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Darmon’s Points and Quaternionic Shimura
Varieties

Jérôme Gärtner

Abstract. In this paper, we generalize a conjecture due to Darmon and Logan in an adelic setting.

We study the relation between our construction and Kudla’s works on cycles on orthogonal Shimura

varieties. This relation allows us to conjecture a Gross–Kohnen–Zagier theorem for Darmon’s points.

1 Introduction

The theory of complex multiplication gives a collection of Heegner points on ellip-

tic curves over Q, which are defined over class fields of imaginary quadratic fields.

These points led to the proof of the Birch and Swinnerton-Dyer conjecture over Q

for analytic rank 1 curves, thanks to the work of Gross, Zagier, and Kolyvagin.

Let us briefly recall the construction of Heegner points. If E is an elliptic curve over

Q, then we know that E is modular. Let N be the conductor of E. There exists a mod-

ular form f ∈ S2(N) such that L(E, s) = L( f , s). Denote by ΦN : Γ0(N)\H → E(C)

the modular uniformization that is obtained by taking the composition of the map

z0 ∈ H 7→ c
∫ z0

i∞
2πi f (z)dz (here c denotes the Manin constant) with the Weierstrass

uniformization. Let K/Q be an imaginary quadratic field. A Heegner point is a point

ΦN (z0), where z0 ∈ H ∩ K. It is the Abel–Jacobi image of z0 in C/ΛE ≃ E(C). The

theory of complex multiplication shows that these points are defined over class fields

of K.

In [7], Darmon gives a conjectural construction of Stark–Heegner points, which is

a generalization of classical Heegner points. These points should help us to under-

stand the Birch and Swinnerton-Dyer conjecture on one hand, and Hilbert’s twelfth

problem on the other.

In more concrete terms, assume that F is a totally real number field of degree

d over Q and narrow class number 1. Let τ j be its archimedean places and K/F

some quadratic “ATR” extension (i.e., K has exactly one complex place). Darmon

defines a collection of points on elliptic curves E/F that are expected to be defined

over class fields of K. In this case, the (conjectural, but partially proved by Skinner

and Wiles) modularity of E gives the existence of a Hilbert modular form f on Hd

whose periods appear, under some conjecture due to Oda, as a tensor product of

periods of Eτ j
= E⊗F,τ j

C. The construction explained in [8] can be seen as an exotic

Abel–Jacobi map.

In this paper, we generalize Darmon’s construction by removing the hypothesis

“ATR” on K (but we assume that K is not CM) and the technical hypothesis that
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F has narrow class number 1. We replace the Hilbert modular variety used in the

“ATR” case by a general quaternionic Shimura variety and define a suitable Abel–

Jacobi map. We are able to specify the invariants of the quaternion algebra using local

epsilon factors and to give a conjectural Gross–Zagier formula for these points. We

conclude the paper by establishing a relation to Kudla’s study of cycles on orthogonal

Shimura varieties, in order to give a Gross–Kohnen–Zagier type conjecture.

Let us summarize the main construction of this paper. Let F be a totally real

field of degree d and let τ1, . . . , τd be its archimedean places. Fix r ∈ {2, . . . , d},

and a quadratic extension K/F such that the set of archimedean places of F that

split completely in K is {τ2, . . . , τr}. Let B/F be a quaternion algebra that splits at

τ1, . . . , τr and ramifies at τr+1, . . . , τd. Let G = ResF/Q B×. We will denote by ShH(G)

the quaternionic Shimura variety of level H (a compact open subgroup of G(A f ))

whose complex points are given by

ShH(G)(C) = G(Q)\(C r R)r × G(A f )/H,

where A f is the set of finite adeles over Q.

Fix an F-embedding q : K →֒ B. There is an action of (K ⊗ R)×+ /(F ⊗ R)× on

(C r R)r. By considering a suitable orbit of this action, we obtain for any b ∈ G(A f )

a real cycle Tb of dimension r − 1 on ShH(G)(C). Using the theorem of Matsushima

and Shimura, we deduce that there exists an r-chain ∆b on ShH(G)(C) such that ∂∆b

is an integral multiple of Tb.

Let E/F be an elliptic curve, assumed modular, i.e., there exists a Hilbert modular

eigenform ϕ̃ satisfying L(E, s) = L(ϕ̃, s). We will assume that this form corresponds

to an automorphic form ϕ on B by the Jacquet–Langlands correspondence. There ex-

ists a holomorphic differential form ωϕ of degree r on ShH(G)(C) naturally attached

to ϕ. In general, the set of periods of ωϕ is a dense subset of C. Fix some character β
of the set of connected components of (K ⊗ R)×+ /(F ⊗ R)×. Following Darmon we

define a modified differential form ωβ
ϕ whose periods are, assuming Yoshida’s period

conjecture, a lattice, homothetic to some sublattice of the Neron lattice of E.

The image of (a suitable multiple of) the complex number
∫
∆b

ωβ
ϕ in C/ΛE is inde-

pendent of the choice of ∆b. Hence it defines by Weierstrass uniformization a point

P
β
b in E(C). More precisely, denote by Φ : C/Λ → E(C) the Weierstrass uniformiza-

tion given by a fixed embedding τ1,K : K →֒ C, which extends τ1 : F →֒ C. We have

the following conjecture.

Conjecture (5.1 below) P
β
b = Φ

(∫
∆b

ωβ
ϕ

)
∈ E(C) lies in E(Kab) and

∀a ∈ (K ⊗ Ẑ)× recK (a)P
β
b = β(a∞)P

β
qA(a)b.

Let us assume this conjecture is true and denote by K+
b the field of definition of

P
β
b . Let π = π(ϕ) be the automorphic representation generated by ϕ; fix a character

χ : Gal(K+
b /K) → C×. Denote by ε(π × χ, 1

2
) the sign in the functional equation

of the Rankin-Selberg L-function L(π×χ, s) and by ηK : F×
A /F×NK/F(K×

A ) → {±1}
the quadratic character of K/F. The following proposition proves that B is uniquely

determined by K and the isogeny class of E/F.
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Proposition (5.7 below) Let b ∈ B̂× and assume Conjecture 5.1. If

eχ(P
β
b ) =

∑

σ∈Gal(K+
b
/K)

χ(σ) ⊗ P
β
b ∈ E(K+

b ) ⊗ Z[χ]

is not torsion, then

∀v ∤∞ ηK,v(−1)ε
(
πv × χv,

1

2

)
= invv(Bv) and ε

(
π × χ,

1

2

)
= −1.

The last part of this paper is focused on a conjecture in the spirit of the Gross–

Kohnen–Zagier theorem. Assume that E(F) has rank 1. Denote by P0 some generator

modulo torsion. For each totally positive t ∈ OF such that (t) is square free and prime

to the relative discriminant dK/F of K, denote by K[t] the quadratic extension K[t] =

F(
√−D0t), where D0 ∈ F satisfies τ j(D0) > 0 if and only if j ∈ {1, r + 1, . . . , d}. Let

Pt,1 be Darmon’s point obtained for K[t], b = 1 and β = 1, and set

Pt = TrK[t]+
1 /F Pt,1.

The point Pt is in E(F) under Conjecture 5.1, and it is assumed that there exists

some integer [Pt ] ∈ Z such that Pt = [Pt ]P0. In the spirit of [9, Conjecture 5.3] we

conjecture the following.

Conjecture (6.11 below) There exists a Hilbert modular form g of level 3/2 such that

the [Pt ]s are proportional to some Fourier coefficients of g.

In our attempt to adapt Yuan, Zhang, and Zhang’s proof in the CM case [31] to

prove this conjecture, we obtained a relation between Darmon’s points and Kudla’s

program; see Proposition 6.8.

2 Quaternionic Shimura Varieties

In this section we recall some properties of Shimura varieties associated with quater-

nion algebras. The standard references are [21] and Reimann’s book [25]. The con-

tent of this section is more or less the transcription to Shimura varieties of what is

done for curves in [5, 22].

Let F be a totally real field of degree d = [F : Q] and let τ1, . . . , τd be its

archimedean places. Denote by Q ⊂ C the algebraic closure of Q in C so τ j : F →֒ Q.
Fix r ∈ {2, . . . , d} and a finite set SB of non-archimedean primes satisfying

|SB| ≡ d − r mod 2.

Let B be the unique quaternion algebra over F ramified at the set

Ram(B) = {τr+1, . . . , τd} ∪ SB.

For each j ∈ {1, . . . , d} we put Bτ j
= B ⊗F,τ j

R. It is not necessary but more

convenient to fix for each j ∈ {1, . . . , r} an R-algebra isomorphism Bτ j

∼→ M2(R).
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The constructions given in this paper are independent of the choice of these isomor-

phisms, as in the author’s Ph.D. thesis [11].

Let G be the algebraic group over Q satisfying G(A) = (B ⊗Q A)× for every com-

mutative Q-algebra A. We will denote by nr : G(A) −→ (F⊗Q A)× the reduced norm

and by Z the center of G. For j ∈ {1, . . . , d} let G j be the algebraic group over R

given by G j = G ⊗F,τ j
R; thus, GR = G ⊗F R decomposes as G1 × · · · × Gd. For any

abelian group A, denote by Â the group A ⊗ Ẑ.

Let X be the G(R)-conjugacy class of the morphism h : S = ResC/R(Gm,C) →
G(R) = G1(R) × · · · × Gd(R) defined by

x + i y 7−→
((

x y

−y x

)
, . . . ,

(
x y

−y x

)

︸ ︷︷ ︸
r times

, 1, . . . , 1︸ ︷︷ ︸
d−r times

)
.

The set X has a natural complex structure [20], and the following map is an holo-

morphic isomorphism between X and (C r R)r:

ghg−1 7−→ g · (i, . . . , i) =
( a1i + b1

c1i + d1
, . . . ,

ari + br

cri + dr

)
,

where g = (g1, . . . , gd) ∈ G(R) and for j ∈ {1, . . . , r}, g j is identified with
( a j b j

c j d j

)
.

Quaternionic Shimura Varieties Let H be an open-compact subgroup of B̂×. The

quaternionic Shimura varieties considered in this paper are algebraic varieties

ShH(G,X), whose complex points are given by

ShH(G,X)(C) = B×\(X × B̂×/H),

where the left-action of B× and the right-action of H are given by

∀k ∈ B× ∀h ∈ H ∀(x, b) ∈ X × B̂× k · (x, b) · h = (kx, kbh).

Such Shimura varieties are defined over some number field called the reflex field.

In our case this number field is

F ′
= Q

( r∑

j=1

τ j(α), α ∈ F

)
⊂ Q ⊂ C.

We will denote by [x, b]H the element of ShH(G,X)(C) represented by (x, b) and

by [x, b]HF̂× the corresponding element of the modified variety ShH(G/Z,X)(C) =

B×\(X × B̂×/HZ).

Remark 2.1 All automorphic forms that appear in this article have trivial central

character. Thus the choice of using the quotient variety ShH(G/Z,X)(C) rather than

ShH(G,X)(C) is made to simplify computations.
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Remark 2.2 The complex Shimura varieties are compact whenever B 6= M2(F).

The Hilbert modular varieties used by Darmon in [7, Chapters 7–8] are the quotient

varieties obtained when B = M2(F) and r = d.

The Shimura varieties form a projective system {ShH(G,X)}H indexed by open

compact subgroups in B̂×. The transition maps pr : ShH(G,X) → ShH ′(G,X) are

defined on complex points by [x, b]H → [x, b]H ′ .

There is an action of B̂× on the projective system {ShH(G,X)}H . The right multi-

plication by g ∈ B̂× induces an isomorphism

[·g] : {ShH(G,X)}H

∼
−→ {ShH(G,X)}g−1Hg ,

defined on complex points by [·g][x, b]H = [x, bg]g−1Hg .

Complex conjugation Fix j ∈ {1, . . . , r}. Let h j : S → G j,R be the morphism ob-

tained by composing h with the j-th projection GR → G j,R and X j the G j(R)-con-

jugacy class of h j . For x j = g jh jg
−1
j ∈ X j , the set Im(g jh jg

−1
j ) is a maximal

anisotropic R-torus in G j,R. The map ℓ j : x j 7→ Im(x j) satisfies |ℓ−1
j (ℓ j(x j))| = 2,

thus there exists a unique antiholomorphic and G j,R-equivariant involution t j : X j →
X j such that for all x j ∈ X j ,

ℓ−1
j (ℓ j(x j)) = {x j , t j(x j)}.

