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Abstract

In ‘Calculating Correct Compilers’ (Bahr & Hutton, 2015), we developed a new approach to cal-
culating compilers directly from specifications of their correctness. Our approach only required
elementary reasoning techniques and has been used to calculate compilers for a wide range of lan-
guage features and their combination. However, the methodology was focused on stack-based target
machines, whereas real compilers often target register-based machines. In this article, we show how
our approach can naturally be adapted to calculate compilers for register machines.

1 Introduction

Compilers are central to computing, translating high-level programs written by people
into low-level programs that machines can execute. However, compilers are also diffi-
cult to design and implement, and even more difficult to formally verify. One approach
to addressing these problems is to calculate compilers directly from specifications of their
correctness, thereby eliminating the gap between writing a compiler and verifying that it
is correct, resulting in compilers that are correct by construction.

The desire to calculate compilers in this manner has been a key objective of the field of
program transformation since its earliest days. However, it has traditionally been viewed
as an advanced topic that requires specialist knowledge of techniques such as continuations
and defunctionalisation. In recent work (Bahr & Hutton, 2015), we developed a simple but
general new approach that avoids the need for such techniques. Our approach builds upon
previous work in the field, with a number of key differences.

First of all, our approach is based upon the idea of calculating compilers directly from
high-level specifications of their correctness, rather than indirectly by applying a series of
transformations steps to a semantics for the source language. Secondly, it only requires
simple equational reasoning techniques and avoids the need for more sophisticated con-
cepts such as continuations and defunctionalisation. Thirdly, it provides a principled means
to discover new compilation techniques and to consider alternative design choices during
the calculation process. And finally, it is readily amenable to mechanical formalisation,
using a proof assistant as an interactive tool for developing and certifying calculations.
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2 P. Bahr and G. Hutton

The applicability of our new approach to calculating compilers has been demonstrated
for a wide range of source language features and their combination, including arithmetic
expressions, exceptions, local state, global state, lambda calculus (with various calling con-
ventions), bounded loops, unbounded loops, non-determinism and interrupts. However,
this work had an important limitation: it focused on compilers that target stack-based
machines, whereas real compilers often target register-based machines.

As a first step in this direction, we recently demonstrated (Hutton & Bahr, 2017) how
the basic methodology that we developed for stack machines could be adapted to register
machines, by showing how McCarthy & Painter’s (1967) original compiler verification
for arithmetic expressions could be reworked as a compiler calculation. A central aspect
of our calculation was the idea of having the target machine ‘clean up after itself’ by freeing
registers that were no longer being used. This idea significantly simplified the calculations,
but suffers from two drawbacks. First of all, real machines do not usually do this. And
secondly, having to clean up in this manner is problematic when attempting to scale the
methodology up to more sophisticated source languages, by requiring the compiler to keep
track of what registers need to be freed and when.

In this article, we show how our compiler calculation methodology for stack machines
can be adapted to register machines without the need to free unused registers. The resulting
methodology retains the simplicity of our original approach and scales in a natural manner
to more sophisticated source languages. The key idea of our new approach is a pre-ordering
on memory that allows us to ‘forget’ the contents of registers: informally, we have m � m′

if the memory m can be obtained from the memory m′ by freeing some registers. This
simple idea avoids the need for the machine to clean up after itself.

As in our previous work, we introduce our new methodology using a simple expression
language, before showing how it can be applied to more sophisticated source languages,
firstly by adding exceptions, and then lambda expressions. All our programs and cal-
culations are written in Haskell, but we only use the basic ‘holy trinity’ of functional
programming, namely recursive types, recursive functions and inductive proofs. All of
our calculations have been mechanically checked using the Coq proof assistant; the proof
scripts, together with all Haskell code and a range of additional examples, are available as
online supplementary material (Bahr & Hutton, 2020).

2 Machine model

We begin by specifying the form of register machine that our compilers will target. Our
basic assumption is that the machine has a memory that comprises an infinite sequence of
registers, each of which has a unique name and is either empty or stores a single integer
value. To simplify our calculations, we use abstract types Mem and Reg for memories and
register names, and assume the following primitive operations on these types:

empty :: Mem
set :: Reg → Int → Mem → Mem
get :: Reg → Mem → Int

first :: Reg
next :: Reg → Reg
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Calculating correct compilers II 3

Intuitively, empty is the empty memory in which all registers contain no value, while set
and get, respectively, update and fetch the value of a register; we will only apply get to
non-empty registers, with its behaviour for empty registers left unspecified. In turn, first is
the name of the first register, and next returns the name of the next register; the purpose of
the latter is to provide a means to produce fresh register names.

Note that there are no operations to free a register (make it empty) or check if a register
is free. As we shall see, the fact that the machine cannot check if a register is free plays a
key role in our methodology. Nonetheless, we need to consider these concepts during the
calculation process, for which purpose we assume two meta-level relations:

� ⊆ Mem × Mem

freeFrom ⊆ Reg × Mem

Intuitively, m � m′ means the memory m can be obtained from the memory m′ by freeing
zero or more registers, or equivalently, that m′ can be obtained from m by setting zero or
more free registers. In turn, freeFrom r m means all registers from r onwards are free in the
memory m. The fact that � and freeFrom are meta-level notions means they can be used
by ourselves at ‘calculation time’, but cannot be used by the machine at ‘execution time’.

A simple way to realise the above machine model is to represent a register name as a
natural number, the memory as a function from register names to their current value and
use a special value to represent a register that is empty. In order to simplify our calculations,
however, we only require the following properties of the primitive operations and relations
and do not need to be concerned with precisely how they are defined:

Property 1 (empty memory).

freeFrom first empty

Property 2 (setting/getting a register).

get r (set r v m) = v

Property 3 (setting free register leaves previous registers unchanged).

freeFrom r m ⇒ m � set r v m

Property 4 (setting free register leaves subsequent registers free).

freeFrom r m ⇒ freeFrom (next r) (set r v m)

Property 5 (� is a pre-ordering).

� is reflexive and transitive

Property 6 (set is monotonic).

m � m′ ⇒ set r v m � set r v m′

Property 7 (memory coherence).

m � m′ ∧ get r m is defined ⇒ get r m = get r m′
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Intuitively, property 1 states that every register is free in the empty memory; 2–4 capture
the basic behaviour of set (the given register is changed, previous registers are unchanged
and subsequent registers remain free); 5 ensures that � can be used for inequational rea-
soning; and finally, 6 and 7 capture the basic behaviour of � (it is preserved by setting a
register and set registers retain their values in larger memories). These properties are not
complete but suffice for our calculations and arose naturally during their development.

2.1 Reflection

We conclude this section with three further remarks about the nature of our machine model.
We will return to the first two of these points at the end of the next section.

Infinite registers. Real machines usually have a finite set of registers, whereas in our
model we follow the common practice (Lattner, 2008) of assuming an infinite set, to ensure
that we never run out of registers. The process of mapping from an infinite to a finite set of
registers is normally handled by a separate register allocation phase after compilation by
means of universal algorithm that solves the problem (Chaitin, 1982), so we do not concern
ourselves with this here. For the process of register allocation to be sound, we only require
that the machine makes no assumptions about the relative location of registers, which can
be achieved by simply prohibiting the use of the next operation in the machine.

Free registers. Real registers usually always contain a value, which may be initialised
to zero or some non-deterministic value, but for the purposes of our calculations we need
to be able to distinguish between registers that are currently free and those that are being
used. The fact that this distinction can be only be made at the meta-level ensures that the
concept of a register being free (empty) or used (non-empty) is only relevant during the
calculation process and plays no role in the machine itself.

Other structures. While we assume that a register machine has access to registers as
described in the previous section, we do not restrict the machine to only use registers.
As with real processors, we allow a register machine to have additional memory structures
depending on the kind of programming language features it has to implement. For example,
to implement function calls, we may expect to have some form of stack available.

3 Arithmetic expressions

To introduce our methodology, we consider a simple source language Expr of arithmetic
expressions built up from integer values using an addition operator, whose semantics is
given by a function eval that evaluates an expression to its integer value:

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
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Our goal is to develop a compiler for this language which targets a register machine of the
form specified in the previous section. Our development proceeds in three steps:

1. Describe the problem to be solved;

2. Specify what it means for the compiler to be correct;

3. Calculate a compiler that satisfies the specification.

3.1 Problem description

We assume the machine will store the result of evaluating an expression in a special
register called the accumulator. Rather than using a specific register in the memory for
this purpose, we find it convenient to factor out the accumulator as a component of the
configuration of the machine which comprises the current accumulator value and memory:

type Conf = (Acc, Mem)

type Acc = Int

Using these assumptions, we follow the same approach as in our earlier work for stack
machines (Bahr & Hutton, 2015) and seek to define three further components that together
complete the definition of a compiler for arithmetic expressions:

• A datatype Code that represents code for the machine;

• A function compile :: Expr → Code that compiles expressions to code;

• A function exec :: Code → Conf → Conf that gives a semantics for code.

Intuitively, Code will provide a set of primitive machine operations for evaluating expres-
sions, compile will translate an expression into a sequence of such operations and exec will
execute code starting from an initial configuration to give a final configuration.

3.2 Compiler correctness

In order to specify what it means for the compiler to be correct, we first extend the ordering
on memory to configurations in a pointwise manner:

(a, m) � (a′, m′) ⇔ a = a′ ∧ m � m′

That is, two configurations are related if their accumulator values are equal and their mem-
ories are related. Moreover, we require the following property of the exec function, which
states that the � ordering on configurations is preserved by executing code:

Property 8 (exec is monotonic).

s � s′ ⇒ exec c s � exec c s′

That is, supplying the execution function with a more defined initial configuration, in the
sense that some free registers become set and all other registers are unchanged, will result
in a more defined final configuration. Intuitively, this property holds because our machine
model does not provide an operation to check if a register is free.
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Using the above notions, the desired relationship between the source language, compiler
and target machine can now be captured by the following correctness property:

Specification 1 (compiler correctness).

exec (compile e) (a, empty) 
 (eval e, empty)

That is, compiling an expression and then executing the resulting code starting with an
arbitrary accumulator and empty memory will give a final configuration in which the accu-
mulator contains the value of the expression. The use of the 
 ordering means that final
memory is unconstrained, that is, the compiled code can use any registers for temporary
storage. Note that to allow the specification to be read from left to right in this manner, and
for consistency with our previous work (Bahr & Hutton, 2015; Hutton & Bahr, 2017), it is
expressed using the reverse ordering 
, defined as usual by x 
 y ⇔ y � x.

