Just non-finitely-based varieties of groups

M. F. Newman

Abstract

A variety of groups is just non-finitely-based if it does not have a finite basis for its laws while all its proper subvarieties do have a finite basis. Recent work of Ol'sanskiY, Vaughan-Lee and Adjan guarantees the existence of at least one just non-finitely-based variety. In this note an infinite number of just non-finitely-based varieties are shown to exist by proving that for every prime p there is a non-finitely based variety of p-groups.

A variety of groups which does not have a finite basis for its laws contains, by a routine application of Zorn's Lemma, a variety which is minimal with respect to not having a finite basis for its laws. Call such a minimal variety just non-finitely-based. The previous sentence can then be rewritten: every non-finitely-based variety contains a just non-finitely-based variety.

It follows from Vaughan-Lee's work in [5] that the product variety $\underline{T}_{2} \underline{T}_{2}$ (where \underline{T}_{2} is the variety generated by the dihedral group of order 8), even the subvariety defined by the additional word $\left[\left[x_{1}, x_{2}, x_{3}\right],\left[x_{4}, x_{5}, x_{6}\right],\left[x_{7}, x_{8}\right]\right]$, contains a just non-finitely-based variety. Conceivably there is only one just non-finitely-based variety in $\underline{\underline{T}}_{2} \underline{T}_{2}$. Although the non-finitely-based varieties described by 0l:sanskiy

[^0][4] and Adjan [1] are quite different from Vaughan-Lee's, they don't seem to guarantee the existence of even one more just non-finitely-based variety.

The purpose of this note is to prove:
There are an infinite number of just non-finitely-based varieties of groups.

This is done by proving for each prime p that there is a variety of p-groups which does not have a finite basis for its laws. Unexplained. notation is used as described in Hanna Neumann's book [3].

In the word group W on the set $\left\{x, y, z, x_{1}, x_{2}, \ldots\right\}$ let $u(k)=\left[x_{1}, x_{2}\right] \cdots\left[x_{2 k-1}, x_{2 k}\right]$ and
$v(k)=\left[[x, y, z],[x, y, z]^{u(k)}, \ldots,[x, y, z]^{u(k)^{p-1}}\right]$.
It suffices to prove that there is a group in the variety $(\underset{\sim}{A} \underset{p}{A} \wedge \underset{\sim}{N})_{p}^{T}$ in which $v(1), \ldots, v(n-1)$ are laws but $v(n)$ is not a law (here for p odd ${\underset{T}{p}}^{T}$ is the variety generated by the non-abelian group of order p^{3} and exponent p); for then a standard argument shows
 $v(1), v(2), \ldots$ are all laws cannot have a finite basis for its laws.

Let A be a free group in $\underset{\sim}{T}$ of finite rank m. Let B be a free group of $A_{\sim}^{A} A_{p} \wedge{\underset{\sim}{N}}_{\underline{p}}$ of rank the order of A freely generated by $\left\{b_{a}: a \in A\right\}$. There is a natural action of A on B described by $\left(b_{a}\right)^{a^{\prime}}=b_{a a^{\prime}}$. Let C be the splitting extension of B by A with this action. As usual A and B will be identified with the appropriate subgroups of C, and the elements of C will be taken to have the form $a b$ with a in A and b in B (identity elements will be omitted). The required group will be exhibited as a factor group of C.

The order of the commutator subgroup A^{\prime} of A is $p^{m(m-1) / 2}$. The number of elements of A^{\prime} which can be written as the product of $n-l$ commutators is at most $p^{2 m(n-1)}$ (since the identity e is a commutator
this covers products of less than $n-1$ commutators as well). Take $m \geq 4 n$, then there is an element, d say, of A^{\prime} which can be written as the product of n commutators but not of $n-1$ (or fewer) commutators. Let D denote the subgroup generated by d.

The p-th term $\gamma_{p}(B)$ of the lower central series of B is an elementary abelian p-group generated (not freely) by the elements $\left[b_{a_{1}}, \ldots, b_{a_{p}}\right]$ which will be written $\left[\left[a_{1}, \ldots, a_{p}\right]\right]$ from now on. The result will be proved by exhibiting a subgroup R of $\gamma_{p}(B)$ which contains all the values in C of the words $v(1), \ldots, v(n-1)$ but not every value of $v(n)$; this is enough for then the verbal subgroup V of C corresponding to the set $\{v(1), \ldots, v(n-1)\}$ of words lies in R and consequently C / V will have the required properties.