More precisely, under the identification X j
∼→ C r R, the map ℓ j satisfies

ℓ j(x + i y) =

{(
x y

−y x

)}
and ℓ−1

j

(
ℓ j(x + i y)

)
= {x + i y, x − i y}.

Note that the map t j can be extended to complex points of the Shimura varieties by

t j([x, b]H) = [t j(x), b]H ; t j acts trivially on Xk for k 6= j.

Differential forms In this section we recall some facts concerning differential forms

on Shimura varieties. We will denote by ΩH = ΩH/F ′ the sheaf of differentials

of degree r on ShH(G,X) and by Ω
an
H the sheaf of holomorphic r-differentials on

ShH(G,X)(C), provided that ShH(G,X) is smooth. Recall that the GAGA principle

gives us the following isomorphism between global sections:

Γ
(

ShH(G,X),ΩH

)
⊗F ′ C

∼
−→ Γ

(
ShH(G,X)(C),Ωan

H

)
.

Notice that in general, ShH(G,X) is not smooth. In this last case we will fix some

integer n ≥ 3 such that for each p in Ram(B) we have p ∤ nOF and for each v | nOF ,
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isomorphisms ιv : Bv
∼→ M2(Fv). The group

H ′
=

{
(hv) ∈ H, s.t. ∀v | nOF ιv(hv) ≡

(
1 0

0 1

)
mod nOFv

}

is of finite index in H, and ShH ′(G,X) is smooth. The map ShH ′(G,X) → ShH(G,X)

is a finite covering. We define ΩH =
1

[H:H ′]

∑
σ∈H/H ′ σΩH ′ = (ΩH ′)H . By abuse of

language, we shall call an element of

Γ(ΩH) = Γ(ShH(G,X),ΩH) =

( ∑

σ∈H/H ′

σ

)
Γ(ShH ′(G,X),ΩH ′)

a global r-form on ShH(G,X). Remark that the space of global holomorphic r-forms

lim−→H
Γ(Ωan

H ) is equipped with a canonical action of B̂× given by pull-backs [·g]∗.

Let ε ∈ {±1}r and denote by Γ((Ωan
H )ε) the space of r-forms on ShH(G,X)(C)

that are holomorphic (resp. anti-holomorphic) in z j if ε j = +1 (resp. if ε j = −1).

The maps t j pulled-back on Γ((Ωan
H )ε) satisfy

t∗j : Γ
(

(Ωan
H )ε
)
−→ Γ

(
(Ωan

H )ε
′)
,

where ε ′k = εk for k 6= j and ε ′j = −ε j .

When σ ∈ ∏r
j=2{±1} we will define e j ∈ {0, 1} by σ j = (−1)e j and t∗σ by∏r

j=2(t∗j )e j . Let β :
∏r

j=2{±1} → {±1} be a character and ω ∈ Γ(Ωan
H ). We shall

denote by ωβ the element ωβ
=
∑

σ∈{±1}r−1 β(σ)t∗σ (ω) of
⊕

ε Γ((Ωan
H )ε).

Automorphic forms Let SH
2 be the space SH

2,...,2,0,...,0(B×
A ) of functions

ϕ : B×
A ≃ G(R) × B̂× −→ C

satisfying the following properties:

(1) ∀g ∈ B× ∀b ∈ B×
A ϕ(gb) = ϕ(b);

(2) ∀g ∈ (R×)r × Gr+1(R) × · · · × Gd(R) ⊂ G(R) ∀b ∈ B×
A ϕ(bg) = ϕ(b);

(3) ∀h ∈ H ∀b ∈ B×
A ϕ(bh) = ϕ(b);

(4) ∀g ∈ B×
A ∀(θ1, . . . , θr) ∈ Rr

ϕ

(
g

[(
cos θ1 − sin θ1

sin θ1 cos θ1

)
, . . . ,

(
cos θr − sin θr

sin θr cos θr

)
, 1, . . . , 1

])
=

e−2iθ1 × · · · × e−2iθrϕ(g);

(5) For all g ∈ B×
A , the map

(x1 + i y1, . . . , xr + i yr) 7→
1

y1 . . . yr

ϕ

(
g

[(
y1 x1

0 1

)
, . . . ,

(
yr xr

0 1

)
, 1, . . . , 1

])

is holomorphic on Hr, where H denotes the Poincaré upper-half plane.
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Remark that we do not need any assumption to obtain cuspidal forms as B will be

assumed to differ from M2(F).

There is an action of B̂× on S2 =
⋃

H SH
2 defined by

∀g ∈ B̂×, ∀ϕ ∈ S2, ∀x ∈ B×
A , g · ϕ(x) = ϕ(xg);

thus SH
2 is the space of H-invariant functions in S2.

By modifying properties (4) and (5) above we obtain the following new definition.

Definition 2.3 Let ε : {τ1, . . . , τr} → {±1} and εi = ε(τi). The space (Sε2)H is the

space of maps ϕ : B×
A ≃ +G(R) × B̂× → C satisfying 1-3 above and

(4 ′) for all g ∈ B×
A and (θ1 . . . θr) ∈ Rr

ϕ

(
g

((
cos θ1 − sin θ1

sin θ1 cos θ1

)
, . . . ,

(
cos θr − sin θr

sin θr cos θr

)
, 1, . . . , 1

))
=

e−2iε1θ1 × · · · × e−2iεrθrϕ(g);

(5 ′) for all g ∈ B×
A , the map

(x1 + i y1, . . . , xr + i yr) 7→
1

y1 . . . yr

ϕ

(
g

((
y1 x1

0 1

)
, . . . ,

(
yr xr

0 1

)
, 1, . . . , 1

))

is holomorphic (resp. anti-holomorphic) in z j = x j + i y j ∈ H if ε j = 1 (resp.

ε j = −1).

We will denote by SF̂×

2 (resp. (Sε2)F̂×

) the space of elements in S2 (resp. Sε2) that are

F̂×-invariant.

We are now able to affirm the existence of relations between automorphic forms

and r-forms on ShH(G,X)(C).

Proposition 2.4 There exist bijections compatible with the B̂×-action between the

following spaces:

Γ(Ωan
H ) and SH

2

Γ((Ωan
H )ε) and (Sε2)H

Γ(ShH(G/Z,X)(C), (Ωan
H )ε) and (Sε2)HF̂×

.

This statement is completely analogous to [5, Section 3.6]; see [11, Propositions

1.2.2.4 and 1.2.2.5] for more details.

Matsushima–Shimura Theorem The decomposition of the cohomology of quater-

nionic Shimura varieties given by Matsushima–Shimura theorem will be useful in the

following sections. Let us recall this result when B 6= M2(F) [10, 19]. Denote by h+
F

the narrow class number of F.
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Theorem 2.5 Let m ∈ {0, . . . , 2r}. We have the following decomposition:

Hm(ShH(G,X)(C),C) ≃




(
Vect

∧
i∈a⊂{1,...,r−1}

|a|=m/2

dzi ∧ dzi

y2
i

) s

if m 6= r,

(
Vect

∧
i∈a⊂{1,...,r−1}

|a|=m/2

dzi ∧ dzi

y2
i

) s

⊕⊕ε∈{±1}r (Sε2)H if m = r,

and

Hm(ShH(G/Z,X)(C),C) ≃




(
Vect

∧
i∈a⊂{1,...,r−1}

|a|=m/2

dzi ∧ dzi

y2
i

) s ′

if m 6= r,

(
Vect

∧
i∈a⊂{1,...,r−1}

|a|=m/2

dzi ∧ dzi

y2
i

) s ′

⊕
⊕

ε∈{±1}r (Sε2)HF̂×

if m = r,

where s (resp. s ′) is the number of connected components of ShH(G,X)(C) (resp. of

ShH(G/Z,X)(C)).

3 Periods

3.1 Yoshida’s conjecture

Let E/F be an elliptic curve, assumed modular in the sense that there exists a cuspi-

dal, parallel weight two Hilbert modular form ϕ̃ ∈ S2(GL2(FA)) satisfying L(E, s) =

L(ϕ̃, s). We shall assume that the automorphic representation generated by ϕ̃ is ob-

tained by the Jacquet–Langlands correspondence from ϕ ∈ SHF̂×

2 (B×
A ).

Denote by π = π∞ ⊗ π f the automorphic representation of B×
A /F×

A generated by

ϕ. We shall assume until Section 3.3, only for simplicity, that dim πH
f = 1.

The motivic conjecture of Yoshida is the following.

Conjecture 3.1 (Yoshida [30]) Let M = h1(E) be the motive over F with coefficients

in Q associated with E. The motive M ′
=
⊗

{τ1,...,τr}
ResF/F ′ M over F ′ is isomorphic

to the motive associated with the part H∗(ShHF̂×(G,X))(E) of the cohomology for which

Hecke eigenvalues are the same as E.

Remark 3.2 Is the isomorphism between M ′ and H∗(ShHF̂×(G,X))(E) canonical?

This is an excellent question. In general, if such an isomorphism exists, it need not

be unique up to a multiplicative constant (e.g, if E is defined over a proper subfield

of F). However, there should always exist a canonical isomorphism between M ′ and

H∗(ShHF̂×(G,X))(E), which can be characterized geometrically. This will be shown

in a forthcoming paper by Cornut and Nekovář.

https://doi.org/10.4153/CJM-2011-086-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-086-5


1256 J. Gärtner

While looking at the ℓ-adic realization, this conjecture is in fact the Langlands

cohomological conjecture. This case is known, up to semi-simplification,1 thanks to

Brylinski and Labesse in the case B = M2(F) [2], Langlands in the case B 6= M2(F)

for primes of good reduction, [18], and Reimann and Zink [25,26] for a more general

case.

Recall the following decompositions given by Yoshida in [30, Section 5.1], when

we focus on τ ′ : F ′ →֒ C induced by τ̃ ′ : Q →֒ C.

Betti cohomology There exists an isomorphism of Q-vector spaces

I : M ′
B

∼
−→

r⊗
j=1

MB,τ j
.

de Rham cohomology The map

J : M ′
dR

∼
−→

( r⊗
j=1

(
MdR ⊗F,τ j

Q
))Gal(Q/F ′)

is an isomorphism of F ′-vector-spaces. The right-hand side is a tensor product of

Q-vector spaces, and the action of σ ∈ Gal(Q/F ′) is given by

⊗
s∈{τ1,...,τr}

(xs ⊗F,s as) 7→
⊗

s∈{τ1,...,τr}

(
xs ⊗F,σs σ(as)

)
.

Comparison isomorphisms Let I =
⊗r

j=1 Iτ j
, where

Iτ j
: MB,τ j

⊗Q C
∼
−→ MdR ⊗F,τ j

C

are isomorphisms of C-vector spaces, and I ′ is the following isomorphism over C:

I ′ : M ′
B ⊗Q C

∼
−→ M ′

dR ⊗F ′ C.

The maps I ◦ (I ⊗Q idC) and (J ⊗F ′ idC) ◦ I ′ are known to satisfy

(⋆) I ◦ (I ⊗Q idC) = (J ⊗F ′ idC) ◦ I ′ : M ′
B ⊗Q C

∼
−→

r⊗
j=1

(MdR ⊗F,τ j
C).

Yoshida’s period conjecture consists of the existence of the isomorphisms I , J ,

I, and I ′. It is the Hodge–de Rham realization of the motivic conjecture above.

Complex conjugation Let cτ j
be the complex conjugation on MB,τ j

. We will need the

following hypothesis, which allows us to compare cτ j
with t∗j on M ′

dR ⊗F ′ C.

Hypothesis 3.3 The action of t∗j on M ′
dR ⊗F ′ C corresponds via the isomorphism

(I ⊗Q idC) ◦ (I ′)−1 : M ′
dR ⊗F ′ C −→ M ′

B ⊗Q C −→
( r⊗

k=1

MB,τk

)
⊗Q C,

to the action of cτ j
on MB,τ j

.

1Since the Galois action on Hr
ℓ(ShHF̂× (G,X))(E) is semi-simple, the phrase “up to semi-simplification”

can be omitted. This fact will be proved in a forthcoming paper by Cornut and Nekovář.
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3.2 Lattices and Periods

Fix some ωϕ 6= 0 in FrM ′
dR. By definition of M ′, there exists a finite set of places S of

F such that for v /∈ S, Tvωϕ = av(E)ωϕ, where Tv is the Hecke operator at the place v

(these operators are defined in [5, Section 3.4] for quaternionic Shimura curves; the

general case is completely analogous).