The above property captures the correctness of the compiler but is not suitable as a basis
for calculating the three undefined components. In particular, our methodology is based on
the use of induction and as is often the case, we first need to generalise the property we
are considering. We begin by generalising from the empty memory to an arbitrary initial
memory m, as the use of a specific memory would preclude the use of induction:

exec (compile e) (a, m) 
 (eval e, m)

Secondly, in order that the compiler can use registers for temporary storage, we assume that
the initial memory m is free from a given register r onwards and generalise to a compilation
function comp :: Expr → Reg → Code that takes the first free register r as an additional
argument, resulting in the following specification:

freeFrom r m ⇒ exec (comp e r) (a, m) 
 (eval e, m)

Finally, as in our earlier work for stack machines (Bahr & Hutton, 2015), we further gen-
eralise comp to take additional code to be executed after the compiled code. The addition
of such a ‘code continuation’ is a key aspect of our methodology and significantly stream-
lines the resulting calculations. In conclusion, the correctness of the generalised compiler
comp :: Expr → Reg → Code → Code is captured as follows:

Specification 2 (generalised compiler correctness).

freeFrom r m ⇒ exec (comp e r c) (a, m) 
 exec c (eval e, m)

That is, if the memory is free from a given register onwards, then compiling an expression
and executing the resulting code will give a final configuration in which the accumulator
has the same value as executing the additional code starting with the value of the expression
in the accumulator. The use of 
 means that the compiled code can use any registers from r
onwards for temporary storage without having to free them afterwards.

In summary, specifications 1 and 2 express the desired relationships between the unde-
fined components, and our goal now is to calculate implementations that satisfy these.
Given that the two specifications have four unknowns (Code, compile, exec and comp),
this may seem like an impossible task. However, as we shall see, it can readily be achieved
using structural induction and simple (in)equational reasoning.
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3.3 Compiler calculation

To calculate the compiler, we proceed directly from specification 2 by structural induction
on the expression e. In each case, we assume freeFrom r m and aim to transform the right-
hand side exec c (eval e, m) of the inequation into the form exec c′ (a, m) for some code
c′ using a series of equational (=) and inequational (�) reasoning steps, from which we
can then conclude that the definition comp e r c = c′ satisfies the specification in this case.
In order to achieve this, we will find that we need to introduce new constructors into the
Code type, along with their interpretation by the execution function exec.

Case: e = Val n We assume freeFrom r m and calculate as follows:

exec c (eval (Val n), m)
= { applying eval }

exec c (n, m)

Now we seem to be stuck, as at this point no further definitions can be applied. However,
we are aiming for a term of the form exec c′ (a, m) for some code c′. Hence, to complete
the calculation, we need to solve the following inequation:

exec c′ (a, m) 
 exec c (n, m)

We highlight variables such as c′ in displayed formulae to indicate that they are existen-
tially qualified, whereas all other variables in such formulae are assumed to be universally
quantified. That is, the above notation is shorthand for

∀a, m, c, n. ∃c′. exec c′ (a, m) 
 exec c (n, m)

The fact that this is an inequation rather than an equation means that we can also manipulate
the memory using the 
 ordering. However, there is no need for this here, because the same
memory m appears on both sides. Hence, it suffices to solve the following equation, which
implies the inequation by reflexivity of the ordering:

exec c′ (a, m) = exec c (n, m)

Note that we cannot simply use this equation as a definition for exec, because n and c would
be unbound in the body of the definition. The solution is to package these two variables
up in the code argument c′ which can freely be instantiated as it is existentially quantified,
whereas all other variables in the equation are universally quantified. This can be achieved
by adding a new constructor to the Code datatype that takes n and c as arguments,

LOAD :: Int → Code → Code

and defining a new equation for the function exec as follows:

exec (LOAD n c) (a, m) = exec c (n, m)

That is, the code LOAD n c is executed by loading the integer n into the accumulator and
then executing the code c, which motivates the name for the new code constructor. Using
the above ideas, the calculation can now be completed in a straightforward manner:
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exec c (n, m)
= { definition of exec }

exec (LOAD n c) (a, m)

The final term has the desired form exec c′ (a, m), where c′ = LOAD n c, from which we
conclude that the following definition satisfies specification 2 in the base case:

comp (Val n) r c = LOAD n c

That is, an integer value is compiled into a single operation that simply loads the value into
the accumulator and then continues with the extra code that is supplied. Note that for this
simple case all of the reasoning steps were purely equational, and we did not need to use
the register argument r or the assumption that the memory is free from r onwards.

Case: e = Add x y We assume freeFrom r m and begin in the same way as above:

exec c (eval (Add x y), m)
= { applying eval }

exec c (eval x + eval y, m)

Once again we seem to be stuck, as no further definitions are applicable. However, as we
are performing an inductive calculation, we can use the induction hypotheses for x and y.
To use the induction hypothesis for the expression y, which is

freeFrom r′ m′ ⇒ exec (comp y r′ c′) (a′, m′) 
 exec c′ (eval y, m′)

we must satisfy the freeFrom precondition for some register r′ and memory m′ and trans-
form the term that is being manipulated into the form exec c′ (eval y, m′) for some code c′.
That is, we need to satisfy the precondition

freeFrom r′ m′

and solve the following inequation:

exec c′ (eval y, m′ ) 
 exec c (eval x + eval y, m)

We are free to instantiate r′, m′ and c′ in order to achieve these goals. First of all, we
generalise from the specific values eval x and eval y in the inequation to give:

exec c′ (b, m′ ) 
 exec c (a + b, m)

As before, we cannot solve this inequation simply using the corresponding equation as
a definition for the function exec, in this case because the variables c, a and m would be
unbound in the body of the definition. However, we are free to instantiate c′ and m′ in order
to solve the inequation. We consider each unbound variable in turn:

• For the code c, the simplest option is to put it into the code c′ as we did in the base
case, by adding a new constructor to the Code datatype along with its interpretation
by the exec function. If we attempted to put c into the memory m′, this would require
storing code in the memory, which is not supported by our memory model.

• For the integer a, the simplest option is to put it into the memory m′, by assuming
that it is stored in a register. If we attempted to put a into the code c′, this would
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require evaluating the expression x at compile time to produce this value, whereas
for a compiler we normally expect evaluation to take place at run time.

• For the memory m, the simplest option is also to put it into the memory m′, by
assuming that m can be derived from m′ in some way. If we attempted to put m into
the code c′, this would require storing the entire memory in the code, which is not
the kind of behaviour we normally expect from a compiler.

How should we satisfy the above requirements for a and m? We begin by assuming that m
can be derived from m′ by simply freeing some registers, that is, that we have m � m′ and
split the inequation to be solved into an inequality that manipulates the memory,

exec c (a + b, m′ ) 
 exec c (a + b, m) (1)

and an equality that has the same memory on both sides:

exec c′ (b, m′ ) = exec c (a + b, m′ ) (2)

This splitting is valid because x 
 z follows from x = y and y 
 z. Inequation (1) above
follows from m � m′ using the monotonicity of exec (property 8). In order to satisfy the
requirement that a is stored in m′, that is, we have get r′′ m′ = a for some register r′′, we can
use property 2 (setting/getting a register) and define m′ = set r′′ a m. In turn, to discharge
the assumption m � m′, we can then use property 3 (setting free register leaves previous
registers unchanged), which motivates choosing r′′ = r in order to satisfy the precondition
freeFrom r′′ m of this property. It then remains to solve Equation (2), which by substituting
a = get r m′ now has the following form:

exec c′ (b, m′ ) = exec c (get r m′ + b, m′ )

The variable r is now unbound on the right-hand side of the equation but can readily be
packaged up along with the variable c in the code argument c′ by adding a new constructor
to the Code datatype that takes these two variables as arguments,

ADD :: Reg → Code → Code

and defining a new equation for the function exec as follows:

exec (ADD r c) (b, m′) = exec c (get r m′ + b, m′)

That is, executing the code ADD r c proceeds by adding the value of register r to the
accumulator and then executing the code c, hence the choice of name for the new con-
structor. We now resume our calculation, using the above ideas to transform the term into
the required form to apply the induction hypothesis for y:

exec c (eval x + eval y, m)
� { properties 3 and 8 }

exec c (eval x + eval y, set r (eval x) m)
= { property 2 }

exec c (get r (set r (eval x) m) + eval y, set r (eval x) m)
= { definition of exec }

exec (ADD r c) (eval y, set r (eval x) m)
� { induction hypothesis for y }

exec (comp y r′ (ADD r c)) ( a′ , set r (eval x) m)
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In the final step above, we are free to choose the register r′ to satisfy the inductive pre-
condition freeFrom r′ (set r (eval x) m). Given our top-level assumption freeFrom r m, the
simplest choice is to take r′ = next r and apply property 4 (setting free register leaves sub-
sequent registers free). We are also free to choose the new accumulator value a′ at this
point. With a view to now applying the induction hypothesis for x, which requires that the
accumulator contains eval x, we take a′ = eval x, resulting in the following term:

exec (comp y (next r) (ADD r c)) (eval x, set r (eval x) m)

To use the induction hypothesis for x at this point, which is

freeFrom r′ m′ ⇒ exec (comp x r′ c′) (a′, m′) 
 exec c′ (eval x, m′)

we must find r′ and m′ that satisfy freeFrom r′ m′ and solve the inequation

exec c′ (eval x, m′ ) 
 exec (comp y (next r) (ADD r c)) (eval x, set r (eval x) m)

As in the case for y, we first generalise the inequation, in this case by abstracting over the
value eval x and the code comp y (next r) (ADD r c), to give the following:

exec c′ (a, m′ ) 
 exec c (a, set r a m)

Once again, we cannot solve this inequation by simply using the corresponding equation

exec c′ (a, m′ ) = exec c (a, set r a m)

as a definition for exec, because the variables c, r and m would be unbound in the body of
the definition. However, we are free to instantiate c′ and m′. For m, the simplest option is
just to take m′ = m, that is, to equate the two memories, while as previously we can package
r and c up in the code argument c′ by adding a new constructor to the Code datatype,

STORE :: Reg → Code → Code

and defining a new equation for the function exec:

exec (STORE r c) (a, m) = exec c (a, set r a m)

That is, executing the code STORE r c proceeds by storing the accumulator value in
register r, hence the choice of name for the new constructor. We then continue the
calculation:

exec (comp y (next r) (ADD r c)) (eval x, set r (eval x) m)
= { definition of exec }

exec (STORE r (comp y (next r) (ADD r c))) (eval x, m)
� { induction hypothesis for x }

exec (comp x r′ (STORE r (comp y (next r) (ADD r c)))) ( a′ , m)

In the final step above, we are free to choose r′ and the new accumulator value a′ to satisfy
the inductive precondition freeFrom r′ m. The simplest approach is just to take r′ = r and
a′ = a, under which the precondition reduces to our top-level assumption freeFrom r m,
and the machine configuration has the desired form (a, m). The resulting term

exec (comp x r (STORE r (comp y (next r) (ADD r c)))) (a, m)
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now has the form exec c′ (a, m) for some code c′, from which we conclude that the
following definition satisfies specification 2 in the inductive case:

comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))

That is, the code for addition first computes the value of expression x and stores the result-
ing value in the first free register r and then computes the value of expression y and adds
the contents of register r to the resulting value. Note that when compiling y the next free
register becomes next r, because r itself is used to store the value of x.

