphism of locally affine root systems

7 ALY (8), 1) — ALY (8), ) € {BC®), P} :
(a.n) — (. § —2u(a")),

where N, is the order of ¢. Finally, the Weyl groups W(Z 5(£),5) and W(LE™(8),t5)
coincide.

Proof of Theorem A  This sums up the results of Examples 6.2, 6.3, 6.4 and 6.5. W
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7 lIsomorphisms of Weyl Groups

By Theorem A, every affinisation of a simple Hilbert-Lie algebra ¢ is isomorphic to
some slanted standard affinisation £ (€) of €, with the same Weyl groups. In turn,
£,,(€) and £, (t) have the same root system with respect to some common Cartan

subalgebra, and hence isomorphic Weyl groups. In this section, we give an explicit
isomorphism between these Weyl groups. We then present an application of our re-
sults to the study of positive energy highest weight representations of £y (£).

7.1 Unslanting Weyl Groups

Let € be a simple Hilbert-Lie algebra, and let € Aut() be of finite order N € N. Let
to be a maximal abelian subalgebra of €% and let A, = A(£, t;) be the corresponding
root system. Also, let t§ := R @ t; @ R be the corresponding Cartan subalgebra of
gy = Z;(E), for any v € it}, and set Ay := A(g,, ).

We assume that Ly is either the identity or one of the three standard automor};hisms
(cf. §3.5), so that (Ay ) € Ay x Z is one of the 7 locally affine root systems Agl , B§1),
C}l), D;l), B;z), C;Z) and BC}Z). For each v € it], let W, := W(g,, ;) € GL(}) be
the Weyl group of g, with respect to tg.

We fix some v € it;. In the notation of Section 3.6, we then have a semi-direct
decomposition

W, = 7(Ty) x W,
where T, is the abelian subgroup of t, generated by {in&/N | (a,n) € (A,).} and
W, is the subgroup of W, generated by the reflection "(a,0)> & € Ay, defined by

(71) w0y (zh,t) = (2, h, t) = (a(h) +itv(at)) - ( - iv(&),&,0)
for all (z, b, t) € t§. We also denote by 74, a € Ay, the reflections
Fu(z,h,t) = (z,h —a(h)d, t)

in GL(t$) generating W, so that W = 7(Ty) x W.

Finally, we recall from Section 3.1 that for any v € itj, there is a unique element
vl € ity such that (vi, h) = v(h) forall h € ity. We set £ := R@® fp ® R, and we extend
each root « € A, € ity to a linear functional

atp — iR:h s a(h) = (h,at),
so that Wy and W, can be viewed as subgroups of GL(t).

Lemma 71 Letay,...,a, €Ay for somen e N. Then for all (z,h, t) € &,

T(ay,0) - 7’(0‘2’0)1’(“1,0).(2, h, t) - (Z, h, t) =
(iv(fen (2, b, 1)), ~f2 (2,1, 1),0)),

where

n

MO ig —ty:(z,h,t)— Z((xs(h) + itv((xﬂ)) Ty T (Gs)-

s=1
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Proof This easily follows by induction on # using (7.1) and the decomposition

T (an,0) T (a,0)-(2 hot) = (2, b, t) =
r(a,,,o)-(r(an,l,o)"'T(a1,0)~(2, h,t) - (z, h, t)) + (r(amo).(z, h,t) - (z,h, t)) [ |
Since, in the notation of Lemma 7.1,
as(h) +itv(al) = ag(h) + it(vh, al) = a;(h) + a,(itvh) = ag(h + itvh),
so that
(72) flveotn(z, by t) = foon (z b+ itvh t)  forall (z,h,t) € €,
we deduce from Lemma 7.1 that for all a;, ..., &, € Ay and all (2, h, t) € ‘Eg,
T(an0) " T(an,0)- (2 s 1) = (2, B, 1) = 0 < T, -+ Ty (2, h+itvh, 1) = (2, h+itvh, 1) = 0.

This implies in particular that the assignment r(4 o) = 74 for each a € Ay defines a
group isomorphism

Pyt Wv nd WO : r(an,o) -~-r(ah0) =T, V-

Proposition 72 The map y,: W, - Wy extends to a group isomorphism
Pt W, = We : 1ow Tepv(w) (x €Ty, weW,).

Proof This follows from the observation that for each & € Ay and x € T, we have

r(a,o)rxr(’;,o) =Ty (x) = ?arx?;l where r,:tg >to:h—h—a(h)d. [ |
Remark 7.3 If v} € ito, then P, is just the conjugation by 7_;,s.
7.2 Application to Positive Energy Representations

We place ourselves in the context of Section 7.1 (although we will only need to assume
that v is the identity or standard in Proposition 7.4 and Theorem 7.5 below) and keep
the same notation. Set

c:=(i,0,0) ity and d:=(0,0,-i) € itg,

so that cis central in (g, )¢ and ad(d) has eigenvalue % +v(af) on e, ®Eg""), aeldy
(ef B.D).
For a weight
Lei()* 2 iReit) ® iR,
we set
PRES M) €itgs  Ac:=A(c) eR and A4:=A(d) e R.
Note that we may extend the map f: it; — i, to a map
fri(tg)" — it A A= —Agc+ (A°)F - Ad
satisfying ((z, h, £), AY) = A((z, h, t)) for all (z,h,t) € it, where we have again
denoted by « the hermitian extension of |t (cf. §3.4) to (t§)c x (t§)c. Since j is
bijective, this allows us to view the Weyl group W, not only as a subgroup of GL(i )
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as in Section 7.1, but also as a subgroup of GL(i(t§)*), where the action is charac-
terised by (w.A)f = Ww.A! for all W e W,

Fix some A € i(t{)* and assume that A, # 0 and that A is integral for g,, in the
sense that A((&, 1)) € Z for all compact roots (&, 1) € A,. It then follows from
[Neel0, Theorem 4.10] that g, admits an (irreducible) integrable highest-weight mod-
ule L, (1) of highest weight A, whose corresponding set of weights is given by

(73) Py =P} = conv( WV.A) n(A+Z[A,]).
Let
pr = py: @ — End(Ly(1))

denote the corresponding representation. Note that p, is unitary with respect to some
inner producton L, (1) thatis uniquely determined up to a positive factor (see [NeelO,
Theorem 4.11]).