Let ΩE/F be the sheaf of differentials on E/F. Fix η 6= 0 ∈ H0(E,ΩE/F) = F1MdR.

For j ∈ {1, . . . , n}, let

η j = η ⊗F,τ j
1 ∈ H0

(
E ⊗F,τ j

Q,Ω(E⊗F,τ j
Q)/Q

)
= (F1MdR) ⊗F,τ j

Q.

Then
r⊗

j=1

η j ∈
( r⊗

j=1

(
F1MdR ⊗F,τ j

Q
))Gal(Q/F ′)

= J (FrM ′
dR)

and there exists α ∈ F ′× such that J (αωϕ) = η1 ⊗ · · · ⊗ ηr.
Let j ∈ {1, . . . , r} and E j = E ⊗F,τ j

C. We shall denote by H1(E j ,Z)± the

eigenspaces of the complex conjugation action on H1(E j ,Z). Then

{∫

Υ

η j , Υ ∈ H1(E j ,Z)±
}

= ZΩ±
j ,

where Ω
+
j ∈ R r {0} and Ω

−
j ∈ iR r {0} are determined up to a sign. We fix the

signs by imposing, e.g., Re
(
Ω

+
j

)
> 0 and Im

(
Ω

−
j

)
> 0.

Fix a character β : {1} ×∏r
j=2{±1} → {±1}, and write β =

∏r
j=2 β j . We set

ωβ
ϕ =

( ∑

σ∈{1}×
∏

r
j=2{±1}

β(σ)t∗σ

)
ωϕ =

r∏
j=2

(
1 + β j(−1)t∗j

)
ωϕ

and

Ω
β
=

r∏
j=2

Ω
β j (−1)

j .

The following identities

( r⊗
j=1

MB,τ j

)
⊗Q C =

r⊗
j=1

HomZ(H1(E j ,Z),C) = HomZ

( r⊗
j=1

H1(E j ,Z),C
)

and Yoshida’s conjecture show that the image of αωβ
ϕ under the map

(I ⊗Q idC) ◦ I ′−1
= I−1 ◦ (J ⊗F ′ idC) : M ′

dR ⊗F ′ C −→
( r⊗

j=1

MB,τ j

)
⊗Q C

is identified with the linear form

(3.1)

{⊗r
j=1 H1(E j ,Z) −→ C,

Υ1 ⊗ · · · ⊗Υr 7−→
∫
Υ1⊗···⊗Υr

⊗r
j=1

(
1 + β j(−1)t∗j

)
η j .
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Hypothesis 3.3 allows us to be more explicit. Let

Υ1 ⊗ · · · ⊗Υr ∈
r⊗

j=1

H1(E j ,Z),

then

∫

Υ1⊗···⊗Υr

r⊗
j=1

(
1 + β j(−1)t∗j

)
η j =

(∫

Υ1

η1

)
r∏

j=2

∫

Υ j

(1 + β j(−1)t∗j )η j

=

(∫

Υ1

η1

)
r∏

j=2

∫

Υ j +β j (−1)cτ j
Υ j

η j .

and the linear form (3.1) takes values in Λ1Ω
β
= (ZΩ+

1 + ZΩ−
1 )Ωβ .

Under the dual isomorphism I ∗ of I , the lattices

r⊗
j=1

ZH1(E j ,Z) ⊂
r⊗

j=1
QM∗

B,τ j
and Im

(
Hr(ShH(G/Z,X)(C),Z) −→ (M ′

B)∗
)

are commensurable. Thus there exists ξ ∈ Z r {0} such that

ξ Im
(

Hr(ShH(G/Z,X)(C),Z) −→ (M ′
B)∗
)
⊂ I ∗

( r⊗
j=1

ZH1(E j ,Z)
)
.

This proves the following proposition.

Proposition 3.4 Under the hypothesis made in this section (E is modular, the multi-

plicity one in Yoshida’s motivic conjecture and Hypothesis 3.3), there exist α ∈ F ′× and

ξ ∈ Z r {0} such that

∀γ ∈ Hr

(
ShH(G,X)(C),Z

)
, ∀β :

r∏
j=2

{±1} → {±1}, ξ

∫

γ

αωβ
ϕ ∈ Λ1Ω

β .

3.3 General Case

When mH(π) = dimπH
f (ϕ) > 1 Yoshida’s conjecture reads as follows.

Conjecture 3.5 The motive Hr(ShH(G,X))(E) is isomorphic to

( ⊗
{τ1,...,τr}

ResF/F ′ M
)mH (π)

.

In general the motive Hr(ShH(G,X))(E) has rank 6= 2r. We shall provide Betti

and de Rham realizations of a submotive M ′ ⊂ Hr(ShH(G,X))(E) of rank 2r and an

isomorphism M ′ ∼→⊗
{τ1,...,τr}

ResF/F ′ M.

We need 0 6= ωϕ ∈ FrHr
dR(ShH(G/Z,X)/F ′)(E) satisfying the following condi-

tions:
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• de Rham cohomology: The F ′-vector space

M ′
dR :=

( ⊕
σ∈{±1}r

Ct∗σ (ωϕ ⊗ 1)
)
∩ Hr

dR(ShH(G/Z,X)/F ′)(E)

has dimension 2r.

Thus,

FrM ′
dR := M ′

dR ∩ FrHr
dR(ShH(G/Z,X)/F ′)(E)

= F ′ωϕ.

• Betti cohomology: Fix an isomorphism

I ′ : Hr
B

(
ShH(G/Z,X)(C),Q

) (E) ⊗Q C
∼
−→ Hr

dR

(
ShH(G/Z,X)/F ′

) (E) ⊗F ′ C.

The Q-vector space

M ′
B := I ′−1(M ′

dR ⊗F ′ C) ∩ Hr
B

(
ShH(G/Z,X)(C),Q

) (E)

has dimension 2r.

Definition 3.6 An element ωϕ ∈ FrHr
dR(ShH(G/Z,X)/F ′)(E) is said to be rational

if it satisfies the conditions above.

• Comparison isomorphisms: There exist isomorphisms

I : M ′
B

∼
−→

r⊗
j=1

MB,τ j
,

J : M ′
dR

∼
−→

( r⊗
j=1

(MdR ⊗F,τ j
Q)
)Gal(Q/F ′)

,

Iτ j
: MB,τ j

⊗Q C
∼
−→ MdR ⊗F,τ j

C.

Set I =
⊗r

j=1 Iτ j
. We have

(⋆) I ◦
(
I ⊗Q idC

)
=
(
J ⊗F ′ idC

)
◦ I ′ : M ′

B ⊗Q C
∼
−→

r⊗
j=1

(
MdR ⊗F,τ j

C
)
.

As in Proposition 3.4 we have the following proposition.

Proposition 3.7 Let ωϕ ∈ FrHr
dR(ShH(G/Z,X)/F ′)(E) be rational. If E is modular

and if Yoshida’s conjecture is true, then there exist α ∈ F ′× and ξ ∈ Z r {0} such that

∀γ ∈ Hr(ShH(G/Z,X)(C),Z), ∀β :
r∏

j=2

{±1} → {±1}, ξ

∫

γ

αωβ
ϕ ∈ Λ1Ω

β .
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Example Let H1,H2 ⊂ B̂× be compact open subgroups such that there exists g ∈
B̂× satisfying g−1H1g ⊂ H2. Let ωϕ2

∈ FrHr
dR(ShH2

(G/Z,X)/F ′)(E) be rational. Let

us explain a way to obtain ωϕ1
∈ FrHr

dR(ShH1
(G/Z,X)/F ′)(E) rational.

Let

pr : Shg−1H1g(G/Z,X) −→ ShH2
(G/Z,X)

be the map given by [x, b]g−1H1g 7→ [x, b]H2
and let

[ · g] : ShH1
(G/Z,X) → Shg−1H1g(G/Z,X)

be given by [x, b]H1
7→ [x, bg]g−1H1g . Let prg : ShH1

(G/Z,X) → ShH2
(G/Z,X) be the

composition of pr with [·g].

Choose θg ∈ Q. Set

ωϕ1
:=

∑

g∈B̂×

s.t. g−1H1g⊂H2

θg pr∗g (ωϕ2
),

(M ′
1)dR =

(∑

g

θg pr∗g

)
(M ′

2)dR,

(M ′
1)B =

(∑

g

θg pr∗g

)
(M ′

2)B.

Proposition 3.8 If ωϕ1
6= 0, then the map

∑

g∈B̂×

s.t. g−1H1g⊂H2

θg pr∗g

is injective on
⊕

σ∈{±1}r Ct∗σ (ωϕ2
⊗ 1), and ωϕ1

∈ FrHr
dR(ShH1

(G/Z,X)/F ′)(E) is ra-

tional.

Proof Assume that ω =
∑

σ∈{±1}r λσt∗σωϕ2
∈⊕σ∈{±1}r Ct∗σ (ωϕ2

⊗ 1) (where λσ ∈
C) is such that

∑
g θg pr∗g (ω) = 0. We have the following equalities:

∑

g

θg pr∗g ω =

∑

g

θg pr∗g

∑

σ

λσt∗σωϕ2
=

∑

σ

λσt∗σ

∑

g

θg pr∗g ωϕ2

=

∑

σ

λσt∗σωϕ1
.

Thus, ∑

σ

λσt∗σωϕ1
= 0 ∈ ⊕

σ∈{±1}r

Ct∗σωϕ1
,

and ∀σ ∈ {±1}r, λσt∗σωϕ1
= 0. Hence for all σ ∈ {±1}r, λσ ∈ 0. The map

∑

g∈B̂× s.t. g−1H1g⊂H2

θg pr∗g
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commutes with Tv, v /∈ S and is an isomorphism
⊕

Ct∗σωϕ2
→⊕

Ct∗σωϕ1
. Hence,

ωϕ1
∈
( ⊕

σ∈{±1}r

Ct∗σ (ωϕ1
⊗ 1)

)
∩ FrHr

dR

(
ShH1

(G/Z,X)/F ′
) (E)

is rational.

4 Toric Orbits

Let K/F be a quadratic extension satisfying the following properties:

(1) the places τ2, . . . , τr of F are split in K;

(2) the places τ1, τr+1, . . . , τd are ramified in K;

(3) the places p ∈ SB are inert in K.

Thanks to the Albert–Brauer–Hasse–Noether theorem, there exists an F-embed-

ding q : K →֒ B, unique up to conjugacy. We will denote by q j (resp. q̂, qA) the

induced embedding K →֒ Bτ j
(resp. K̂ →֒ B̂, KA →֒ BA). For each place v of F, set

Kv = K ⊗F Fv.

4.1 Cycles on X

Let T = ResK/Q(Gm)/ResF/Q(Gm). Thanks to Hilbert’s Theorem 90 we have

T(A) = (K ⊗Q A)×/(F ⊗Q A)×

for every Q-algebra A.

By abuse of notation, let us denote by q : T →֒ G/Z(G) the embedding induced

by q : K →֒ B. The group T(R) is identified with
∏d

j=1 K×
τ j
/F×

τ j
. We denote, by abuse

of notation, q j : K×
τ j
/F×

τ j
→ G j,R.

Let π0(T(R)) be the set of connected components of T(R) and denote by T(R)◦

the component of the identity. Fix a multi-orientation on T(R)◦ =
∏d

j=1(K×
τ j
/F×

τ j
)◦

(i.e., an orientation of each factor (K×
τ j
/F×

τ j
)◦) and remark that

π0(T(R)) = T(R)/T(R)◦ ≃
r∏

j=2

{±1}.

We will focus on the orbits in X under the action of q(T(R)◦) by conjugation.

Proposition 4.1 Let T ◦ be an orbit of q(T(R)◦) in X. Then T ◦ decomposes into a

product of orbits in X j under q j(T(R)◦) and is multi-oriented.

Proof The first part of this assertion follows from the natural decomposition X =

X1 × · · · × Xr. The orbit T ◦ decomposes into orbits under q j((K×
τ j
/F×

τ j
)◦). For

j = 1, q j((K×
τ j
/F×

τ j
)◦) ≃ S1 or a point and the orientation does not change. For

j ∈ {2, . . . , r}, q j((K×
τ j
/F×

τ j
)◦) ≃ R×

+ . The action of R×
+ on itself by multiplication

does not change the orientation. Hence the multi-orientation induced on T ◦ by

T(R)◦ is well defined.
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In the following sections we shall fix some q(T(R)◦)-orbit T ◦, whose projection

on X1 is a point.