Top-level compiler. We conclude the calculation by considering the top-level compila-
tion function compile :: Expr → Code whose correctness was captured in specification 1.
In a similar manner to specification 2, we aim to rewrite the right-hand side (eval e, empty)
of the inequation into the form exec c (a, empty) for some code c, from which we can then
conclude that the definition compile e = c satisfies the specification.

For this case there is no need to use induction as plain calculation suffices, during which
we introduce a code constructor HALT :: Code in order to transform the term that is being
manipulated into the required form so that specification 2 can be used.

(eval e, empty)
= { define exec HALT (a, m) = (a, m) }

exec HALT (eval e, empty)
� { specification 2, property 1 }

exec (comp e first HALT) (a, empty)

The final term now has the form exec c (a, empty), where c = comp e first HALT , from
which we conclude that the following definition satisfies specification 1:

compile e = comp e first HALT

Result. In summary, we have calculated the following definitions:

data Code = LOAD Int Code | STORE Reg Code | ADD Reg Code | HALT

compile :: Expr → Code
compile e = comp e first HALT

comp :: Expr → Reg → Code → Code
comp (Val n) r c = LOAD n c
comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))

exec :: Code → Conf → Conf
exec (LOAD n c) (a, m) = exec c (n, m)
exec (STORE r c) (a, m) = exec c (a, set r a m)
exec (ADD r c) (a, m) = exec c (get r m + a, m)
exec HALT (a, m) = (a, m)

It is straightforward now to prove that the above definition for exec is monotonic, as
required by property 8; the proof of this monotonicity uses properties 6 and 7. Note that
the Code datatype above is essentially just a ‘list of operations’ as we would expect for this
example, but using a recursive type for code rather than a list leaves open the possibility
of having non-linear code. We will see an example of this idea in Section 4.
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For reference, below we give the complete, uninterrupted calculation for the main
compilation function comp. This version corresponds closely to the manner in which
our calculations are mechanically checked using the Coq proof assistant. However, for
the purpose of actually producing the calculations we prefer the narrative-style above,
in which the rationale for each step is carefully justified and explained. In this way, we
emphasise the process of discovery that is central to our methodology.

Case: e = Val n

exec c (eval (Val n), m)
= { applying eval }

exec c (n, m)
= { definition of exec }

exec (LOAD n c) (a, m)

Case: e = Add x y

exec c (eval (Add x y), m)
= { applying eval }

exec c (eval x + eval y, m)
� { properties 3 & 8 }

exec c (eval x + eval y, set r (eval x) m)
= { property 2 }

exec c (get r (set r (eval x) m) + eval y, set r (eval x) m)
= { definition of exec }

exec (ADD r c) (eval y, set r (eval x) m)
� { induction hypothesis for y }

exec (comp y (next r) (ADD r c)) (eval x, set r (eval x) m)
= { definition of exec }

exec (STORE r (comp y (next r) (ADD r c))) (eval x, m)
� { induction hypothesis for x }

exec (comp x r (STORE r (comp y (next r) (ADD r c)))) (a, m)

3.4 Example

To illustrate the behaviour of the derived compiler and machine, consider the expres-
sion 2 + (3 + 4), which is written in our language as Add (Val 2) (Add (Val 3) (Val 4)).
Compiling this expression gives the following code sequence:

LOAD 2 (STORE 0 (LOAD 3 (STORE 1 (LOAD 4 (ADD 1 (ADD 0 HALT))))))

Executing this code from an initial configuration in which the accumulator contains
an arbitrary value a and all other registers are empty (denoted here by −) proceeds
as follows, where the columns show the contents of the relevant registers after each
operation:
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Acc Reg 0 Reg 1

a − −
LOAD 2 2 − −
STORE 0 2 2 −
LOAD 3 3 2 −
STORE 1 3 2 3
LOAD 4 4 2 3
ADD 1 7 2 3
ADD 0 9 2 3
HALT 9 2 3

That is, the expression is evaluated by first storing the values 2 and 3 in registers 0 and 1,
then loading the value 4 into the accumulator and finally adding the contents of registers 1
and 0 to this in turn, leaving the value 9 in the accumulator, as expected.

The above compiler is essentially the same as that developed in Hutton & Bahr (2017),
except that the resulting machine is now simpler by virtue of not having to free registers
that are no longer being used; we will return to this issue in further detail at the end of
the article. The compiler can also be viewed as a lower-level version of the stack machine
compiler developed in Bahr & Hutton (2015), in which the use of relative addressing to a
stack is replaced by the use of direct addressing to registers.

3.5 Reflection

We conclude this section with some reflective remarks on our approach to calculating a
register-based compiler for simple arithmetic expressions.

Memory. At first sight, one might think that our memory model is just a stack in disguise:
values appear to be stored in a contiguous region in memory (the stack), and the machine
knows where the next free memory location is (the top of the stack). However, this is not
the case. First of all, we make no assumptions about the relative locations of registers gen-
erated by next. That is, registers r and next r are not necessary adjacent in memory, because
to the machine registers are just names, rather than memory locations. This is important
as it allows us to take code generated by our compilers and apply a register allocation
algorithm that turns register names into CPU registers and memory locations. And sec-
ondly, we only know the next free register at compile time via the register parameter to
comp, and the fact that this register is indeed free is only maintained at the meta-leval
via the predicate freeFrom. At run time, the machine itself has no knowledge of free
registers.

Strategy. When our calculations got stuck, in each case we made progress by attempting
to solve inequations of the following general form:

exec c′ (a′, m′ ) 
 exec c (a, m) (3)
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Compared to solving an equation, solving an inequation may seem more challenging and is
certainly less familiar. Our approach was to replace the inequation by a stronger equation
of the following form, with a side condition on memories:

exec c′ (a′, m′ ) = exec c (a, m′′ ) such that m′′ 
 m (4)

In particular, it follows immediately from property 8 (monotonicity of exec) that any
solution of Equation (4) is then also a solution of inequation (3):

exec c′ (a′, m′)
= { (4) }

exec c (a, m′′)

 { property 8, given m′′ 
 m }

exec c (a, m)

In essence, the side condition gives us the additional freedom to manipulate the mem-
ory by setting some free registers, because we may choose any m′′ that satisfies m′′ 
 m.
While the form of Equation (4) makes it easier to solve, formulating compiler correctness
itself as an inequation (specification 2) avoids having to keep track of these existen-
tially quantified memories and their side conditions during the calculation. Monotonicity
of exec is the key to this simplification, which in turn is enabled by the use of the 

ordering.

In our calculations in Section 3.3, we used two ways of solving an equation of the
form (4), namely by solving one of the following two stronger equations:

exec c′ (a′, m′ ) = exec c (a, m) (5)

exec c′ (a′, m′ ) = exec c (a, m′ ) such that m′ 
 m (6)

By solving (5) we introduce a machine operation that manipulates the memory (such as
LOAD and STORE), whereas solving (6) introduces a machine operation that assumes
certain values to be stored in the memory (such as ADD).

4 Exceptions

We now extend the language of arithmetic expressions from the previous section with
primitives for throwing and catching an exception:

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr

Intuitively, Throw abandons the current evaluation and throws an exception, while
Catch x y evaluates the expression x unless it throws an exception, in which case it then
proceeds to evaluate the handler expression y. To define the semantics for this language as
an evaluation function, we utilise the familiar Maybe type:

data Maybe a = Nothing | Just a

In particular, we view the value Nothing as an exceptional result, and a value of the
form Just x as a successful result (Spivey, 1990). Using this type, our original evaluation
function can be revised to deal with the possibility of exceptions as follows:
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eval :: Expr → Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of

Just n → case eval y of
Just m → Just (n + m)
Nothing → Nothing

Nothing → Nothing
eval Throw = Nothing
eval (Catch x y) = case eval x of

Just n → Just n
Nothing → eval y

Note that addition propagates an exception thrown in either argument. The eval function
could also be defined in a monadic manner (Wadler, 1992), but while monads are useful for
hiding some of the low-level details of effectful computations, when calculating a compiler
such details matter, so we prefer to use the non-monadic definition above.

Our goal now is to calculate a compiler for the extended language, building on our
experience with arithmetic expressions. Our development proceeds in three steps:

1. Refine the underlying machine model;

2. Refine the specification of compiler correctness;

3. Calculate a compiler that satisfies the specification.

Moreover, we will also refine the calculation process itself, by starting with a partial
(incomplete) model for the machine, and a partial specification for the compiler. The
missing components are then also derived during the calculation process.

4.1 Machine model

We begin with two refinements to our machine model. First of all, rather than assuming that
registers in the memory store integer values of type Int, we use an alternative representation
in which these values are wrapped up in a new datatype called Val:

data Val = VAL {val :: Int}
The selector function val :: Val → Int extracts the underlying integer from a value.
Consequently, the set and get operations on memory now have the following types:

set :: Reg → Val → Mem → Mem

get :: Reg → Mem → Val

The reason for the above changes is that during the calculation process we will extend the
Val type with a new constructor, which will be used to handle exceptions. Secondly, rather
than assuming that configurations comprise the current accumulator value and memory,
we extend this type with a new, but as yet undefined, component type called Han:

type Conf = (Acc, Han, Mem)

type Han = ...
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During the calculation, we will find that we need this new component to handle exceptions.
We could also begin with the original register value and machine configuration types and
observe during the calculation process that we need to extend their definitions in the above
manner. Indeed, this is precisely what happened when we undertook this calculation for
the first time. We will return to this point at the end of this example.

4.2 Compiler correctness

For arithmetic expressions, the correctness of the generalised compilation function comp ::
Expr → Reg → Code → Code was captured by the following property (specification 2):

freeFrom r m ⇒ exec (comp e r c) (a, m) 
 exec c (eval e, m)

In the presence of exceptions, this property needs to be modified to take account of the fact
that eval now has return type Maybe Int rather than Int, and that the machine configuration
is now a triple. If eval succeeds, it is straightforward to modify the specification:

freeFrom r m ∧ eval e = Just n ⇒ exec (comp e r c) (a, h, m) 
 exec c (n, h, m)

Given that the type Han has not yet been defined, we leave the new value h unchanged
above. If eval fails, it is not yet clear how comp should behave, which we make explicit by
introducing a new, but as yet undefined, function fail to handle this case:

freeFrom r m ∧ eval e = Nothing ⇒ exec (comp e r c) (a, h, m) 
 fail e c h m

Just as with the function comp itself, during the calculation process we aim to derive a
definition for fail that satisfies the above property. In summary, we now have the following
partial specification for the new compiler comp in terms of an as-yet-undefined type Han
and function fail :: Expr → Code → Han → Mem → Conf :

freeFrom r m ⇒ exec (comp e r c) (a, h, m) 
 case eval e of
Just n → exec c (n, h, m)
Nothing → fail e c h m

We could now proceed to calculate a definition for comp from this property by structural
induction on e. However, we would soon get stuck. In particular, note that the variables e,
c, h and m each appears twice in the case expression above. This means that in order to
use the induction hypotheses, we need to make sure that the instantiations of each of these
variables are aligned, which turns out to be problematic.