Let v/ € it}, and extend the derivation D,/ = Dy + D, of Ly(€) € g, to a skew-
symmetric derivation of g, by requiring that D, (t§) = {0} (cf. §3.3). Since the deriva-
tion D, preserves the root space decomposition of (g, )c, it follows from (3.1) that
pa can be extended to a representation

pr=p;"" gy » RDy —> End(L, (1))
of the semi-direct product g, x RD,/ by setting
pA(Dy )y =ix(y-2)v,

forall y € P and all v, € L, (1) of weight y, where x: Z[A,] - R is the character
defined by

(7.4) x(a,n)) =2+ (at) forall (a,n) € Ay.

The representation p, is said to be of positive energy if the spectrum of H,  :=
—ipy (D) is bounded from below. If this is the case, the infimum of the spectrum of
H, is called the minimal energy level of p). In view of (7.3), the representation p), is
of positive energy if and only if

inf y(W,.A = 1) > —oo.

To match the context of Section 71 (namely, W, ¢ GL(if¢) instead of W, ¢
GL(i(£§)*)), we identify y with an element of it¢ by setting

x() =t ) = p(x) forallpe Z[R,],
so that
YA =L =@M AL y) = (@ Ly - o A =A@ Ly —x) forallweW,.
With this identification, p) is thus a positive energy representation if and only if

(7.5) ian(Wv.X—X) > —o00.
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Write y = ycc+ x° + xad € it for some x., ys € R and some §° € if,. Since for all
(a,n) € Ay,
(e m)) = k( (@ m)t, x) = w(( = i(3 +v(ah)), a',0), (ixe, x° ~ixa) )
= (ah, 1) + xa(§ +v(ah) = a(x” + xav") + xaf
we then deduce from (7.4) that
(7.6) =) -v and yy=1
Define
Avi=A-Avei(ty)* and y, = x+ yavt € it
where we view v € ity as a weight in i(t§)* by setting v(c) = v(d) := 0.
Proposition 7.4 Let A € i(t5)* and x = yec+ x° + yad € itS. Then
)‘(Wv%_ X) = AV(WO-XV = Xv)-
Proof Let7,: W, - W, be the group isomorphism provided by Proposition 7.2.
We claim that
A@.x = x) = M(Fo(@).xy — xv)  forallw e W,.
Given a tuple of roots & = (a1, ..., a, ) € A, we use the notation
T(a,0) = T(an0) " "T(a,0) and Tq =Tg, =+ Tq,.
It then follows from Lemma 7.1 and (7.2) that for all (z, h, t) € it¢,
T(a0)-(z 1) = (2. h,t) = (iv( £ (2. b, 1)), £ (2, b, 1),0),
fa.(z.h,t) = (z,h,t) = =(0, £ (z,h - itv}, 1),0) .

Now let W € W,, which we write as W = 7, T(a,0) for some x € T, and some tuple of
roots a. Then

A (v (@) 20 = xv)
= b (wea(ixe, X° + xavh =ixa) = (ixe x° + xavh ~ixa))
= (e (ixes 1+ xavt = £ (0> =ixa) = (ixe: X° + xav', ~ixa))
=0 ((= xa(vhx) = (1 = £ (), x) + 2D 8 () — ixax,0) )
e (X = £ () x) - Habexl) 20 (X)+1XdX) +Aev( £ (1)
(iv(£ ) =X - £ (X))x) abex) £ (x) - ixax,0))
e (ixe +iv(£500) X = £ (0 _le) = (ixe A5 =ixa))
T (a0)-(iXes X> =ixa) = (ixe> X°s —iXa))
=A(1’47.X—X).
This concludes the proof of the proposition. ]

(
:A(
_A(

Theorem 75 Let A € i(t5)* be an integral weight for g, with A = A(c) # 0. Then for
any v,v' € itg, the following assertions are equivalent:
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(i)  The highest weight representation [)’/{"V,: gy x RD,» — End(L, (1)) is of positive

energy.
(i) M, = infA,(Wo.xy — xv) > —00, where b, := A — Av € i(t§)" and y, =
(V) +deitt.

Moreover, if M, ,» > —oo, then M, s is the minimal energy level of]ov)f’v,.

Proof This readily follows from (7.5) and Proposition 7.4, where the above descrip-
tion of y, follows from (7.6). [ |

Proof of Theorem B By Theorem A(iii), the Weyl groups of Z;(g) and Z;w (®)
with respect to t§ coincide. By (7.5), the representation

pa: Ly (€) xRD,s — End(L,(1))
is thus of positive energy if and only if
inf A( Wiy - X) > —oo,

where W pty = WV, is the Weyl group of the slanted standard affinisation Zg,”(?) of ¢
and y = (v/)! —v! +d (see (7.6)). Thus, Theorem B follows from Proposition 7.4, where
the character y in the statement of Theorem B corresponds to y,+y = (v/)! + uf +d
in the above notation. ]
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