Proposition 4.2 T ◦ is a connected multi-oriented submanifold of real dimension

r − 1.

Proof Recall that T ◦ is decomposed as T ◦
= {z1}×T2 ×· · ·×Tr. Fix x ∈ X such

that T ◦
= q(T(R)◦ ·x. Then for j ∈ {2, . . . , r} we have T j = q j((K×

τ j
/F×

τ j
)◦)·pr j(x).

The group q j((K×
τ j
/F×

τ j
)◦) is naturally identified with R×

+ and T j is a connected ori-

ented manifold of real dimension one.

As a corollary, we have the following decomposition:

T ◦
= {z1} × γ2 × · · · × γr,

where z1 is one of the two fixed points in the action of q1(T(R)◦) on X1 and γ j is an

oriented connected submanifold of real dimension one in X j .

When we use the identification of X with (C r R)r, the action of T(R) on X by

conjugation is an action of PGL2(R) on (CrR)r by homography. Let z ∈ K r F. For

j ∈ {2, . . . , r} the matrix q j(z) is hyperbolic with exactly two fixed points in P1(R),

z j and z ′j . The manifold γ j is then a circle arc in the Poincaré upper half-plane joining

z j to z ′j (or a line if z ′j = ∞). Figure 1 gives some examples of what could the γ js be

in the case of circle arcs.

Figure 1: Case of circle arcs.

4.2 Tori on ShH(G/Z,X)(C)

Let b ∈ B̂×. We will denote by T ◦
b the following subset of ShH(G/Z,X)(C)

T ◦
b =

{
[x, b]HF̂× , x ∈ T ◦

}
.

Proposition 4.3 T ◦
b is an oriented torus of real dimension r − 1.

Proof Let x, x ′ ∈ T ◦ and b ∈ B̂×; we know that

[x, b]HF̂× = [x ′, b]HF̂× ⇐⇒ ∃k ∈ B× and h ∈ HF̂× (kx ′, kbh) = (x, b)

⇐⇒ ∃k ∈ B× ∩ bHF̂×b−1 kx ′
= x

https://doi.org/10.4153/CJM-2011-086-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-086-5


Darmon’s Points and Quaternionic Shimura Varieties 1263

Since the projection of T ◦ on X1 is a point, we have k ∈ B ∩ q1(Kτ1
) = q1(K) and

k ∈ q(K×) ∩ bHF̂×b−1.

Thus the stabilizer W of T ◦
b under the action of q(K×) is

W = q(K×) ∩ (bHF̂×b−1),

which is commensurable with O
×
K,+/O

×
F . This quotient has rank r − 1 over Z as a

consequence of Dirichlet’s units theorem

O
×
K,+/O

×
F ≃ torsion × Zr−1,

and the torsion is finite. The action of T(R)◦ on T ◦ is given by
∏r

j=2(K×
τ j
/F×

τ j
)◦, and

there is an isomorphism
r∏

j=2

(K×
τ j
/F×

τ j
)◦

∼
−→ Rr−1.

The image Õ of O×
K,+/O

×
F in Rr−1 is isomorphic to Zs with s ≤ r − 1. Denote by Õ

×
K

the image of O×
K in (K ⊗ R)×, NK/Q=1. As

∏
j /∈{2,...,r}

K×
τ j
/F×

τ j
and

(K ⊗ R)×, NK/Q=1

Õ
×
K

are compact, Rr−1/Õ is compact. Thus, the image of O×
K,+/O

×
F in Rr−1 is a lattice.

The set T ◦
b is a principal homogeneous space under

q(K×)/W ≃ (R/Z)r−1.

It is a real torus in ShH(G/Z,X)(C) of dimension r−1, which is oriented by the fixed

multi-orientation on T ◦.

For each u ∈ π0(T(R)) and b ∈ B̂× let

T u
b =

{
[q(u) · x, b]HF̂× , x ∈ T ◦

}
.

It is a real oriented torus of dimension r − 1.

Proposition 4.4 The set

{
T u

b | b ∈ B̂×, u ∈ π0(T(R))
}

does not depend on the choice of the F-embedding q : K →֒ B.
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Proof Let q̃ : K →֒ B be another F-embedding. Thanks to the Skolem–Noether

theorem there exists α ∈ B× such that for all k ∈ K, q̃(k) = αq(k)α−1. Let x0 ∈ X,

and assume that T ◦
= q(T(R)◦) · x0. We have T̃ ◦ := q̃(T(R)◦) · α(x0) = α · T ◦,

and for each u ∈ π0(T(R)),

α · q(u) · T ◦
= q̃(uT(R)◦) · α · x0.

Let b ∈ B̂×. As α ∈ B×, we have

T̃ u
b :=

[
q̃(u)T̃ ◦, b

]
HF̂× =

[
α·q(u)·T ◦, b

]
HF̂× =

[
q(u)·T ◦, α−1·b

]
HF̂× = T u

α−1b.

The map b 7→ α−1b is a bijection. Thus,

{
T u

b , b ∈ B̂×, u ∈ π0(T(R))
}
=
{

T̃ u
b , b ∈ B̂×, u ∈ π0(T(R))

}
.

Action of Gal(Kab/K)

Let us denote by Kab the maximal abelian extension of K and by recK : K×
A /K× →

Gal(Kab/K) the reciprocity map normalized by letting uniformizers correspond to

geometric Frobenius elements.

The group K×
A acts on {T u

b | b ∈ B̂×, u ∈ π0(T(R))} by

∀a = (a∞, a f ) ∈ K×
A = K×

∞ × K̂× ∀b ∈ B̂× a · T u
b = T q(a∞)u

q̂(a f )b .

The action of k ∈ K× is trivial; as q(k) ∈ B×, the definition of ShH(G/Z,X)(C)

gives

k · T u
b = [q(k)q(u)T ◦, q̂(k)b]HF̂× = [q(u)T ◦, b]HF̂× = T u

b .

The action of F×
A is trivial. For a = (a∞, a f ) ∈ F×

A and b ∈ B̂×, q̂(a f )b = bq̂(a f )

and q(a∞)q(u)T ◦
= q(u)T ◦, hence

a · T u
b =

[
q(a∞)q(u)T ◦, q̂(a f )b

]
HF̂× =

[
q(u)T ◦, b

]
HF̂× = T u

b .

4.3 Special Cycles on ShH(G/Z,X)(C)

In this section we construct some r-chain on ShH(G/Z,X)(C).

Proposition 4.5 The homology class [T ◦
b ] ∈ Hr−1(ShH(G/Z,X)(C),Z) of T ◦

b is

torsion.

Proof Let us denote by pr the map

pr : X × {b} −→ ShH(G/Z,X)(C).

T ◦
b is in the image of pr and

pr−1(T ◦
b ) = ({z1} × γ2 × · · · × γr) × {b}.
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Let ω ∈ Hr−1(ShH(G/Z,X)(C),C). As r − 1 6= r we know thanks to the Matsu-

shima–Shimura theorem that

ω ∈
(

Vect
∧

i∈a⊂{1,...,r−1}
|a|=m/2

dzi ∧ dzi

y2
i

) s ′

.

• If r − 1 is odd, then Hr−1(ShH(G/Z,X)(C),C) = {0}.
• If r − 1 = 2s is even, ω is the pull-back of

∧r
j=2 ω

( j), where

ω( j)
= 1 or

dx j ∧ dy j

y2
j

.

With the notations of the proof of Proposition 4.3, T ◦
b is a principal homogeneous

space under W . Fix a fundamental domain W̃ of W in γ2 × · · ·× γr. The incompat-

ibility of degrees gives
∫

T ◦
b

ω =

∫

W̃

ω(2) ∧ · · · ∧ ω(r)
= 0,

∀ω ∈ Hr−1(ShH(G/Z,X)(C),C)

∫

T ◦
b

ω = 0.

This proves that

[T ◦
b ] = 0 ∈ Hr

(
ShH(G/Z,X)(C),C

)

and that

[T ◦
b ] ∈ Hr

(
ShH(G/Z,X)(C),Z

)

is torsion.

Definition 4.6 Let n ∈ Z>0 be the exponent of Hr−1(ShH(G/Z,X)(C),Z)tors. We

will denote by ∆◦
b any piece-wise differentiable r-chain verifying that n[T ◦

b ] = ∂∆◦
b .

Proposition 3.7 proves that the value of

( 1

Ωβ
ξα

∫

∆◦
b

ωβ
ϕ

)
∈ C

modulo Λ1 does not depend on the particular choice of ∆◦
b . If T(R)◦ is fixed, then

we have the following proposition.

Proposition 4.7 Let T ◦ and T ′◦ be two special cycles such that pr1(T ◦) =

pr1(T ′◦) = {z1}. Assume that pr j(T
◦) and pr j(T

′◦) lie in the same con-

nected component of X j for each j ∈ {2, . . . , r}. Let n be the exponent of

Hr−1(ShH(G/Z,X)(C),Z)tors and let ∆◦
b and ∆

′◦
b satisfy

n[T ◦
b ] = ∂∆◦

b and n[T ′◦
b ] = ∂∆ ′◦

b .

Then we have ∫

∆◦
b

ωβ
ϕ =

∫

∆ ′◦
b

ωβ
ϕ (mod ξ−1α−1

Ω
β
Λ1).
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Proof Our hypothesis allows us to decompose ∆ ′◦
b −∆

◦
b into

∆
′◦
b −∆

◦
b = pr({z1} × C) + D,

where D is a cycle with ∂D = 0 and pr is the map

pr :

{
X −→ ShH(G/Z,X)(C)

x 7−→ [x, b]HF̂×

Let us show that
∫
∆ ′◦

b
−∆◦

b

ωβ
ϕ ∈ ξ−1α−1

Ω
β
Λ1.

We have

ωβ
ϕ =

∑

ε

ωε ∈
⊕

ε : {τ1,...,τr}→{±1}r

Γ
(

ShH(G/Z,X)(C), (Ωan
H )ε
)
,

Each ωε ∈ Γ(ShH(G/Z,X)(C), (Ωan
H )ε) satisfies pr∗(ωε) = dz1 ∧ ω ′

ε. We have

∫

pr({z1}×C)

ωε =

∫

{z1}×C

dz1 ∧ ω ′
ε = 0,

thus
∫
{z1}×C

ωβ
ϕ = 0.

Thanks to Proposition 3.7 we have

∫

D

ωβ
ϕ ∈ ξ−1α−1

Ω
β
Λ1,

and the result follows.

Corollary 4.8 The value modulo Λ1 of

( 1

Ωβ
ξα

∫

∆◦
b

ωβ
ϕ

)
∈ C

depends neither on the choice of T ◦ whose projection on X1 is {z1} nor on ∆
◦
b satisfying

n[T ◦
b ] = ∂∆◦

b .
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Remark 4.9 The value of (1/Ωβξα
∫
∆◦

b

ωβ
ϕ) ∈ C depends on the choice of the em-

bedding q. We make no further mention of this dependence, nor of the dependence

on z1, as those objects are fixed in the whole paper.

Definition 4.10 We set

J
β
b =

1

Ωβ
ξα

∫

∆◦
b

ωβ
ϕ (mod Λ1) ∈ C/Λ1,

the image of T ◦
b by an exotic Abel–Jacobi map.

Properties of J
β
b

For each u ∈ π0(T(R)) let ∆u
b be some piece-wise differentiable chain satisfying

n
[

[q(u) · T ◦, b]HF̂×

]
= ∂∆u

b .

Proposition 4.11 We have

J
β
b =

1

Ωβ
ξα

∑

u∈π0(T(R))

β(u)

∫

∆u
b

ωϕ (mod Λ1).

Proof Let us identify π0(T(R)) with
∏r

j=2{±1} and assume that the image of T(R)◦

is (1, . . . , 1). Then

ωβ
ϕ =

∑

u∈π0(T(R))

β(u)t∗u (ωϕ).

The chains tu∆
◦
b and ∆

u
b are in the same connected component. Thus, using Propo-

sition 4.7, we have ∫

tu∆
◦
b

ωϕ =

∫

∆u
b

ωϕ

and the result follows.

Recall that z1 ∈ X1 is fixed by q(K×
τ1

).

Proposition 4.12 Let T ◦ and T ′◦ be two q(T(R)◦)-orbits such that pr1(T ◦) =

pr1(T ′◦) = {z1}. There exists a unique u ∈ π0(T(R)) such that, for all j ∈ {2, . . . , r},

pr j(T
′◦) and pr j(q(u) · T ◦)

are in the same connected component of X j .