As observed in our previous work (Bahr & Hutton, 2015), there is a simple solution to
this problem that allows the calculation to proceed: we remove the e and c arguments from
the fail function, as these turn out to be unnecessary. This results in the following revised
specification, in which the function fail now has type Han → Mem → Conf :

Specification 3 (generalised compiler correctness).

freeFrom r m ⇒ exec (comp e r c) (a, h, m) 
 case eval e of
Just n → exec c (n, h, m)
Nothing → fail h m

Moreover, because the function fail now also forms part of the target machine, as with the
function exec we also require that fail preserves the � ordering:
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Property 9 (fail is monotonic).
m � m′ ⇒ fail h m � fail h m′

The right-hand side of this property presumes that the � ordering is extended to the new
form of configurations in the following, pointwise manner:

(a, h, m) � (a′, h′, m′) ⇔ a = a′ ∧ h = h′ ∧ m � m′

4.3 Compiler calculation

We now calculate a definition for comp from specification 3 by structural induction on
the expression e. In each case, we aim to transform the right-hand side of the inequation
into the form exec c′ (a, h, m) for some code c′, from which we can then conclude that the
definition comp e r c = c′ satisfies the specification in this case.

As in the previous example, to calculate the compiler we will need to introduce new
constructors into the Code type, together with their interpretation by exec. For simplicity,
we introduce these new components within the calculations as we proceed. Moreover, for
this example, we will also need to add a new constructor to the value type Val and define
the new handler type Han and the execution function fail.

Case: e = Val n This case is straightforward:

case eval (Val n) of
Just n → exec c (n, h, m)
Nothing → fail h m

= { applying eval }
exec c (n, h, m)

= { define: exec (LOAD n c) (a, h, m) = exec c (n, h, m) }
exec (LOAD n c) (a, h, m)

Case: e = Throw This case proceeds similarly:

case eval Throw of
Just n → exec c (n, h, m)
Nothing → fail h m

= { applying eval }
fail h m

= { define: exec THROW (a, h, m) = fail h m }
exec THROW (a, h, m)

Case: e = Add x y This case starts in the same manner as the language without exceptions.
In particular, to make use of the induction hypothesis for y, which is

freeFrom r′ m′ ⇒ exec (comp y r′ c′) (a′, h′, m′) 
 case eval y of
Just n′ → exec c′ (n′, h′, m′)
Nothing → fail h′ m′
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we must satisfy the precondition for some register r′ and memory m′, and transform the
term being manipulated into the following form for some code c′ and handler h′:

case eval y of
Just n′ → exec c′ (n′, h′, m′)
Nothing → fail h′ m′

We first focus on the Just branch and introduce a code constructor ADD to bring the
accumulator into the form that we need to apply the induction hypothesis:

case eval (Add x y) of
Just n → exec c (n, h, m)
Nothing → fail h m

= { applying eval }
case eval x of

Just n → case eval y of
Just n′ → exec c (n + n′, h, m)
Nothing → fail h m

Nothing → fail h m
� { properties 3 & 8 }

case eval x of
Just n → case eval y of

Just n′ → exec c (n + n′, h, set r (VAL n) m)
Nothing → fail h m

Nothing → fail h m
= { property 2 }

case eval x of
Just n → case eval y of

Just n′ → exec c (val (get r (set r (VAL n) m)) + n′, h, set r (VAL n) m)
Nothing → fail h m

Nothing → fail h m
= { define: exec (ADD r c) (a, h, m) = exec c (val (get r m) + a, h, m) }

case eval x of
Just n → case eval y of

Just n′ → exec (ADD r c) (n′, h, set r (VAL n) m)
Nothing → fail h m

Nothing → fail h m

Now the inner Just branch matches the form of the induction hypothesis. However, in order
to apply the induction hypothesis, the corresponding Nothing branch must have the same
memory argument, set r (VAL n) m, rather than just m. This can readily be achieved by
using properties 3 and 9, similarly to the second step above. The calculation then concludes
in the same manner as the language without exceptions:

case eval x of
Just n → case eval y of

Just n′ → exec (ADD r c) (n′, h, set r (VAL n) m)
Nothing → fail h m
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Nothing → fail h m
� { properties 3 & 9 }

case eval x of
Just n → case eval y of

Just n′ → exec (ADD r c) (n′, h, set r (VAL n) m)
Nothing → fail h (set r (VAL n) m)

Nothing → fail h m
� { induction hypothesis for y }

case eval x of
Just n → exec (comp y (next r) (ADD r c)) (n, h, set r (VAL n) m)
Nothing → fail h m

= { define: exec (STORE r c) (a, h, m) = exec c (a, h, set r (VAL a) m) }
case eval x of

Just n → exec (STORE r (comp y (next r) (ADD r c))) (n, h, m)
Nothing → fail h m

� { induction hypothesis for x }
exec (comp x r (STORE r (comp y (next r) (ADD r c)))) (a, h, m)

Case: e = Catch x y In this final case of the compiler calculation, applying the evaluation
function allows us to apply the induction hypothesis for y:

case eval (Catch x y) of
Just n → exec c (n, h, m)
Nothing → fail h m

= { applying eval }
case eval x of

Just n → exec c (n, h, m)
Nothing → case eval y of

Just n′ → exec c (n′, h, m)
Nothing → fail h m

� { induction hypothesis for y }
case eval x of

Just n → exec c (n, h, m)

Nothing → exec (comp y r c) ( a′ , h, m)

In the final step above, we are free to choose a register r′ to satisfy the inductive precondi-
tion freeFrom r′ m. Given our top-level assumption freeFrom r m, the simplest choice is to
take r′ = r. We are also free to choose the accumulator a′ and will return to this shortly.

We now face a similar issue to the Add calculation, in that the Nothing case does not
match the form of the induction hypothesis for x. To match, it must have the form fail h′ m′

for some h′ and m′. That is, we need to solve the following inequation:

fail h′ m′ 
 exec (comp y r c) ( a′ , h, m)

As with simple arithmetic expressions, we can solve such an inequation by solving the
following stronger equation, with a side condition on memories (Section 3.5):

fail h′ m′ = exec (comp y r c) ( a′ , h, m′′ ) such that m′′ 
 m
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There are two reasons why we cannot simply take this equation as a definition for fail. First
of all, we would not expect the function fail, which forms part of the target machine, to
invoke the compilation function comp. While we could imagine a machine that compiles
expressions at run time, we exclude such behaviour here. Therefore, we strengthen the
equation by generalising from the specific code comp y r c to give:

fail h′ m′ = exec c′ ( a′ , h, m′′ ) such that m′′ 
 m

Secondly, if we now took this equation as a definition for fail, the variables c′, a′, h and m′′

would be unbound in the body. However, we are free to instantiate h′, m′ and a′ to solve
the equation. Note that since a′ occurs on the right-hand side and is unconstrained, we are
free to choose an arbitrary integer for it, say 0. We now consider each unbound variable:

• For the memory m′′, the simplest option is just to equate it with m′, that is, take
m′′ = m′, as a result of which the memory side condition then becomes m′ 
 m.

• For the code c′, we have the choice of putting it into either of the h′ or m′ arguments.
Here we choose to put the code into h′. Putting the code into the other argument is
possible too and results in a slightly different form of machine.

• For the handler h, the natural choice might seem to be to put it into the h′ argument.
However, this would mean that Han, the type of h and h′, then becomes a recursive
type in the form of a stack-like structure. For simplicity, we choose to store h in the
memory argument m′, which avoids the need to introduce a stack type.

How should we satisfy the above requirements for c′ and h? First of all, in order to be able
to store the handler h in the memory, we add a new constructor

HAN :: Han → Val

to the register value type Val that takes a handler as an argument, together with a selector
function han :: Val → Han to extract the underlying handler from a value. Assuming that h
is stored in the memory m′ then means we have han (get r′ m′) = h for some register r′, a
free variable which then itself also needs to be stored somewhere. The only sensible choice
to store the register r′ is in the handler h′, as attempting to store it in the memory m′ would
lead to the circular problem of then needing to store another register r′′.

In conclusion, we store both the code c′ and register r′ in the handler argument h′, which
motivates taking h′ = (c′, r′) and defining the corresponding type Han by:

type Han = (Code, Reg)

Moreover, to ensure han (get r′ m′) = h, we take m′ = set r′ (HAN h) m and appeal to prop-
erty 2 (setting/getting a register). In turn, to discharge the side condition m′ 
 m, we can
use property 3 (setting free register leaves previous registers unchanged), which motivates
choosing r′ = r to satisfy the freeFrom precondition. Putting everything above together,
we have derived the following definition for fail :: Han → Mem → Conf :

fail (c, r) m = exec c (0, han (get r m), m)

That is, when an exception is thrown, we execute the handler code c in a machine configu-
ration in which the accumulator is set to zero, a new handler is fetched from register r and
the memory remains as m. Using these ideas, we now resume the calculation:
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case eval x of
Just n → exec c (n, h, m)
Nothing → exec (comp y r c) (0, h, m)

� { properties 3 & 8 }
case eval x of

Just n → exec c (n, h, m)
Nothing → exec (comp y r c) (0, h, set r (HAN h) m)

= { property 2 }
case eval x of

Just n → exec c (n, h, m)
Nothing → exec (comp y r c) (0, han (get r (set r (HAN h) m)), set r (HAN h) m)

= { definition of fail }
case eval x of

Just n → exec c (n, h, m)
Nothing → fail (comp y r c, r) (set r (HAN h) m)

We have now successfully transformed the Nothing case into the required form fail h′ m′

to apply the induction hypothesis for x. However, in order to apply this, we also need to
align the handler and memory arguments in the two cases, which are currently different.
A simple transformation of the Just case aligns the two memories:

case eval x of
Just n → exec c (n, h, m)
Nothing → fail (comp y r c, r) (set r (HAN h) m)

� { properties 3 & 8 }
case eval x of

Just n → exec c (n, h, set r (HAN h) m)
Nothing → fail (comp y r c, r) (set r (HAN h) m)

In turn, a further transformation of the Just case by introducing a new code constructor
UNMARK brings the two handlers into alignment:

case eval x of
Just n → exec c (n, h, set r (HAN h) m)
Nothing → fail (comp y r c, r) (set r (HAN h) m)

= { property 2 }
case eval x of

Just n → exec c (n, han (get r (set r (HAN h) m)), set r (HAN h) m)
Nothing → fail (comp y r c, r) (set r (HAN h) m)

= { define: exec (UNMARK c) (a, ( , r), m) = exec c (a, han (get r m), m) }
case eval x of

Just n → exec (UNMARK c) (n, (comp y r c, r), set r (HAN h) m)
Nothing → fail (comp y r c, r) (set r (HAN h) m)

The new equation for exec above states that executing the code UNMARK c proceeds by
discarding the current handler, and then executing the code c with the handler replaced by
the version stored in the handler register. This process is known as ‘unmarking’ the handler
stack, where in our register-based setting the handlers are stored in registers rather than in
a separate stack structure. Finally, we can now apply the induction hypothesis:
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case eval x of
Just n → exec (UNMARK c) (n, (comp y r c, r), set r (HAN h) m)
Nothing → fail (comp y r c, r) (set r (HAN h) m)

� { induction hypothesis for x & property 4 }
exec (comp x (next r) (UNMARK c)) (a, (comp y r c, r), set r (HAN h) m)

In this step, we are free to choose a register r′ in order to satisfy the inductive precondition
freeFrom r′ (set r (HAN h) m). The simplest choice is to take r′ = next r and apply prop-
erty 4 (setting free register leaves subsequent registers free). We are also free to choose
the new accumulator value a′ at this point. With the goal in mind of arriving at a term of
the form exec c′ (a, h, m) for some code c′, the simplest choice is to take a′ = a. It is now
straightforward to complete the calculation by introducing a new code constructor MARK
to bring the machine configuration into the required form:

exec (comp x (next r) (UNMARK c)) (a, (comp y r c, r), set r (HAN h) m)
= { define: exec (MARK r c′ c) (a, h, m) = exec c (a, (c′, r), set r (HAN h) m) }

exec (MARK r (comp y r c) (comp x (next r) (UNMARK c)) (a, h, m)

That is, executing the code MARK r c′ c proceeds by saving the current handler in register r,
and then executing the code c with the handler replaced by the new pair (c′, r), a process
known as ‘marking’ the handler stack. In this manner, the mark and unmark operations
together delimit the scope of a handler to a particular segment of code.

Top-level compiler. We complete the development by considering the top-level function
compile :: Expr → Code. For arithmetic expressions, the desired behaviour was cap-
tured by exec (compile e) (a, empty) 
 (eval e, empty) (specification 1). Based upon our
experience with comp, in the presence of exceptions, we refine this inequation as follows:

Specification 4 (compiler correctness).
exec (compile e) (a, h, empty) 
 case eval e of

Just n → (n, h, empty)
Nothing → fail h empty

There is no need to use induction in this case as simple calculation suffices, during which
we introduce a new constructor HALT :: Code to transform the term being manipulated
into the required form so that specification 3 can then be applied:

case eval e of
Just n → (n, h, empty)
Nothing → fail h empty

= { define exec HALT (a, h, m) = (a, h, m) }
case eval e of

Just n → exec HALT (n, h, empty)
Nothing → fail h empty

� { specification 3, property 1 }
exec (comp e first HALT) (a, h, empty)
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The final term now has the form exec c (a, h, empty), where c = comp e first HALT , from
which we conclude that the following definition satisfies specification 3:

compile e = comp e first HALT

Result. In summary, we have calculated the following definitions.

Target language:

data Code = HALT | LOAD Int Code | STORE Reg Code | ADD Reg Code |
THROW | MARK Reg Code Code | UNMARK Code

Compiler:

compile :: Expr → Code
compile e = comp e first HALT

comp :: Expr → Reg → Code → Code
comp (Val n) r c = LOAD n c
comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))
comp (Throw) r c = THROW
comp (Catch x y) r c = MARK r (comp y r c) (comp x (next r) (UNMARK c))

Virtual machine:

type Conf = (Acc, Han, Mem)

type Acc = Int

type Han = (Code, Reg)

data Val = VAL {val :: Int} | HAN {han :: Han}

exec :: Code → Conf → Conf
exec HALT (a, h, m) = (a, h, m)
exec (LOAD n c) (a, h, m) = exec c (n, h, m)
exec (STORE r c) (a, h, m) = exec c (a, h, set r (VAL a) m)
exec (ADD r c) (a, h, m) = exec c (val (get r m) + a, h, m)
exec (THROW ) (a, h, m) = fail h m
exec (MARK r c′ c) (a, h, m) = exec c (a, (c′, r), set r (HAN h) m)
exec (UNMARK c) (a, ( , r), m) = exec c (a, han (get r m), m)

fail :: Han → Mem → Conf
fail (c, r) m = exec c (0, han (get r m), m)

In a similar manner to our first example, it is straightforward now to prove that the above
definitions for exec and fail are monotonic, as required by properties 8 and 9.

4.4 Example

Consider the expression Catch (Add (Val 2) Throw) (Val 3) that attempts to perform an
addition that throws an exception in its second argument, which is handled by returning
the value 3. Compiling this expression gives the following code sequence:

MARK 0 (LOAD 3 HALT) (LOAD 2 (STORE 1 THROW ))
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In turn, executing this code from an initial configuration in which the accumulator
contains an arbitrary value a, the handler is set to an arbitrary code and register pair (h, r),
and all registers in the memory are empty proceeds as follows, where the columns show
the contents of the relevant components of the configuration after each operation:

Acc Han Reg 0 Reg 1

a (h, r) − −
MARK 0 (LOAD 3 HALT) a (LOAD 3 HALT , 0) HAN (h, r) −
LOAD 2 2 (LOAD 3 HALT , 0) HAN (h, r) −
STORE 1 2 (LOAD 3 HALT , 0) HAN (h, r) VAL 2
THROW 0 (h, r) HAN (h, r) VAL 2
LOAD 3 3 (h, r) HAN (h, r) VAL 2
HALT 3 (h, r) HAN (h, r) VAL 2

That is, the expression is evaluated by first saving the current handler (h, r) in register 0 and
replacing it by the new handler (LOAD 3 HALT , 0), then storing the value 2 in register 1,
after which an exception is thrown. In turn, the exception results in the current handler
code LOAD 3 HALT being executed and the original handler (h, r) being restored from
register 0, leaving the final value 3 in the accumulator, as expected.

The above compiler can be viewed as more efficient version of the stack-based compiler
in Bahr & Hutton (2015). In the event of an exception, the stack machine uses a process of
‘stack unwinding’ to both find the current handler and to free the memory that has become
unused because of the exception. By contrast, the register machine has direct access to the
handler in the configuration and does not need to explicitly free the unused memory.

4.5 Reflection

Uncaught exceptions. In our top-level statement of compiler correctness (specifica-
tion 4), we are free to choose the initial handler component h of the machine, and this
choice determines how the machine handles uncaught exceptions. For example, we could
give h an initial value (CRASH , first), where CRASH is a new code constructor that simply
crashes the machine by virtue of having no defining equation within the function exec.
This choice would cause the function fail and hence the machine to crash in the case of
an uncaught exception, either because the register first does not contain a valid handler
or because CRASH is executed. Alternatively, for a more graceful treatment, we could
refine the virtual machine to have an explicit representation of uncaught exceptions to
avoid crashing if this case arises. In principle, however, we are free to deal with uncaught
exceptions in any way that we choose, because the calculation does not depend on this.

Scalability. The ability to calculate a compiler for a language with exceptions illustrates
the scalability of our methodology. In previous work (Hutton & Bahr, 2017), we introduced
a compiler calculation methodology that relied on the target machine cleaning up after
itself, by explicitly freeing up registers that were no longer being used. However, this
approach only works if we have a language with a control flow that is known at compile
time. If the control flow is not known until run time, as is the case in the presence of
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exceptions, then it is not clear how the machine should clean up after itself. In particular,
it is not clear how this can be achieved in a systematic way by means of calculation.

Note: strictly speaking, the control flow in our language is known at compile time, as
there is no primitive for reading input from the user. However, our compiler calculation
does not rely on this and can readily be extended with such a primitive.

Partiality. By avoiding the explicit freeing of registers, and instead using implicit freeing
by means of the ordering 
 on memories, we are able to use the same methodology that
we developed for stack machines (Bahr & Hutton, 2015). In particular, we begin with a
partial specification of compiler correctness in terms of some components that are initially
undefined or incomplete. The extension of the machine configuration with an additional
component to handle exceptions is new but follows the methodology of Bahr & Hutton
(2015) in that it extends the configuration type to handle new computational behaviour, in
this case exceptions, but it does so using a partial specification.

Linearity. The compiler produces code that is not fully linear, because the MARK oper-
ation takes two Code arguments. This branching structure corresponds to the branching in
control flow that is inherent in the semantics of Catch. However, if desired, a compiler that
produces linear code can be obtained by modifying MARK to take a code pointer as its
second argument rather than code itself (Hutton & Wright, 2006; Bahr, 2014).

5 Lambda calculus

For our final example, we extend the language of arithmetic expressions with support for
variables, abstraction and application in a call-by-value lambda calculus:

data Expr = Val Int | Add Expr Expr | Var Int | Abs Expr | App Expr Expr

Informally, Var i is the variable with de Bruijn index i � 0, while Abs x constructs an
abstraction over expression x and App x y applies the abstraction that results from eval-
uating expression x to the value of expression y. For example, the function λn → n + 1
that increments an integer value can be represented as follows:

inc :: Expr
inc = Abs (Add (Var 0) (Val 1))

Because the result of evaluating an expression may now be a function, we extend the
value domain for the semantics to include functional values:

data Value = Num Int | Fun (Value → Value)

To interpret free variables the semantics also requires an environment, which can be repre-
sented simply as a list of values, with the value of the variable with de Bruijn index i given
by indexing into the list at this position, written as e !! i:

type Env = [Value]

Using these ideas, the semantics for the language can now be defined as a function that
evaluates an expression to a value in a given environment:
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eval :: Expr → Env → Value
eval (Val n) e = Num n
eval (Add x y) e = case eval x e of

Num n → case eval y e of
Num m → Num (n + m)

eval (Var i) e = e !! i
eval (Abs x) e = Fun (λv → eval x (v : e))
eval (App x y) e = case eval x e of

Fun f → f (eval y e)

For example, applying the function eval to the expression App inc (Val 1) and the empty
environment [ ] gives the result Num 2, as expected. Note that eval is now a partial
function, because expressions in our lambda calculus language may be ill-formed or
non-terminating. We will return to the issue of partiality at the end of this example.

Our goal now is to calculate a compiler for the above language, building on our
experience with exceptions. Our development proceeds in four steps:

1. Refine the semantics for the language;
2. Refine the underlying machine model;
3. Refine the specification of compiler correctness;
4. Calculate a compiler that satisfies the specification.