If J
′β
b ∈ C/Λ1 denotes the value obtained from T ′◦, we have J

′β
b = β(u) J

β
b .

Proof Let x, x ′ ∈ X be such that T ◦
= q(T(R)◦) · x (resp. T ′◦

= q(T(R)◦) · x ′).

There exists u ∈ π0(T(R)) such that for all j ∈ {1, . . . , r}, pr j(q(u) · x) and pr j(x ′)
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are in the same connected component of X j . As T ′◦
= q(u) · T ◦, the chain ∆

′◦
b ,

whose boundary up to torsion is [T ′◦, b]HF̂× , equals ∆u
b . Thus,

∑

u ′∈π0(T(R))

β(u ′)

∫

∆ ′u ′

b

ωϕ =

∑

u ′∈π0(T(R))

β(u ′)

∫

∆uu ′

b

ωϕ

= β(u)
∑

u ′ ′∈π0(T(R))

β(u ′ ′)

∫

∆u ′ ′

b

ωϕ.

Let q, q ′ : K →֒ B be two embeddings of F-algebras and x ∈ X, T ◦
= q(T(R)◦) ·x

(resp. T ′◦
= q ′(T(R)◦) · x ′). There exists a ∈ B× such that q ′

= aqa−1 thanks to

the Skolem–Noether theorem. For each j ∈ {1, . . . , r}, pr j(T
◦) and pr j(T

′◦) are

in the same connected component of X j if and only if τ j(nr(a)) > 0.

Using Proposition 4.12 we obtain the following.

Proposition 4.13 If α = (sgn ◦ τ j(nr(a))) j∈{1,...,r} ∈ {±1}r−1, then J
′β
b = β(α) J

β
b .

Let NB×(K×) be the normalizer of K× in B×. Let a ∈ NB×(K×) r K×. After

multiplying a by an element in K× we may assume for all j ∈ {2, . . . , r}, τ j(nr(a)) >
0.

We have pr1(q(a) · T ◦) = t1(z1) and for all j ∈ {2, . . . , r}, pr j(q(a) · T ◦) =

pr j(T
◦), but the orientations of pr j(q(a) · T ◦) and pr j(T

◦) are not the same.

Thus,

[t1T
◦, b]HF̂× = [q(a)T ◦, b]HF̂× = [T ◦, q̂(a)−1b]HF̂× ,

but the orientations differ by (−1)r−1. Hence we have the following proposition.

Proposition 4.14 The tori T ◦
b and t1T ◦

q̂(a)b are the same up to orientation.

5 Generalized Darmon’s Points

5.1 The Main Conjecture

Let Φ1 : C/Λ1
∼→ E1(C) be the Weierstrass uniformization; i.e., the inverse of Φ1 is

the Abel–Jacobi map for the differential η1. For each a∞ ∈ K×
∞, fix some r-chain

q(a∞) ·∆β
b satisfying n[q(a∞) · T β

b ] = ∂q(a∞) ·∆β
b and denote by β(a∞) the sign

β(a∞) =
r∏

j=2

β

(
sgn
( ∏

w|τ j

a∞,w

))
.

Conjecture 5.1 The point

P
β
b = Φ1

( 1

Ωβ
ξα

∫

∆
β
b

ωϕ

)
= Φ1( J

β
b ) ∈ E1(C)

lies in E(Kab) and for all a = (a∞, a f ) ∈ K×
A ,

recK (a)P
β
b = Φ1

( ξα

Ωβ

∫

q(a∞)·∆β
q̂(a f )b

ωϕ

)
= β(a∞)P

β
q̂(a f )b.
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Remark 5.2 The choice of z1 ∈ X
q1(K×

τ1
)

1 fixes a morphism h1 : S → G1,R, hence

a morphism C×
= S(R) → G1,R(R) = B×

τ1
= (B ⊗F,τ1

R)× satisfying h1(C×) =

q1(K×
τ1

). This fixes an embedding τ1,K : K →֒ C such that the diagram

C×
h1

// (B ⊗F,τ1
R)×

(K ⊗F,τ1
R)×

q1

OO

τ1,K

ddJ
J
J
J
J
J
J
J
J
J
J
J
J
J

commutes. We may fix τ̃1 : Kab →֒ C above τ1,K such that

F
τ1

//

��

R // C

K

τ1,K

44jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj // Kab

τ̃1

OO

commutes. Moreover the isomorphism
{

Gal(Kab/K)
∼
−→ Gal(τ̃1(Kab)/τ1,K(K))

σ 7−→ τ̃1 ◦ σ ◦ τ̃−1
1

does not depend on the choice of τ̃1. If τ̃ ′
1 is another embedding above τ1,K , then

τ̃ ′
1 = τ̃1 ◦ σ ′ with σ ′ ∈ Gal(Kab/K) and for all σ ∈ Gal(Kab/K),

τ̃ ′
1 ◦ σ ◦ τ̃ ′ −1

1 = τ̃1 ◦ σ ′σσ ′ −1 ◦ τ̃−1
1 = τ̃1 ◦ σ ◦ τ̃−1

1 ,

because Gal(Kab/K) is commutative. Hence the Galois action of Conjecture 5.1 does

not depend on the particular choice of τ̃1.

Remark 5.3 Using Conjecture 5.1, we obtain

∀a∞ ∈ K×
∞, recK (a∞)P

β
b = β(a∞)P

β
b .

∀a ∈ F×
A , recK (a)P

β
b = P

β
b .

5.2 Field of Definition

Let B×
+ = {b ∈ B× | ∀ j ∈ {2, . . . , r}, τ j(nr(b)) > 0}. It is diagonally embedded in

(B ⊗ R)×. Set

K+
b = (Kab)recK (q−1

A (bHF̂×b−1B×
+ )) and Kb := (Kab)recK (q−1

A (bHF̂×b−1B×)) ⊂ K+
b .

Note that Kb and K+
b depend on the choice of the F-embedding q : K →֒ B.
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Proposition 5.4 Assuming Conjecture 5.1, the point P
β
b is defined over K+

b : P
β
b ∈

E(K+
b ).

Proof Let a = (1∞, bh f b−1)(a∞, 1 f ) ∈ q−1
A (bHF̂×b−1B×

+ ) with f ∈ F̂× and h ∈
H. We have

rec(a)P
β
b = rec

(
q−1

A ((1∞, bh f b−1)
)

P
β
b = P

β
bh f b−1b

= P
β
bh f = P

β
b .

Remark that recK induces a surjection

R : π0(T(R)) =
(K ⊗Q R)×

(F ⊗Q R)×(K ⊗Q R)×+
≃

r∏
j=2

{±1} ։ Gal(K+
b /Kb).

Thus, we have the following proposition.

Proposition 5.5 Assuming Conjecture 5.1, the points P
β
b lie in K

β
b = (K+

b )R(Ker β).

Remark 5.6 As Kerβ has index 2 in
∏r

j=2{±1}, the field K
β
b has degree 1 or 2 over

Kb.

Assume that the conductor N of E decomposes as N = N+N− with N− =

p1 . . . pt , pi distinct prime ideals of OF and t ≡ d − r mod 2. If

Ram(B) = {τr+1, . . . , τd} ∪ {p1, . . . , pt} and H = (R ⊗Z Ẑ)×,

where R ⊂ B is an Eichler order of level N+, then Kb is a ring class field of conductor fb

and K+
b a ring class field of conductor fbf∞, where f∞ =

∏r
j=2 τ j .

5.3 Local Invariants of B

Let π be the irreducible automorphic representation of B×
A generated by ϕ and

ηK = ηK/F : F×
A /F×NK/F(K×

A ) −→ {±1}

the quadratic character of K/F. For each place v of F let invv(Bv) ∈ {±1} be the

invariant of B: invv(Bv) = 1 if and only if Bv ≃ M2(Fv).

Fix b ∈ B̂× and a character χ : Gal(K+
b /K) → C×, which will be identified with

K×
A

recK−→ Gal(Kab/K) −→ Gal(K+
b /K)

χ
−→ C×.

Let L(π × χ, s) be the Rankin-Selberg L function, see [13, p. 132] and [14, Sec-

tion 12]. This function admits, since π has trivial central character, a holomorphic

extension to C satisfying

L(π × χ, s) = ε(π × χ, s)L(π × χ, 1 − s).

In this section, we prove the following proposition.
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Proposition 5.7 Let b ∈ B̂× and assume Conjecture 5.1. If

eχ(P
β
b ) =

∑

σ∈Gal(K+
b
/K)

χ(σ) ⊗ P
β
b ∈ E(K+

b ) ⊗ Z[χ]

is not torsion, then β = χ∞, for all v 6= τ1,

ηK,v(−1)ε
(
πv × χv,

1

2

)
= invv(Bv) and ε

(
π × χ,

1

2

)
= −1.

We shall use the following theorem ([27, 28]).

Theorem 5.8 The equality ηK,v(−1)ε(πv × χv,
1
2
) = invv(Bv) holds if and only if

there exists a non-zero invariant linear form ℓv : πv × χv → C unique up to a scalar

satisfying for all a ∈ K×
v and for all u ∈ πv,

ℓv(qv(a)u) = χv(a)−1ℓv(u)

i.e., ℓv is q(K×
v )-invariant.

Proof of Proposition 5.7 We follow the proof of [1, Proposition 2.6.2].

Let S ′ be a finite set of finite places of F containing the places where B, π, or

K+
b /F ramify, and such that the map r = (rv : K×

v −→ Gal(K+
b /K))v∈S ′ obtained by

composition

r :
∏

v∈S ′

K×
v −→ K×

A

recK−→ Gal(Kab/K) −→ Gal(K+
b /K)

is surjective.

For each v ∈ S ′ let

jv :

{
Kv →֒ Bv

k 7−→ b−1
v qv(k)bv,

and

j = ( jv)v∈S ′ :
∏

v∈S ′

Kv →֒ ∏
v∈S ′

Bv.

As S ′ does not contain any archimedean place of F, for all a ∈ ∏
v∈S ′

K×
v ,

[
T ◦, q̂(a)b

]
HF̂× =

[
T ◦, b j(a)

]
HF̂×

and for all a ∈ ∏
v∈S ′

K×
v and for all b ∈ B̂×, recK (a)P

β
b = P

β
q̂(a)b = P

β
b j(a).

Let (K×
v )◦ ⊂ K×

v be the inverse image of (K×
v /O×

K,v)Gal(K/F) ⊂ K×
v /O×

K,v.
We have

K×
v /O×

K,vF×
v

∼
−→





0 if v is inert in K/F,

Z/2Z if v ramifies in K/F,

Z if v splits in K/F,
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the quotient (K×
v )◦/F×

v is compact and

Dv := K×
v /(K×

v )◦
∼
−→

{
Z if v splits in K/F,

0 otherwise,

(K×
v )◦/O×

K,vF×
v

∼
−→

{
Z/2Z if v ramifies in K/F,

0 otherwise.

For each v ∈ S ′, Cv = O
×
K,v ∩ Ker(rv) is an open subgroup of O×

K,v and V ◦
v =

(K×
v )◦/F×

v Cv is finite.

Let Vv be the following subset of K×
v /F×

v Cv:

• if v does not split in K/F, V ◦
v = K×

v /F×
v Cv and Vv := V ◦

v ;
• If v splits in K/F, we fix some section of K×

v ։ K×
v /(K×

v )◦
∼→ Z.

Hence K×
v = (K×

v )◦ × Dv and there exists nv ≥ 1 such that Ker(rv |Dv
) = nvDv.

Fix a set of representatives D ′
v ⊂ Dv of Dv/nvDv and set Vv = V ◦

v D ′
v ⊂ K×

v /F×
v Cv.

Let V =
∏

v∈S ′ Vv ⊂ ∏
v∈S ′ K×

v /F×
v Cv, which is stable under multiplication

by the abelian group V ◦
=
∏

v∈S ′ V ◦
v and such that V →֒ ∏

v∈S ′ K×
v /F×

v Cv
r→

Gal(K+
b /K) is surjective with fibers of cardinality

|V |
|Gal(K+

b
/K)| . We have

|V |
|Gal(K+

b /K)| eχ(P
β
b ) =

|V |
|Gal(K+

b /K)|
∑

σ∈Gal(K+
b
/K)

χ(σ) ⊗ σ · P
β
b

=

∑

a∈V

χ(a) ⊗ P
β
b j(a).