5.1 Language semantics

We could now proceed to calculate a compiler using the above semantics. However, the
calculation would get stuck in the abstraction case, due to the fact that the semantics is
now higher order by virtue of abstractions denoting functions. However, as observed in
our previous work (Bahr & Hutton, 2015), this problem can be resolved by transforming
the semantics into first-order form using defunctionalisation (Reynolds, 1972), and refor-
mulating the resulting evaluation function as a big-step operational (or natural) semantics.
The latter step allows the compiler calculation to be performed using rule induction rather
than using structural induction, which is no longer applicable because defunctionalisation
gives rise to an evaluator that is no longer structurally recursive.

Defunctionalising the semantics is a purely mechanical process, as described in Bahr &
Hutton (2015), and results in a new first-order version of the Value type:

data Value = Num Int | Clo Expr Env

The new constructor Clo corresponds to a closure, which comprises an expression and an
environment that captures its free variables. In turn, the resulting evaluation function is
reformulated as a big-step operational semantics, where we write x ⇓e v to mean that the
expression x can evaluate to the value v within the environment e. Formally, the evaluation
relation ⇓ ⊆ Expr × Env × Value is defined by the following inference rules:

Val n ⇓e Num n

x ⇓e Num n y ⇓e Num m

Add x y ⇓e Num (n + m)

e !! i is defined

Var i ⇓e e !! i

Abs x ⇓e Clo x e

x ⇓e Clo x′ e′ y ⇓e v x′ ⇓v:e′ w

App x y ⇓e w

https://doi.org/10.1017/S0956796820000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000209


Calculating correct compilers II 27

5.2 Machine model

We now refine our machine model. First of all, because the value domain for the semantics
is now Value rather than simply Int, we modify the accumulator type similarly:

type Acc = Value

Secondly, as with the exceptions example, we assume that registers in the memory store
values of a new type Val, which initially only contains integer values, but will be extended
as necessary during the calculation process. That is, we have:

data Val = VAL Int

set :: Reg → Val → Mem → Mem

get :: Reg → Mem → Val

In turn, just as we added a new component Han to the configuration type to handle excep-
tions, so we add a new, as yet undefined, component Lam to manage any additional aspects
that are required to implement the lambda calculus:

type Conf = (Acc, Lam, Mem)

type Lam = · · ·
And finally, one of the guiding principles from our previous work (Bahr & Hutton, 2015)
is that additional data structures on which the semantics for the source language depends
should be added to the type of machine configurations. Hence, in the case of the lambda
calculus, we further extend the configuration type with an environment:

type Conf = (Acc, Env, Lam, Mem)

5.3 Compiler correctness

Using the above definitions, we can now specify the desired behaviour of the compilation
function comp :: Expr → Reg → Code → Code. The resulting specification is similar to
the original version for arithmetic expressions, except that the semantics is now defined
as an evaluation relation ⇓ ⊆ Expr × Env × Value, and the machine exec :: Code →
Conf → Conf now operates on configurations that have four components:

freeFrom r m ∧ x ⇓e v ⇒ exec (comp x r c) (a, e, l, m) 
 exec c (v, e, l, m)

It is possible to calculate a compiler from the above specification, but the resulting machine
would not be satisfactory because closures contain unevaluated expressions, whereas we
normally expect all source expressions to be compiled away. As in Bahr & Hutton (2015),
the solution is simply to replace the expression component within a closure by compiled
code for the expression, by means of the following new type definitions:

data Value′ = Num′ Int | Clo′ Code Env′

type Env′ = [Value′ ]

In this manner, Value corresponds to semantic values, while Value′ corresponds to machine
values. These new types are in turn used to redefine the other basic types:
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type Conf = (Acc, Env′, Lam, Mem)

type Acc = Value′

The changes to these definitions means that the specification for comp is no longer type
correct, because the relation ⇓ and function exec operate on different value types, namely
Value and Value′. We therefore need a conversion function between the two types. The
case for Num is trivial, while we leave the case for Clo undefined at present and aim to
derive a definition for this case during the calculation process:

conv :: Value → Value′

conv (Num n) = Num′ n
conv (Clo x e) = · · ·

We lift conv to environments by applying the function to each value in the list:

convE :: Env → Env′

convE e = map conv e

Using the above ideas, we can now modify the specification for the compilation function
comp to include the necessary type conversions:

Specification 5 (generalised compiler correctness).
freeFrom r m ∧ x ⇓e v

⇒
exec (comp x r c) (a, convE e, l, m) 
 exec c (conv v, convE e, l, m)

5.4 Compiler calculation

Using specification 5, we now calculate definitions for comp and exec by constructive rule
induction on the assumption x ⇓e v. In each case, we aim to rewrite the right-hand side
exec c (conv v, convE e, l, m) of the inequation into the form exec c′ (a, convE e, l, m) for
some code c′, from which we can then conclude that the definition comp x r c = c′ satisfies
the specification in this case. As with the previous example, during this process we will
add new constructors to Code and Val, and new equations for exec. Along the way, we will
also define the new type Lam and complete the definition of conv.

Case: Val n The case for Val n ⇓e Num n is straightforward:

exec c (conv (Num n), convE e, l, m)
= { definition of conv }

exec c (Num′ n, convE e, l, m)
= { define: exec (LOAD n c) (a, e, l, m) = exec c (Num′ n, e, l, m) }

exec (LOAD n c) (a, convE e, l, m)

Case: Var i The case for Var i ⇓e e !! i is also straightforward:

exec c (conv (e !! i), convE e, l, m)
= { indexing lemma }
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exec c (map conv e !! i, convE e, l, m)
= { definition of convE }

exec c (convE e !! i, convE e, l, m)
= { define: exec (LOOKUP i c) (a, e, l, m) = exec c (e !! i, e, l, m) }

exec (LOOKUP i c) (a, convE e, l, m)

The indexing lemma used above states that f (xs !! i) = (map f xs) !! i for any strict f , and
allows us to generalise over convE e when defining exec for LOOKUP. The function conv
is strict because it is defined by pattern matching on its argument.

Case: Add x y In the case for Add x y ⇓e Num (n + n′), we can assume x ⇓e Num n and
y ⇓e Num n′ by the inference rule for Add, and induction hypotheses for the expressions x
and y. The calculation proceeds in the same way as for simple arithmetic expressions,
except that we now need to apply the necessary conversion functions:

exec c (conv (Num (n + n′)), convE e, l, m)
= { definition of conv }

exec c (Num′ (n + n′), convE e, l, m)
� { Properties 3 & 8 }

exec c (Num′ (n + n′), convE e, l, set r (VAL n) m)
= { Property 2, where VAL n′′ = get r (set r (VAL n) m) }

exec c (Num′ (n′′ + n′), convE e, l, set r (VAL n) m)

=
{

define: exec (ADD r c) (Num′ a, e, l, m) = exec c (Num′ (n + a), e, l, m)
where VAL n = get r m

}

exec (ADD r c) (Num′ n′, convE e, l, set r (VAL n) m)
= { definition of conv }

exec (ADD r c) (conv (Num n′), convE e, l, set r (VAL n) m)
� { induction hypothesis for y }

exec (comp y (next r) (ADD r c)) (Num′ n, convE e, l, set r (VAL n) m)
= { define: exec (STORE r c) (Num′ n, e, l, m) = exec c (Num′ n, e, l, set r (VAL n) m) }

exec (STORE r (comp y (next r) (ADD r c))) (Num′ n, convE e, l, m)
� { induction hypothesis for x }

exec (comp x r (STORE r (comp y (next r) (ADD r c)))) (a, convE e, l, m)

Case: App x y In the case for App x y ⇓e w, we can assume x ⇓e Clo x′ e′, y ⇓e v, and
x′ ⇓v:e′ w by the inference rule for App x y, together with induction hypotheses for x, y
and x′. The calculation then proceeds in the familiar way, by adding code and value con-
structors to bring the configuration into the right form to apply the induction hypotheses.
First of all, to apply the induction hypothesis for x′, we save and restore an environment in
a register using a new value constructor ENV and code constructor RET :

exec c (conv w, convE e, l, m)
� { Property 3 & 8 }

exec c (conv w, convE e, l, set r (ENV (convE e)) m)
= { Property 2, where ENV e′′ = get r (set r (ENV (convE e)) m) }

exec c (conv w, e′′, l, set r (ENV (convE e)) m)
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=
{

define: exec (RET r c) (a, e′, l, m) = exec c (a, e, l, m)
where ENV e = get r m

}

exec (RET r c) (conv w, conv v : convE e′, l, set r (ENV (convE e)) m)
= { induction hypothesis for x′ }

exec (comp x′ (next r) (RET r c)) ( a′ , conv v : convE e′, l, set r (ENV (convE e)) m)

Unfortunately, if we continued the calculation from here we would get stuck. In particu-
lar, we would end up with a term of the form exec c′ (a, convE e, l, m), where the code c′

contains the subterm comp x′ (next r) (RET r c) that was introduced above. This is prob-
lematic, because we cannot simply define comp (App x y) r c = c′ if the code c′ contains the
free variable x′. The alternative is to assume that the code comp x′ (next r) (RET r c) comes
from the accumulator and use the induction hypothesis for x ⇓e Clo x′ e′ to discharge this
assumption. However, following this alternative is also problematic, because we cannot
recover the two arguments r and c of RET . Fortunately, there is a simple solution that
allows the calculation to proceed: we revise our earlier choice for the behaviour of RET so
that it no longer takes the register r and code c as arguments.

To avoid taking c as an argument, the operation RET can take it from the memory
instead. We could attempt to do the same for r, but this would not resolve the problem
because next r is also used as an argument to comp. However, we can eliminate the need
for the variable r by replacing it with a fixed register, for which the natural choice is the first
register in the memory. In order to use first for this purpose, we then need to manipulate
the memory m to be empty, to ensure that the freeFrom side condition for the induction
hypothesis is satisfied by appealing to property 1 (empty memory).