Fix some open-compact subgroup H1 ⊂
⋂

a∈V j(a)H j(a)−1. Using the maps

ShH1
(G/Z,X)

[· j(a)]

−→ Sh j(a)−1H1 j(a)(G/Z,X)
pr

−→ ShH(G/Z,X),

we have

∑

a∈V

χ(a)

∫

∆◦
b j(a)

ωβ
ϕ =

∑

a∈V

χ(a)

∫

∆◦
b

[· j(a)]∗ωβ
ϕ

=

∫

∆◦
b

∑

a∈V

χ(a)[· j(a)]∗ωβ
ϕ =

∫

∆◦
b

ωβ
1 ,

where

ωβ
1 :=

∑

a∈V

χ(a)[· j(a)]∗ωβ
ϕ.

Whenever

|V |
|Gal(K+

b /K)| eχ(P
β
b ) =

∑

a∈V

χ(a) ⊗ P
β
b j(a) ∈ Z[χ] ⊗Z E(K+

b ) ⊂ Z[χ] ⊗Z C/Λ1
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is not torsion, there exists σ : Z[χ] →֒ C such that

ξα

Ωβ

∫

∆◦
b

∑

a∈V

σχ(a)[· j(a)]∗ωβ
ϕ /∈ Q[σχ] · Λ1,

where σχ = σ ◦ χ. The vector

σω1 =

∑

a∈V

σχ(a)[· j(a)]∗ωϕ ∈ πH1 ∩ Γ
(

ShH1
(G/Z,X),ΩH1

)

is non-zero and invariant under j(
∏

v∈S ′(K×
v )◦). Moreover, for all a ∈∏v∈S ′(K×

v )◦,

j(a)ω1 =
σχ−1(a)ω1.

Let
σℓS ′ :

⊗
v∈S ′

σπv =
⊗

v∈S ′

πv −→ C(σχ−1)

be the j(
∏

v∈S ′(K×
v )◦)-invariant projection on Cω1.

Assume that v ∈ S ′ does not split in K. In this case (K×
v )◦ = K×

v and σℓS ′ induces

a qv(K×
v )-invariant linear form σℓv : πv → C(σχ−1

v ). We have σℓv(ω1,v) 6= 0, where

ω1,v =

∑

av∈Vv

σχ ◦ rv(av)[· jv(av)]∗ωϕ.

As εv(πv ×σχv,
1
2
) is independent of σ : Z[χ] →֒ C, Theorem 5.8 shows that

ηK,v(−1)ε
(
πv × χv,

1

2

)
= invv(Bv).

When v ∈ S ′ splits in K or v /∈ S ′ ∪ S∞, the equality

ηK,v(−1)ε
(
πv × χv,

1

2

)
= 1 = invv(Bv)

follows from calculations that can be found, for example, in [23, Prop. 12.6.2.4].

Global sign If v = τ j is an archimedean place, then ε(πv × χv,
1
2
) = 1. More-

over ηK,v(−1) = 1 if and only if j ∈ {2, . . . , r} and invv(Bv) = 1 if and only if j ∈
{1, . . . , r}. Thus,

ηK,v(−1) invv(Bv) =





−1 × 1 if j = 1,

1 × 1 if j ∈ {2, . . . , r},

−1 ×−1

and for all j ∈ {1, . . . , d},

εv

(
πv × χv,

1

2

)
= ηK,v(−1) invv(Bv) ×

{
−1 if j = 1,

1 if j > 1.

Hence,

ε
(
π × χ,

1

2

)
= −∏

v

ηK,v(−1) invv(Bv) = −1.
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5.4 Global Invariant Linear Form and a Conjectural Gross–Zagier Formula

For any open subgroup H ′ ⊂ H, b ∈ B̂× and u ∈ π0(T(R)) fix

∆
u
H ′,b ∈ C r

(
ShH ′(G/Z,X)(C),Q

)

such that ∂∆u
H ′,b = [T u

H ′,b], where T u
H ′,b = {[q(u)x, b]H ′F̂× , x ∈ T ◦}.

Recall that for all u ′ ∈ π0(T(R)), tu ′∆
u
H,b = ∆

uu ′

b .
Let π∞ be the archimedean part of π. Fix ϕ∞ ∈ π∞ a lowest weight vector of

weight (2, . . . , 2︸ ︷︷ ︸
r

, 0, . . . , 0) of π∞ and ωϕ such that

ωϕ = ϕ∞ ⊗ ϕ f ∈ π∞ ⊗ π f ⊂ S2(B×
A ).

Let us denote by Qπ f the sub Q[B̂×]-module of π f generated by ϕ f .

Proposition 5.9 The space Qπ f is a Q-vector space and Qπ f ⊗Q C → π f is surjective.

Proof The space Im(Qπ f ⊗Q C → π f ) is a zero subvector space of π f invariant under

B×
A . As π f is irreducible, we have Im(Qπ f ⊗Q C → π f ) = π f , and Qπ f ⊗Q C → π f

is surjective.

Fix η 6= 0 ∈ H0(E,ΩE/F). There exists α ∈ F ′× such that J (αωϕ) = η. Fix

a continuous character of finite order χ : K×
A /K×F×

A → Z[χ]×. Let H ′ ⊂ H be

any open compact subgroup of B̂× satisfying χ(q−1
A (H ′F×

A )) = 1. Assume that there

exists b0 ∈ B̂× such that b−1
0 H ′b0 ⊂ H. Let prb0

be the map ShH ′(G/Z,X) →
ShH(G/Z,X) defined on complex points by

[x, b]H ′F̂× 7→ [x, bb0]HF̂× .

Proposition 5.10 If b−1
0 H ′b0 ⊂ H for some b0 ∈ B̂×, then for all Z ′ ∈

C r(ShH ′(G/Z,X)(C),Z),

∫

Z ′

pr∗b0
(ωχ∞

ϕ ) ∈ Qα−1
Ω

χ∞Λ1.

Proof Let Z = prb0
(Z ′) ∈ C r(ShH(G/Z,X)(C),Z). We have

∫

Z ′

pr∗b0
ωχ∞

ϕ = deg(prb0
: Z ′ → Z)

∫

Z

ωχ∞

ϕ .

Thanks to Proposition 3.7, we have
∫

Z
ωχ∞
ϕ ∈ Qα−1

Ω
χ∞Λ1, hence

∫

Z ′

pr∗b0
ωχ∞

ϕ ∈ Qα−1
Ω

χ∞Λ1.
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Denote by pr : ShH ′(G/Z,X) → ShH(G/Z,X) the natural projection and by

(K ⊗ R)×+ the set of elements in (K ⊗ R)× whose norm to F is positive at each place

of F. We have π0(T(R)) = (K⊗R)×

(F⊗R)×(K⊗R)×+
.

The formula

ℓχ(ω ′) =
1

[H : H ′]deg(TH ′,b

pr

−→ TH,b)

∑

a∈
K
×
A

q
−1
A

(H ′F
×
A

)(K⊗R)
×
+

χ(a) ⊗
∫

∆
q(a∞)

H ′ ,q̂(a f )

ω ′

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1),

where

∂∆
q(a∞)

H ′,q̂(a f ) =
[
T q(a∞)

H ′,q̂(a f )

]
,

is independent of the specific choice of ∆
q(a∞)

H ′,q̂(a f ): we can assume that ω ′
= pr∗b0

(ωϕ)

for some b0 ∈ B̂× ; decompose each

a ∈ K×
A /q−1

A (H ′F×
A )(K ⊗ R)×+

as a = (a f , 1∞)(1 f , a∞). Remark that

K×
A /q−1

A (H ′F×
A )(K ⊗ R)×+ = K̂×/q̂−1(H ′F̂×) × (K ⊗ R)×/(K ⊗ R)×+ ,

hence a f ∈ K̂×/q̂−1(H ′F̂×) and a∞ ∈ (K ⊗ R)×/(K ⊗ R)×+ .

Thanks to Proposition 5.10, the formula

∑

a∞∈K×
∞

χ∞(a∞)

∫

∆
q(a∞)

H ′ ,q̂(a f )

ω ′
=

∑

a∞∈K×
∞

χ∞(a∞)

∫

∆H ′ ,q̂(a f )

tq(a∞) pr∗b0
ωϕ

=

∫

∆H,q̂(a f )

ωχ∞

ϕ (mod Qα−1
Ω

χ∞Λ1)

does not depend on the specific choice of ∆
q(a∞)

H ′,q̂(a f ).

Thus, the expression of ℓχ(ω ′) above defines a linear form

ℓχ : SH ′

2 ∩ Q[B̂×]ωϕ −→ Q(χ) ⊗Q (C/Qα−1
Ω

χ∞Λ1).

To simplify the notations, let

δH ′,H = deg(TH ′,b

pr

−→ TH,b) and WH ′ = K×
A /q−1

A (H ′F×
A )(K ⊗ R)×+ .

Thus,

ℓχ(ω ′) =
1

[H : H ′]δH ′,H

∑

a∈WH ′

χ(a) ⊗
∫

∆
q(a∞)

H ′ ,q̂(a f )

ω ′.
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Proposition 5.11 (i) Let H ′ ′ ⊂ H ′ ⊂ H be open compact subgroups such that

χ(q−1
A (H ′F×

A )) = 1 and pr∗ the map pr∗ : SH ′

2 (B×
A ) → SH ′ ′

2 (B×
A ).

If ω ′ ∈ SH ′

2 (B×
A ) ∩ Q[B̂×]ωϕ, then ℓχ(ω ′) = ℓχ(pr∗(ω ′)) and ℓχ defines a linear

form on Q[B̂×]ωϕ.

(ii) We have for all a ∈ K̂× ∀ω ∈ Q[B̂×]ωϕ,

ℓχ
(

[·q̂(a f )]∗ω
)
= χ f (a)−1ℓχ(ω).

(iii) If χ factors through Gal(K+
b /K) and if P

β
b = Φ1

(∫
∆H,b

ωβ
ϕ

)
⊗ 1 ∈ C/QΛ1, then

eχ(P
χ∞

b ) =
∑

Gal(K+
b
/K)

χ(σ) ⊗ σ(P
χ∞

b ) ∈ Q(χ) ⊗Q E(K+
b ) ⊂ Q(χ) ⊗Q

(
C/QΛ1

)

= Φ1(ℓχ([·b]∗ωϕ)),

up to a non-zero rational factor.

Proof (i) Let a ∈ K̂×. We have pr(∆H ′ ′,q̂(a f )) = ∆H ′,q̂(a f ) and

∫

∆H ′ ′ ,b

pr∗ ω ′
= deg(TH ′ ′,b −→ TH ′,b)

∫

∆H ′ ,b

ω ′
= δH ′ ′,H ′

∫

∆H ′ ,b

ω ′.

As χ(q−1
A (H ′F×

A )) = 1, we have (thanks to Proposition 5.10)

ℓχ(pr∗ ω ′) =
1

[H : H ′ ′]δH ′ ′,H

∑

a∈WH ′ ′

χ(a) ⊗
∫

∆
q(a∞)

H ′ ′ ,q̂(a f )

pr∗ ω ′

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

=
δH ′ ′,H ′

δH ′ ′,H

∑

a∈WH ′ ′

χ(a) ⊗
∫

∆
q(a∞)

H ′ ,q̂(a f )

ω ′

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

=
δH ′ ′,H ′

[H : H ′ ′]δH ′ ′,H

∑

a∈WH ′

[H ′ : H ′ ′]χ(a) ⊗
∫

∆
q(a∞)

H ′ ,q̂(a f )

ω ′

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

=
[H ′ : H ′ ′]

[H : H ′ ′]δH ′,H

∑

a∈WH ′

χ(a) ⊗
∫

∆
q(a∞)

H ′ ,q̂(a f )

ω ′

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

= ℓχ(ω ′).
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(ii) Assume H ′ ′ is sufficiently small such that [·q̂(a f )]∗ pr∗ ω ∈ SH ′ ′

2 . We have

ℓχ([·q̂(a f )]∗ω) = ℓχ([·q̂(a f )]∗ pr∗ ω)

=
1

[H : H ′ ′]δH ′ ′,H

∑

a ′∈WH ′ ′

χ(a ′) ⊗
∫

∆
q(a ′∞)

H ′ ′ ,q̂(a ′)

[·q̂(a f )]∗ pr∗ ω

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

=
1

[H : H ′ ′]δH ′ ′,H

∑

a ′∈WH ′ ′

χ(a ′) ⊗
∫

∆
q(a ′∞)

H ′ ′ ,q̂(aa ′)

pr∗ ω

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

=
1

[H : H ′ ′]δH ′ ′,H

∑

a ′ ′∈WH ′ ′

χ(a ′ ′a−1) ⊗
∫

∆
q(a ′ ′∞)

H ′ ′ ,q̂(a ′ ′)

pr∗ ω

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

= χ f (a)−1 1

[H : H ′ ′]δH ′ ′,H

∑

a ′ ′∈WH ′ ′

χ(a ′ ′) ⊗
∫

∆
q(a ′ ′∞)

H ′ ′ ,q̂(a ′ ′)

pr∗ ω

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

= χ f (a)−1ℓχ(pr∗ ω) = χ f (a)−1ℓχ(ω)

(iii) As ωϕ ∈ S2(B×
A ) =

⋃
H SH

2 (B×
A ), there exists H ′ sufficiently small such that

ωϕ ∈ SH ′

2 and [·b]∗ωϕ ∈ SH ′

2 . Let

m = [K×
A /q−1

A (H ′F×
A )(K ⊗ R)×+ : Gal(K+

b /K)]

and ν = 1/[H : H ′]deg(TH ′ → TH). We have

ℓχ(◦[·b]∗ωϕ) = ν
∑

a∈
K
×
A

q
−1
A

(HF
×
A

)(K⊗R)
×
+

χ f (a f )χ∞(a∞) ⊗
∫

∆
q(a∞)

H ′ ,q̂(a f )

[·b]∗ωϕ

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

= ν
∑

a f

χ f (a f ) ⊗
∑

a∞

χ∞(a∞) recK (a f ) ·
∫

∆H ′ ,b

trecK (a∞)ωϕ

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)

= νm
∑

σ∈Gal(K+
b
/K)

χ(σ) ⊗
∫

∆H ′ ,b

∑

a∞

χ∞(a∞)trecK (a∞)ωϕ

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1)
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= νm
∑

σ∈Gal(K+
b
/K)

χ(σ) ⊗
∫

∆H ′ ,b

ωχ∞

ϕ

(mod Q(χ) ⊗Q Qα−1
Ω

χ∞Λ1),

hence

eχ(P
χ∞

b ) = Φ1(ℓχ
(

[·b]∗ωϕ)
)
.

Let us consider the Néron-Tate height hNT : E(Kab) × E(Kab) → R extended to an

hermitian form

hNT : E(Kab) ⊗ C × E(Kab) ⊗ C −→ C.

Recall the condition for all v 6= τ1,

ε
(
πv × χv,

1

2

)
ηK,v(−1) = invv(B)

from Proposition 5.8: if 5.4 fails, then P
χ∞

b ∈ E(Kab) is torsion.

In general, there should be some k(b, ωϕ) ∈ C such that for all σ : Q(χ) →֒ C,

hNT(eσχ(P
χ∞

b )) = k(b, ωϕ)L ′
(
π × σχ,

1

2

)
,

as in Gross–Zagier, Zhang, and Yuan–Zhang–Zhang [12, 31, 33].

This formula explains the following conjecture.

Conjecture 5.12 Let Kχ = (Kab)Ker(χ) be the extension of K trivializing χ. If for all

v 6= τ1,

ε
(
πv × χv,

1

2

)
ηK,v(−1) = invv(B),

then there exists b ∈ B̂× such that k(b, ωϕ) 6= 0, and we have the following equivalences:

ℓχ 6= 0

⇐⇒ ∃b ∈ B×
A such that Kχ ⊂ K+

b and eχ(P
χ∞

b ) ∈ Z[χ] ⊗ E(K+
b ) is not torsion

⇐⇒ ∃σ : Q(χ) →֒ C L ′
(
π × σχ,

1

2

)
6= 0

⇐⇒ ∀σ : Q(χ) →֒ C L ′
(
π × σχ,

1

2

)
6= 0.

6 A Relation to Kudla’s Program

The theorem of Gross–Kohnen–Zagier asserts that the positions of the traces to Q

of classical Heegner points are given by the Fourier coefficients of some Jacobi form.

The geometric proof of Zagier explained, for example, in [32] has been recently gen-

eralized by Yuan, Zhang, and Zhang in [31] using a result of Kudla and Millson [17].

In this section we establish a relation between Darmon’s construction and Kudla’s

program. This is a first step in an attempt to apply the arguments of Zagier [32] and

Yuan, Zhang, and Zhang’s [31] to Darmon’s points.
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6.1 Some Computations

Let us fix a modular elliptic curve E/F of conductor N = N+N−. Assume that

Ram(B) = {τr+1, . . . , τd} ∪ {v |N−} and that the quadratic extension K/F satisfies

the following hypothesis:

∀v |N+ splits in K ∀v |N− is inert in K.

In particular, the relative discriminant dK/F is prime to N. Let R be an Eichler

order of B of level N+. Identify K with its image in B by q and assume that K∩R = OK ,

H = R̂× (which implies that dimπH
f = 1).

Recall that h1 defines an embedding τ1,K : K →֒ C and denote by c the non-trivial

element of Gal(K/F). Assume that Conjecture 5.1 is true for β = 1 and let P =

TrK+
1 /K P1

1 ∈ E(K).

Proposition 6.1 If ε is the global sign of E/F, i.e., Λ(E/F, s) = εΛ(E/F, 2 − s), where

Λ is the completed L-function of E/F, then c(P) = −εP.

Proof Assume that K = F(i) and B = K( j), with i2
= a ∈ F×, j2

= b ∈ F× and

i j = − ji. Recall that T ◦
1 = [T ◦, 1]HF̂× with T ◦

= {z1} × γ2 × · · · × γr. Thus,

c(T ◦
1 ) = [{t1z1} × γ2 × · · · × γr, 1]HF̂× = (−1)r−1[ j−1(T ◦), 1]HF̂× ,

c(T ◦
1 ) = (−1)r−1[T ◦, j]HF̂× ,

since j ∈ B×. This shows that c(P1) = (−1)r−1P j . We will write P j using only P1.

We will make the following abuse of language. For each place v of F, jv shall denote

the element (1, . . . , 1, jv︸︷︷︸
v

, 1 . . . ) ∈ B×
A , and we will use the following lemma.

Lemma 6.2 Let b ∈ B̂× and v a place of F. When v |N+, set kv ∈ K×
v corresponding

to (
1 0

0 ̟ordv(N+)
v

)
,

where ̟v is an uniformizer of Kv. If bv = 1, then

Pb jv
=





−εvPb if v |N−

εv recK (k−1
v )Pb if v |N+

Pb if v ∤N.

Proof of the lemma For each v inert in K/F we have

invv(B) = 1 ⇐⇒ Bv ≃ M2(Fv)

⇐⇒ b ∈ NKv/Fv
(K×

v ) = O
×
Fv

F×
v

2

⇐⇒ 2 | ordv(b)
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As j = − j, we have nr( j) = − j2
= −b and

invv(B) = 1 ⇐⇒ 2 | ordv(nr( jv)).

If v |N−, then Hv = O
×
Bv

, where OBv
is the unique maximal order in Bv, hence

Hv ⊳ B×
v and B×

v /H×
v ≃ Z by choosing some uniformizer. As Hv is normal in B×

v ,

the map

[· jv] : ShH(G/Z,X)(C) −→ Sh j−1
v H jv

(G/Z,X)(C)

is well defined on ShH(G/Z,X)(C). Thus [T ◦, b jv]HF̂× = [· jv][T ◦, b]HF̂× and

∫

∆◦
b jv

ωϕ =

∫

∆◦
b

[· jv]∗ωϕ =

∫

∆◦
b

πv( jv)ωϕ.

Decompose π = π(ϕ) = ⊗ ′
vπv. We have

πv : B×
v

nr
−→ F×

v

ordv−→ Z −→ Z/2Z
∼
−→ {±1}.

Let us denote by α the following unramified character

α : F×
v

ordv−→ Z −→ Z/2Z
∼
−→ {±1}

satisfying πv = α ◦ nr.
As v |N−, E has multiplicative reduction in v. The character α is trivial if and only

if E has split multiplicative reduction in v, i.e., εv = −1.

Hence,

[· jv]∗ωϕ = α(nr( jv))ωϕ =

{
ωϕ if α = 1,

(−1)ordv(nr( j))ωϕ otherwise.

As v |N−, v ∈ Ram(B) is inert in K/F and invv(B) = −1, thus 2 ∤ ordv(nr( j)).

Hence,

[· jv]∗ωϕ = α(nr( jv))ωϕ =

{
ωϕ = −εvωϕ if α = 1,

−ωϕ = −εvωϕ otherwise

and Pb jv
= −εvPb.

If v |N+, then we fix some uniformizer ̟v of Fv and an isomorphism Bv ≃ M2(Fv)

that identifies Kv with the set of diagonal matrices and Rv with

{(
a b

c d

)
∈ M2(OF,v)

∣∣ ̟ordv(N+)
v

∣∣ c
}
.

As invv(Bv) = 1, jv is a local norm. There exists kv ∈ Kv such that jv = NKv/Fv
(kv).

We may assume that j2
v = 1. Moreover, since jv is in the normalizer of K×

v in B×
v , we

thus identify jv to
(

0 1
1 0

)
.
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Set

Wv =

(
0 1

̟ordv(N+)
v 0

)
=

(
1 0

0 ̟ordv(N+)
v

)(
0 1

1 0

)
= kv jv.

This matrix is in the normalizer of Rv in Bv. As Wv normalize Hv,

[T ◦, b jv]HF̂× = [T ◦, bk−1
v Wv]HF̂× = [·Wv][T ◦, bk−1

v ]HF̂× .

Decompose ωϕ =
⊗

v|N+
ωv ⊗ ω ′, where ωv satisfies[·Wv]∗ωv = εvωv; then

∫

∆◦
b jv

ωϕ = εv

∫

∆◦

bk
−1
v

ωϕ.

As bv = 1, Pb jv
= εv recK (k−1

v )Pb.
If v ∤N, then by a similar calculation we obtain Pb jv

= recK (k−1
v )Pb.

End of the proof of Proposition 6.1 Lemma 6.2 implies that

c(P1) = (−1)r−1
∏

v|N−

(−εv)
∏

v|N+

εv recK (k−1
v )P1

and for all a ∈ K×
A ,

c(recK (a)P1) = (−1)r−1
∏

v|N−

(−εv)
∏

v|N+

εv recK (k−1
v ) recK (a)P1.

As P ∈ E(K), we know that recK (k−1)P = P. Thus

(6.1) c(P) = (−1)r−1
∏

v|N−

(−εv)
∏

v|N+

εvP = (−1)r−1(−1)|{v|N−}| ∏
v∤∞

εvP.

We have to show that (−1)r−1
∏

v|N−
(−εv)

∏
v|N+

εv = −ε. For each v |∞ we

have εv = −1. Since
∏

v|∞ = (−1)d, the sign in equation (6.1) is

(−1)d
∏
v

εv

︸︷︷︸
=ε

(−1)r−1(−1)|{v|N−}|.

Recall that {v |N−} = Ram(B) ∩ S f . As |Ram(B)| is even, we have

(−1)|{v|N−}|
= (−1)|Ram(B)∩S∞|

= (−1)d−r.

Hence

c(P) = (−1)dε(−1)r−1(−1)|{v|N−}|P = −εP.

Remark 6.3 The above computations are a particular case of a result of Prasad,

[24, Theorem 4], which asserts that if HomK×
v

(πv, 1) 6= {0}, then the nontrivial

element in NB×
v

(K×
v )\K×

v acts on HomK×
v

(πv, 1) by multiplication by invv(B)εv =

invv(B)ε(πv,
1
2
) ∈ {±1}.
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6.2 Orthogonal Shimura Manifolds

Until the end of this paper we shall assume that h+
F = 1.

Let us recall some definitions used by Kudla [15] in the particular case r = 1. Let

n ∈ Z≥0 and let (V,Q) be a quadratic space over F of dimension n + 2. We assume

that the signature of V ⊗Q R is

(n, 2) × (n + 1, 1)r−1 × (n + 2, 0)d−r.

Denote by D the symmetric space of G = ResF/Q GSpin(V ). D is the product of the

oriented symmetric spaces of V j = V ⊗τ j ,F R. Thus D = D1 × . . .Dd, where D j is

the set of oriented positive subspaces in V j of maximal dimension. For each x ∈ V

let x j be the image of x in V j . Assume that Q(x) is totally positive. Set Vx = x⊥,

Gx = ResF/Q GSpin(Vx), and for each j ∈ {1, . . . , d},

Dx j
= {z ∈ D j z ⊥ x j}.