In summary, we can repair the above calculation by storing the code c in memory, in
addition to the environment convE e, and using the empty memory in place of m. The
first change can be realised by replacing the value constructor ENV by a more general
constructor CLO that takes both code and an environment as arguments. For the second,
we then need to store the original memory m somewhere so that it can be restored later
on, as we are aiming to rewrite the term into the form exec c′ (a, convE e, l, m). It cannot
be stored in the memory itself, because our goal is to obtain the empty memory. Thus, the
only reasonable choice is to store m in the l component of the configuration. Because l
itself must also be restored, we define the corresponding type Lam as a list of memories,
so that the cons operator (:) :: Mem → Lam → Lam then allows us to store both m and l:

type Lam = [Mem]

Using the above ideas, we restart the calculation for the App case:

exec c (conv w, convE e, l, m)
= { Property 2, where CLO c′ e′′ = get first (set first (CLO c (convE e)) empty) }

exec c′ (conv w, e′′, l, m)

=
{

define: exec RET (a, e′, m : l, m′) = exec c (a, e, l, m)
where CLO c e = get first m′

}

exec RET (conv w, conv v : convE e′, m : l, set first (CLO c (convE e)) empty)
� { induction hypothesis for x′ ⇓v:e′ w }

exec (comp x′ (next first) RET)

( a′ , conv v : convE e′, m : l, set first (CLO c (convE e)) empty)
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Next, we aim to apply the induction hypothesis for y ⇓e v. For this to be applicable,
the term being manipulated needs to be of the form exec c′ (conv v, convE e, l′, m′), which
means that we need to solve the following inequation for some c′, l′, m′ and a′:

exec c′ (conv v, convE e, l′ , m′ ) 
 exec (comp x′ (next first) RET)

( a′ , conv v : convE e′, m : l, set first (CLO c (convE e)) empty)

As usual, to solve this inequation, we introduce a new equation for exec. To this end, we
need to determine from which of the existentially quantified variables c′, l′ and m′ on the
left-hand side of the inequation we are going to retrieve the universally quantified elements
on the right-hand side. We consider each of these elements in turn:

• For the code comp x′ (next first) RET , the simplest option is to store it in c′.
However, as observed above, this will result in the calculation getting stuck later
on. Hence, we choose the other option and store this code fragment in m′.

• For the accumulator a′, we have free choice as this variable is existentially
quantified. We choose a′ = conv v so that it matches the left-hand side.

• For the environment convE e′, we have the choice of putting it into either m′ or c′.
We choose to put it into the memory m′, as putting it into the code c′ would result
in a run-time value being stored in a compile-time value.

• For the memory m, the natural choice is to store it in m′ by requiring m′ 
 m, while
for the value l, the simplest option is to equate it with l′ by taking take l = l′.

• Finally, for the code c, the natural choice is to store it in c′.

How should we satisfy the above requirements? First of all, in order to store both the
code comp x′ (next first) RET and the environment convE e′ in the memory m′, we can use
the new value constructor CLO that we have already introduced above. We then require
get r′ m′ = CLO (comp x′ (next first) RET) (convE e′) for some register r′. As we also need
to satisfy the memory requirement m′ 
 m, we thus define

m′ = set r′ (CLO (comp x′ (next first) RET) (convE e′)) m

and once again appeal to properties 2 and 3. In order to use the latter of these properties,
we need to take r′ = r. Finally, we also need to store the first free register r somewhere.
The easiest choice is to store it the code c′ along with the code c, by means of a new code
constructor APP that takes both a register and code as arguments.

Using the above ideas, we now resume the calculation for the App case, proceeding in a
few steps to the application of the induction hypothesis for y ⇓e v:

exec (comp x′ (next first) RET)
(conv v, conv v : convE e′, m : l, set first (CLO c (convE e)) empty)

� { Properties 3 and 8 }
exec (comp x′ (next first) RET)

(conv v, conv v : convE e′, set r (CLO (comp x′ (next first) RET) (convE e′)) m : l,
set first (CLO c (convE e)) empty)
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=
⎧⎨
⎩

define: exec (APP r c) (a, e, l, m) =
exec c′ (a, a : e′, m : l, set first (CLO c e) empty)

where CLO c′ e′ = get r m

⎫⎬
⎭

exec (APP r c)
(conv v, convE e, l, set r (CLO (comp x′ (next first) RET) (convE e′)) m)

� { induction hypothesis for y ⇓e v }
exec (comp y (next r) (APP r c))

( a′ , convE e, l, set r (CLO (comp x′ (next first) RET) (convE e′)) m)

Finally, we aim to apply the induction hypothesis for x ⇓e Clo x′ e′. That is, our goal is
to solve the following inequation for some c′, l′, m′ and a′:

exec c′ (conv (Clo x′ e′), convE e, l′ , m′ ) 
 exec (comp y (next r) (APP r c))

( a′ , convE e, l, set r (CLO (comp x′ (next first) RET) (convE e′)) m)

As we observed in our initial calculation attempt, we cannot simply store the code frag-
ment comp x′ (next first) RET in c′. This choice would lead into a dead end, because when
compiling App x y the compiler does not have access to the expression x′. Similarly, it
is not immediately clear from where to retrieve convE e′. However, we can freely define
conv (Clo x′ e′) in order that it gives us the required data:

conv (Clo x′ e′) = Clo′ (comp x′ (next first) RET) (convE e′)

Note that this definition makes use of the fact that RET does not take a register and code
as arguments, unlike in our initial calculation attempt that became stuck.

The remaining elements are stored in the usual way. In particular, we store the code
comp y (next r) (APP r c) in c′, the memory m in m′ by taking m = m′, the lambda com-
ponent l in l′ by taking l = l′, and finally, we choose a′ = conv (Clo x′ e′) to match the
left-hand side. We can then conclude the App calculation as follows:

exec (comp y (next r) (APP r c)) (conv (Clo x′ e′), convE e, l,
set r (CLO (comp x′ (next first) RET) (convE e′)) m)

=
{

define: exec (STC r c) (Clo′ c′ e′, e, l, m) =
exec c (Clo′ c′ e′, e, l, set r (CLO c′ e′) m)

}

exec (STC r (comp y (next r) (APP r c))) (conv (Clo x′ e′), convE e, l, m)
= { induction hypothesis for x ⇓e Clo x′ e′ }

exec (comp x r (STC r (comp y (next r) (APP r c)))) (a, convE e, l, m)

Case: Abs x Using the new equation for conv, the abstraction case simply amounts to
introducing a code constructor ABS that stores a closure in the accumulator:

exec c (conv (Clo x e), convE e, l, m)
= { definition of conv }

exec c (Clo′ (comp x (next first) RET) (convE e), convE e, l, m)
= { define: exec (ABS c′ c) (a, e, l, m) = exec c (Clo′ c′ e, e, l, m) }

exec (ABS (comp x (next first) RET) c) (a, convE e, l, m)
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Result. In summary, we have calculated the definitions below. As with the previous
examples, the top-level compilation function compile is defined by applying comp to the
first register and a HALT constructor that returns the current configuration.

Target language:

data Code = HALT | LOAD Int Code | LOOKUP Int Code
| STORE Reg Code | ADD Reg Code
| STC Reg Code | APP Reg Code
| ABS Code Code | RET

Compiler:

compile :: Expr → Code
compile e = comp e first HALT

comp :: Expr → Reg → Code → Code
comp (Val n) r c = LOAD n c
comp (Var i) r c = LOOKUP i c
comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))
comp (App x y) r c = comp x r (STC r (comp y (next r) (APP r c)))
comp (Abs x) r c = ABS (comp x (next first) RET) c

Virtual machine:

type Conf = (Acc, Env′, Lam, Mem)

type Acc = Value′

type Env′ = [Value′ ]
data Value′ = Num′ Int | Clo′ Code Env′

type Lam = [Mem]

data Val = NUM Int | CLO Code Env′

exec :: Code → Conf → Conf
exec HALT (a, e, l, m) = (a, e, l, m)
exec (LOAD n c) (a, e, l, m) = exec c (Num′ n, e, l, m)
exec (LOOKUP i c) (a, e, l, m) = exec c (e !! i, e, l, m)
exec (STORE r c) (Num′ n, e, l, m) = exec c (Num′ n, e, l, set r (NUM n) m)
exec (ADD r c) (Num′ a, e, l, m) = exec c (Num′ (n + a), e, l, m)

where NUM n = get r m
exec (STC r c) (Clo′ c′ e′, e, l, m) = exec c (Clo′ c′ e′, e, l, set r (CLO c′ e′) m)
exec (APP r c) (a, e, l, m) = exec c′ (a, a : e′, m : l, set first (CLO c e) empty)

where CLO c′ e′ = get r m
exec (ABS c′ c) (a, e, l, m) = exec c (Clo′ c′ e, e, l, m)
exec RET (a, e′, m : l, m′) = exec c (a, e, l, m)

where CLO c e = get first m′
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Conversion functions:

conv :: Value → Value′

conv (Num n) = Num′ n
conv (Clo x e) = Clo′ (comp x (next first) RET) (convE e)

convE :: Env → Env′

convE e = map conv e

We conclude this section with two remarks. First of all, in the above calculation we used
property 8 (exec is monotonic) informally, in the sense that the memory can always be
freely extended using �. More formally, we need to extend � to the new form of machine
configurations in order for property 8 to make sense. In contrast to the first two compiler
calculations, memories can occur in more than one place, because our calculation revealed
that the Lam component of the configuration type also contains memories. Hence, we first
extend � pointwise to Lam by the following inductive definition:

[ ] � [ ] ⇔ True
(m : l) � (m′ : l′) ⇔ m � m′ ∧ l � l′

This definition formally justifies the use of property 8 in the calculation for the App case.
In turn, we use this definition to extend � to machine configurations:

(a, e, l, m) � (a′, e′, l′, m′) ⇔ a = a′ ∧ e = e′ ∧ l � l′ ∧ m � m′

And finally, note that the two types Value′ and Val are isomorphic and could be refac-
tored into a single type. However, this property of the two types is coincidental and does
not generalise. In particular, changing the source language slightly, for example by adding
exceptions, would yield types Value′ and Val that are not isomorphic.

5.5 Example

Recall that the increment function λn → n + 1 can be written in our language as inc =
Abs (Add (Var 0) (Val 1)). Now consider the expression App inc (Val 2), which increments
the value 2 to produce the result 3. Compiling this expression gives the code

ABS c (STC 0 (LOAD 2 (APP 0 HALT)))

in which we abbreviate the code for the inc function by:

c = LOOKUP 0 (STORE 1 (LOAD 1 (ADD 1 RET))))

In turn, executing the above code from an arbitrary initial configuration (a, e, l, m) in
which all registers in the memory m are empty proceeds as follows, where the memory m′

contains the closure CLO c e in register 0 and is otherwise empty:
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Acc Env′ Lam Reg 0 Reg 1

a e l − −
ABS c Clo′ c e e l − −
STC 0 Clo′ c e e l CLO c e −
LOAD 2 Num′ 2 e l CLO c e −
APP 0 Num′ 2 Num′ 2 : e m′ : l CLO HALT e −
LOOKUP 0 Num′ 2 Num′ 2 : e m′ : l CLO HALT e −
STORE 1 Num′ 2 Num′ 2 : e m′ : l CLO HALT e VAL 2
LOAD 1 Num′ 1 Num′ 2 : e m′ : l CLO HALT e VAL 2
ADD 1 Num′ 3 Num′ 2 : e m′ : l CLO HALT e VAL 2
RET Num′ 3 e l CLO c e −
HALT Num′ 3 e l CLO c e −

That is, the expression is evaluated by storing the closure comprising the inc function code
and current environment in register 0, storing the argument value 2 in the accumulator, and
then calling the function. In turn, this results in the code for increment being executed with
the argument 2 supplied as first value in the environment, with the current memory being
saved in the lambda component, after which the previous components of the configuration
are restored, leaving the result 3 in the accumulator.