We shall focus on the following real cycle on the Shimura manifold G(Q)\D ×
G(Q̂)/H.

Definition 6.4 Let H be an open compact subgroup in G(Q̂) and g ∈ G(Q̂). The

cycle Z(x, g; H) is defined to be the image of the map

Z(x, g; H) :

{
Gx(Q)\Dx × Gx(Q̂)/H

g
x −→ G(Q)\D × G(Q̂)/H

Gx(Q)(y, u)H
g
x 7−→ G(Q)(y, ug)HF̂×,

where H
g
x denotes Gx(Q̂) ∩ gHg−1.

Example (including Proposition 6.5) Fix D0 ∈ F satisfying
{
τ j(D0) > 0 if j ∈ {1, r + 1, . . . , d},
τ j(D0) < 0 if j ∈ {2, . . . , r}.

Set (V,Q) = (BTr=0,D0 · nr). Then (V ⊗F,τ j
R, τ j ◦ D0 · nr) has signature





(1, 2) if j = 1,

(2, 1) if j ∈ {2, . . . , r},
(3, 0) if j ∈ {r + 1, . . . , d}.

Let G = ResF/Q GSpin(V ). The action of B× on V by conjugation induces an

isomorphism

B×
∼
−→ GSpin(V )

b 7−→ (v 7→ bvb−1),

thus G ≃ ResF/Q(B×).

Let x ∈ V such that Q(x) ≫ 0, and denote by x j its image in V ⊗F,τ j
R. Denote

by K the quadratic extension F + Fx and T = ResK/Q(Gm) ResF/Q(Gm) as above. Let

q be the inclusion K →֒ V → B.
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Proposition 6.5 The set Dx = Dx1
× · · · × Dxr

is a q(T(R))◦-orbit in D whose

projection on D1 is a point.

Proof As x ∈ V , Tr(x) = 0 and x2
= −nr(x) = −Q(x)

D0
∈ F×. Let j ∈ {1, . . . , r}.

We have τ j(Q(x)) > 0, hence τ j(x2)τ j(D0) < 0. Thus τ1 ramifies in K and τ2, . . . , τr

are split. Moreover, q1(K×) fixes x1 by definition of K.

Let us focus on the general case when V has dimension n. Fix t ∈ F satisfying

for all j ∈ {1, . . . , r}, τ j(t) > 0. G(Q̂) acts on Ωt = {x ∈ V (F) | Q(x) = t} by

conjugation.

Let ϕ be a Schwartz function on V (F̂). Assume Ωt 6= ∅ and fix x ∈ Ωt . Denote

by Z(y, ϕ; H) the sum

Z(t, ϕ; H) =
∑

g∈Gx(Q̂)\G(Q̂)/HF̂×

ϕ(g−1 · x)Z(x, g; H).

Proposition 4.5 showed that for n = 1,

[Z(x, g; H)] = 0 ∈ Hr−1

(
ShH(G/Z,X)(C),C

)
.

A natural invariant to consider is the refined class

{Z(t, ϕ; H)} =

ω 7→ J
β
b ∈ (Harmr(ShH(G/Z,X)(C))∗

Im(Hr(ShH(G/Z,X)(C),Z) → Harmr(ShH(G/Z,X)(C))∗)
,

where Harmr(ShH(G/Z,X)(C)) is the set of harmonic differential forms on

ShH(G/Z,X)(C).

In order to adapt the work of Yuan, Zhang, and Zhang, we need the following

conjecture.

Conjecture 6.6 In the situation of the above example (V,Q) = (BTr=0,D0 · nr), the

sum ∑

t∈OF
t≫0

{Z(t, ϕ; H)}qt

is a Hilbert modular form of weight 3/2.

In [31], the authors work by induction. To apply their method we would need to

prove that the refined classes {Z(t, ϕ; H)} are compatible with the tower of varieties

attached to quadratic spaces Vx →֒ V of signature (n, 2)×(n+1, 1)r−1×(n+2, 0)d−r

(in which case a generalization of [17] should imply that

∑

t∈OF
t≫0

[Z(t, ϕ; H)]qt

is a Hilbert modular form of weight n
2

+ 1 with coefficients in

Hr+1(ShH(G/Z,X)(C),C)).
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6.3 A Gross–Kohnen–Zagier-type Conjecture

The Bruhat–Tits tree In this section we recall some basic facts about the Bruhat–

Tits tree (see [4, 29]).

Let v be a finite place of F. The vertices of the Bruhat–Tits tree of PGL2(Fv) are the

maximal orders of M2(Fv). Such maximal orders are endomorphism rings of lattices

in F2
v ([29], lemme 2.1). There is an oriented edge between two vertices O1 and O2

if and only if there exist L1, L2 lattices in F2
v such that Oi = End(Li), L2 ⊂ L1 and

L1/L2 ≃ OFv
/̟vOFv

. The intersection of the source and the target of paths of length

n correspond to level vn Eichler orders.

Fix some quadratic extension K/F. This data allows us to organize the Bruhat–

Tits tree. Let Ψ : Kv →֒ M2(Fv) be a Fv-embedding of Kv. Let M0(N) be the set of

matrices in M2(Fv) which are upper triangular modulo N. If

Ψ(OKv
) = Ψ(Kv) ∩ M0(N),

we say that Ψ has level N. We can organize the vertices of the tree in “levels”, by

privileging a direction. Each level corresponds to a level of embedding relative to OKv

i.e., to orders that are in the same orbit under K×
v . The maximal orders in PGL2(Fv)

that are maximally embedded are on the bottom of the tree.

Figures 2, 3, and 4 illustrate the dependence on the ramification type of v in K.

Figure 2: Bruhat-Tits tree of PGL2(Fv) when v is split.

Figure 3: Bruhat-Tits tree PGL2(Fv) when v is ramified.

Figure 4: Bruhat-Tits tree of PGL2(Fv) when v is inert.
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Recall that H = (R ⊗Z Ẑ)×, where R is an Eichler order of B of level N+ and that

K = F + Fx satisfies the following Heegner hypothesis.

Hypothesis 6.7 Each prime p |N+ splits in K, and each prime p |N− is inert in K.

The group Gx is isomorphic to K×, and Z(x, 1; H) is the image of K×\Dx×K̂×/H

in ShH(G,X)(C). Note that

Z(x, 1; H) = T 1
1 + t1(T 1

1 ),

where T 1
1 = [∪u∈π0(T(R))q(u) · T ◦, 1]HF̂× .

Let ϕ = 1R̂Tr=0 . We are able to prove an analogue of [16, Proposition A.I.1] when

N = 1, B = M2(F), R = M2(OF), t = Q(x) = D0nr(x) ∈ F and K = F + Fx is such

that K ∩ R = OK and OK = OF + OFx. Set c1(T 1
1 ) = {[t1(x), b]HF̂× , b ∈ B̂×}.

Proposition 6.8 If N = 1, r = d, B = M2(F), H = R̂× with R = M2(OF) and if

OK = OF + OFx, then Z(t, ϕ; H) is equal to

Z(x, 1; H) = T 1
1 + c1(T 1

1 ) = T 1
1 − εT 1

1 .

Remark 6.9 Under the strong hypotheses above, ε = (−1)d and the cycle obtained

is zero when d is even.

Proof By definition

Z(t, ϕ; H) =
∑

g∈K̂×\B̂×/R̂×

1R̂Tr=0 (g−1 · x)Z(x, g; H).

We have to determine g ∈ K̂×\B̂×/R̂× satisfying g−1xg ∈ R̂Tr=0, i.e., x ∈ gR̂Tr=0g−1.

As F× ⊂ K×,

K̂×\B̂×/F̂×R̂×
=
∏
v

′K×
v \B×

v /R×
v =

∏
v

′K×
v \B×

v /F×
v R×

v .

This allows us to work locally with K×
v \B×

v /F×
v R×

v , which is identified to the

K×
v -orbits of maximal orders of PGL2(Fv). This gives the condition xv ∈ gvRvg−1

v .
First let us consider those gv ∈ B×

v /R×
v F×

v satisfying xv ∈ gvRvg−1
v . The ring

gvRvg−1
v is a maximal order containing xv. Using the fact that OK = OF + OFx, we

have

xv ∈ gvRvg−1
v ⇐⇒ gvRvg−1

v ∩ Kv = OKv
.

Hence the maximal order gvRvg−1
v is maximally embedded in Kv. It is identified to a

vertex at the lowest level of the Bruhat–Tits tree. As each vertex at the same level is in

the same K×
v -orbit, we have for all v,

gv = 1 ∈ K×
v \B×

v /F×
v R×

v .

Thus Z(t, ϕ; H) = Z(x, 1; H), and, as Dx1
is a set of two points, Z(x, 1; H) is identified

with T 1
1 + c1(T 1

1 ) = T 1
1 − εT 1

1 , thanks to Proposition 6.1.
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We now consider the case when N = N+N− 6= 1 is prime to dK/F . The following

proposition is true even if B 6= M2(F), but we still assume that R is an Eichler order

of level N+ and OK = OF + OFx.

Proposition 6.10 Let N be the conductor of E. If N is prime to dK/F , then

Z(t, ϕ; H) =
∏
v|N

(1 + invv(B)εv)Z(x, 1; H).

Proof The proof is analogous to the proof of Proposition 6.8. Let us first compute

the number of terms in Z(t, ϕ; H). We need to determine for each v the number of

K×
v -orbits of oriented paths of length ordv(N+) in the Bruhat–Tits tree; this is equal

to the number of gv such that xv ∈ gvRvg−1
v .

• If v ∤N, then the same argument as in Proposition 6.8 shows that there is only one

orbit.
• If v |N−, Bv is ramified and v is inert in K. Hence K×

v \B×
v /R×

v F×
v = {1, πv} where

πv ∈ B×
v is an element whose reduced norm has order 1 at v; πv corresponds to the

Atkin–Lehner involution.
• If v |N+, v splits in K. Denote by vδ the level of the order Rv. Each Eichler order of

level vδ is the intersection of the origin and the target of an oriented path of length δ.

By hypothesis those orders are maximally embedded in Kv, and the path correspond-

ing to gvRvg−1
v is contained in the lowest level of the tree. As K×

v acts by translations

on this level, there are exactly two K×
v -orbits corresponding to gv depending on the

orientation. We have g+
v and g−v that are exchanged by the Atkin–Lehner involution

corresponding to
(

0 ̟v

1 0

)
.

Let n be the number of prime ideals in the decomposition of N. The sum

Z(t, ϕ; H) has 2n factors. Let W be the sets of these factors. By definition,

Z(x, g; H) = [·g]Z(x, 1; H). Using Proposition 6.1 we obtain

Z(t, ϕ; H) =
∑

g∈W

[·g]Z(x, 1; H) =
∏
v|N

(
1 + invv(B)εv

)
Z(x, 1; H).

Let us conclude this paper with another conjecture. Assume that E(F) has rank

1. Denote by P0 some generator of E(F) modulo torsion. For each t ∈ OF totally

positive such that (t) is square free and prime to dK/F , denote by K[t] the quadratic

extension

K[t] = F(
√
−D0t),

which satisfies the hypothesis used to build Darmon’s points. Let P1
t,1 be Darmon’s

point obtained for K[t], b = 1, and β = 1, and set Pt = TrK[t]+
1 /F Pt,1. Assuming

Conjectures 5.1 and 5.12, the point Pt lies in E(F), and there exists an integer [Pt ] ∈ Z

such that Pt = [Pt ]P0 modulo torsion.
Proposition 6.10 together with Conjecture 6.6 suggest the following (as in [9, Con-

jecture 5.3]).

Conjecture 6.11 There exists some Hilbert modular form g of level 3/2 such that the

[Pt ]s are proportional to some Fourier coefficients of g.
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Remark 6.12 Using the analogy with the Gross–Kohnen–Zagier theorem, the inte-

gers [Pt ] should be (proportional to) square roots of L(E−D0t , 1), where E−D0t is the

twist of E by −D0t .

Let us end this paper with two open questions.

Question 6.13 Does Bruinier’s generalization of Borcherds products [3] give any-

thing interesting in this situation ?

It is natural to expect that results of Cornut and Vatsal [5,6] also hold for Darmon’s

points.

Question 6.14 Would it be possible to deduce such a result from suitable equidis-

tribution properties for the real tori T ◦
b ?
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The author is grateful to J. Nekovář for his constant support during this work, and to

C. Cornut for many useful conversations.

References
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