The above approach to compiling lambda expressions can be viewed as a lower-level
version of the stack-based approach from Bahr & Hutton (2015), in which the use of rel-
ative addressing to a stack is replaced by direct addressing to registers. The extension of
the machine configuration with a Lam component to handle lambda expressions is new,
but as with the exceptions example follows the methodology of Bahr & Hutton (2015), in
that it extends the configuration type to handle new computational behaviour. The result-
ing machine is also similar to Landin’s SECD machine (1964), where E corresponds to the
environment Env′, C to Code and D to the Lam component, with the key difference being
that our machine utilises registers rather than a stack S.

5.6 Reflection

Relations. The use of relational rather than functional semantics resulted from the shift to
rule rather than structural induction as the basis for the calculation. As we have observed
in previous work (Bahr & Hutton, 2015), this shift to rule induction is crucial when the
semantics of the source language is no longer compositional, specifically in the case of
function application. Therefore, induction on the structure of lambda expressions would
not allow us to complete the calculation for the App case, because we would lack the
required induction hypothesis for the expression x′ that originates from a closure.

Partiality. The relational semantics also captures the inherent partiality of the semantics,
in the sense that evaluation may fail because of a type mismatch or due to non-termination.
As a consequence of this partiality, the specification only explicitly captures one half of
compiler correctness, namely completeness, which ensures that compiled code can pro-
duce every result that is permitted by the semantics. The dual property, soundness, is also
important to ensure that compiled code can only produce results that are permitted by the
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semantics. The two example languages we considered earlier both had a total (and deter-
ministic) semantics, so that soundness follows from the specification as well. If we restrict
the lambda calculus to a total fragment, such as simply typed lambda terms, soundness
also them follows from the specification. In general, however, if our relational semantics
is genuinely partial or non-deterministic, we need to explicitly consider both soundness
and completeness, as in Hutton & Wright (2007).

Frames. The virtual machine calculated above saves the current memory when a function
is applied using the APP operation and restores this memory once the function returns
using the RET operation. An alternative calculation that only saves the registers that are
currently being used, which corresponds to the notion of a stack frame, is available in the
online supplementary material. This alternative version proceeds in the same manner as
the above calculation, with the additional administrative overhead of the compiler needing
to keep track of the number of registers that are currently being used.

6 Related work

In this section, we summarise some of the main historical developments related to compiler
calculation. A more detailed review is provided in Bahr & Hutton (2015).

The idea of formally verifying compilers dates back to the work of McCarthy and
Painter (1967) who proved the correctness of a compiler for simple arithmetic expressions.
Their handwritten proof was also mechanically checked by Milner and Weyhrauch (1972),
establishing the utility of automated proof assistants in the area right from its inception.
Since then, a wide range of compiler correctness proofs have been produced, ranging from
idealised compilers for small languages up to sophisticated optimisations for real compil-
ers (Dave, 2003). More recently, the CompCert project (Leroy, 2009) demonstrated the
feasibility of applying compiler verification in an industrial-strength setting, by mechan-
ically verifying the correctness of an optimising C compiler. This work inspired many
further projects on compiler verification, such as Chlipala’s verified compiler (Chlipala,
2010), CakeML (Kumar et al., 2014) and DeepSpec (DeepSpec, 2020).

The representation of register memory as a finite partial map from an infinite set of reg-
ister names to values also appears in the CompCert project. This compiler also uses the
pre-order �, but for a different purpose altogether, namely for transformations between
two languages that both employ registers. For example, to prove correctness of the various
optimisation passes that operate on the intermediate language RTL, CompCert defines cor-
responding simulation relations. These simulation relations use � to express the fact that
the optimised code uses either more or fewer registers.

Similarly to our compiler, CompCert has to reason about when it is safe to reuse a pre-
viously used register. Specifically, this occurs in the compilation pass that translates the
Cminor intermediate language, which has an expression fragment, to the RTL interme-
diate language, which only has simple instructions that address registers. To this end, it
maintains a mapping var from Cminor variables names to RTL registers and a set pr of
preserved registers. The correctness property then states that execution of the generated
RTL code does not change the contents of the registers appearing in pr or in the domain of
var. By using the pre-order �, we can avoid having to maintain such a set pr.
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Many of the techniques that have traditionally been used to calculate, as opposed to ver-
ify, compilers are due to Reynolds (1972). In particular, he introduced three key ideas:
definitional interpreters, which express semantics as interpreters written in a composi-
tional manner; continuation-passing style, which allows such interpreters to be rewritten
to make control flow explicit; and defunctionalisation, which allows the resulting higher-
order interpreters to be rewritten in first-order form. Using these three ideas, Reynolds
showed how definitional interpreters could be transformed into abstract machines.

The derivation of compilers from semantics was first considered by Wand (1982a). His
approach begins with a continuation semantics, which is then reformulated in point-free
form using a generalised composition operator for functions with more than one argument,
and custom combinators for manipulating arguments in particular ways. Defunctionalising
the resulting semantics then gives rise to a compiler and virtual machine. The original
article did not consider the issue of correctness proofs, but in a later article Wand outlined
how his compilers could also be proved correct (1982b).

Reynolds and Wand’s approaches are both based on writing a semantics in continuation-
passing style to capture control flow and then removing the resulting continuations using
defunctionalisation. In contrast, our approach fuses these two separate transformations
steps into a single calculation step that avoids the need to first introduce and then eliminate
continuations (Bahr & Hutton, 2015; Hutton & Bahr, 2016). Our register-based compiler
calculations can also be conducted in an unfused manner, but as in our previous stack-
based work the fused calculations are simpler, by avoiding the need for continuations, and
more direct, by starting from high-level specifications of correctness.

Meijer (1992) developed an algebraic approach to calculating compilers for a variety
of languages. His approach starts with a functional semantics expressed as a fold opera-
tor (Meijer et al., 1991). He then specifies an equivalent stack-based semantics, for which
an implementation is calculated using algebraic properties of folds. Finally, the result-
ing stack-based machine is defunctionalised to produce a compiler and a virtual machine.
While Meijer was able to calculate an impressive range of compilers, starting with a seman-
tics defined as a fold complicates the methodology, and his approach requires significant
upfront knowledge about behaviour of the final compiler.

Another approach to deriving compilers was developed by Ager et al. (2003b), building
on work for abstract machines (Ager et al., 2003a). Their approach begins with a defini-
tional interpreter, from which an abstract machine is derived using Reynold’s techniques.
This machine is then factorised into a compiler and a virtual machine by introducing a
term model that implements a non-standard interpretation of the machine operations. The
approach is based on the assumption that all the transformations are semantics preserving,
but does not provide a formal proof of the correctness of the resulting compiler.

Finally, for many years, partial evaluation (Jones et al., 1993) has offered the prospect
of automatically producing compilers from interpreters. The general technique seeks to
apply a program to some of its input to produce a specialised program that, when applied
to the rest of its input, gives the same result as the original program, but in a more efficient
manner. By writing a partial evaluator in its own subject language it can be applied to itself,
which makes it theoretically possible to transform interpreters into compilers (Futamura,
1999). However, there are many challenges that arise in realising this transformation, as
explored in a long-standing workshop series (PEPM, 2020).
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7 Conclusion and further work

In this article, we have shown how our approach to calculating compilers for stack-based
machines (Bahr & Hutton, 2015) can be adapted to register-based machines and illustrated
its applicability by calculating a series of example compilers. A range of further examples,
including features such as local and global state, unbounded loops, lambda calculus with
exceptions and exceptions compiled using two code continuations, are available in the
online supplementary material (Bahr & Hutton, 2020). In this final section, we reflect on
our new approach and discuss directions for further work.

One of the difficulties in calculating compilers for register machines is that in order to
make efficient use of memory, it is necessary to reuse registers once their contents are
no longer required. For example, given the input (2 + 3) + 4, our compiler for arithmetic
expressions gives the following code sequence, in which register 0 is first used to store the
value 2 and is then reused to store the intermediate result 2 + 3:

LOAD 2 (STORE 0 (LOAD 3 (ADD 0 (STORE 0 (LOAD 4 (ADD 0 HALT))))))

In order to achieve this kind of behaviour, the compiler needs to keep track of which
registers are not currently ‘live’ and can hence be safely reused.

This issue was already addressed by McCarthy and Painter in the first published com-
piler correctness proof (1967). In a similar manner to our first example, the input to their
compiler was simple arithmetic expressions, and the output was code for a register machine
with an accumulator and an infinite number of additional registers. To tackle the issue of
live registers, they used an equivalence relation =r on memories, defined by:

m =r m′ ⇔ m and m′ coincide on registers prior to r

Using our notation, source language and generalisation to code continuations, McCarthy
and Painter’s compiler correctness property can be written as:

exec (comp e r c) (a, m) = exec c (eval e, m′) for some m′ with m′ =r m

Their proof of this property proceeds by structural induction on the source expression.
However, the proof is rather complex and uses a large number of lemmas.

In principle, we could have used the above correctness property as the basis for our
calculations. At first sight it appears simpler, because it only involves equality and an
equivalence relation. However, it also involves an existentially quantified memory m′, with
a side condition m′ =r m, which makes it difficult and error-prone for use in calculations.
In particular, assumptions about such existentially quantified memories have to be remem-
bered across multiple calculation steps and be discharged in the right places. Moreover,
we would have to switch to different equivalence relations =r′ during the calculation.

Our use of the pre-ordering � on memories that allows us to ‘forget’ the contents of
registers, together with the monotonicity assumption for exec, hides this existential quan-
tification and only requires a single relation �, rather than a family of relations =r. In fact,
we can strengthen our generalised compiler correctness property (specification 2) to the
following form, which makes the existential quantification explicit:
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freeFrom r m
⇒

exec (comp e r c) (a, m) = exec c (eval e, m′) for some m′ with m � m′

This strengthened property, with explicit existential quantification, is equivalent to the
correctness property in the style of McCarthy and Painter, assuming a partial memory
model and monotonicity of exec. In contrast, specification 2, which we use for our cal-
culation, is strictly weaker. However, if we consider the top-level correctness property for
compile rather than comp, we can show that specification 1 and the corresponding compiler
correctness property in the style of McCarthy and Painter are in fact equivalent.

There are many possible avenues for developing the approach further. Interesting topics
for further work include calculating compilers for real-world source languages, such as the
core language of the Glasgow Haskell Compiler (GHC); calculating compilers for real-
world target machines, such as the Low Level Virtual Machine (LLVM); extending the
approach to support typed source and target languages; and developing mechanical tool
support to assist with compiler calculations and certify their correctness.
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