Let M be the subgroup of $\gamma_{p}(B)$ generated by the $\left[\left[\alpha_{1}, \ldots, a_{p}\right]\right]$ where $\left\{a_{1}, \ldots, a_{p}\right\}$ is a coset of D and L the subgroup generated by all the other $\left[\left[a_{1}, \ldots, a_{p}\right]\right]$. Every relation between the $\left[\left[a_{1}, \ldots, a_{p}\right]\right]$ is a consequence of relations of the types (*) $\left\{\begin{array}{l}{\left[\left[a_{1}, a_{2}, a_{3}, \ldots\right]\right]\left[\left[a_{2}, a_{3}, a_{1}, \ldots\right]\right]\left[\left[a_{3}, a_{1}, a_{2}, \ldots\right]\right]=e,} \\ {\left[\left[a_{1}, a_{2}, \ldots, a_{i}, a_{i+1}, \ldots\right]\right]\left[\left[a_{1}, a_{2}, \ldots, a_{i+1}, a_{i}, \ldots\right]\right]^{-1}=e,} \\ \text { and }\left[\left[a_{1}, a_{2}, \ldots\right]\right]\left[\left[a_{2}, a_{1}, \ldots\right]\right]=e,\end{array}\right.$ so $\gamma_{p}(B)$ is the direct product of M and L. Let U be a transversal of D in A^{\prime} which contains e, and T a transversal of A^{\prime} in A which contains e. The subgroup M is freely generated by the
$g(t, u, i)=\left[\left[t u d^{i}, t u, t u d, \ldots, t u d^{i-1}, t u d^{i+1}, \ldots, t u d^{p-1}\right]\right]$ where t, u run through T, U respectively and i through $\{1, \ldots, p-1\}$ because these commutators are basic in any order in which $t u<t u d<\ldots<t u d^{p-1}$ for all t, u (see for instance 4.05 of [2] for a direct proof). Let $g_{t}=g(t, e, l)$. Let P be the subgroup of M
generated by the g_{t} with t running through T, and let N be the subgroup of M generated by all the products $g(t, u, i) g_{t}^{-i}$. Clearly M is the direct product of P and N. Take R to be the direct product of N and L.

Let θ be a homomorphism from the word group W to C such that $x \theta=b_{e}, y \theta=t, z \theta=t^{\prime}$, where t, t^{\prime} are distinct elements of $T \backslash\{e\}$, and $u(n) \theta=d$, then $v(n) \theta=g_{e}^{-1} g_{t} g_{t}, g_{t t}^{-1}, r$ with r in R. Thus $v(n) \theta$ does not belong to R, and one of the claims is established.

The following observation will be needed in proving the other claim. For all a_{1}, \ldots, a_{p} in A and h in A^{\prime},
$\left[\left[a_{1}, \ldots, a_{p}\right]\right]^{h}=\left[\left[a_{1} h, \ldots, a_{p} h\right]\right]=\left[\left[a_{1}, \ldots, a_{p}\right]\right]_{r}$ for some r in R because if $\left\{a_{1}, \ldots, a_{p}\right\}$ is not a coset of D neither is $\left\{a_{1} h, \ldots, a_{p} h\right\}$, while if $\left\{a_{1}, \ldots, a_{p}\right\}$ is the coset tuD and $a_{1}=t u d^{i}, a_{2}=t u d^{j}$, then both $\left[\left[a_{1}, \ldots, a_{p}\right]\right]$ and $\left[\left[a_{1} h, \ldots, a_{p} h\right]\right]$ are congruent to g_{t}^{i-j} modulo N. Hence, by linearity, $\left[b_{1}, \ldots, b_{p}\right]^{h}$ is congruent to $\left[b_{1}, \ldots, b_{p}\right]$ modulo R for all b_{1}, \ldots, b_{p} in B and h in A^{\prime}.

Every value of $v(k)$ for k in $\{1, \ldots, n-1\}$ has the form
$\left[b, b^{c}, \ldots, b^{c^{p-1}}\right]$ where b belongs to B and c is a product of at most $n-1$ commutators from A^{\prime}. All these elements will be shown to belong to R. It suffices to prove for b_{1}, b_{2} in B and h in A^{\prime}
that $\left[b_{1} b_{2},\left(b_{1} b_{2}\right)^{h}, \ldots,\left(b_{1} b_{2}\right)^{h^{p-1}}\right]$ is congruent to $\left[b_{1}, b_{1}^{h}, \ldots, b_{1}^{h^{p-1}}\right]\left[b_{2}, b_{2}^{h}, \ldots, b_{2}^{h^{p-1}}\right]$ modulo R, for then $\left[b, b^{c}, \ldots, b^{c^{p-1}}\right]$ is, by induction on the length of b as a product of generators b_{a}, congruent modulo R to a product of commutators
$\left[b_{a}, b_{a}^{c}, \ldots, b_{a}^{c^{p-1}}\right]$ each of which lies in L because
$\left\{a, a c, \ldots, a c^{p-1}\right\}$ is not a coset of D. Now
$\left[b_{1} b_{2},\left(b_{1} b_{2}\right)^{h}, \ldots,\left(b_{1} b_{2}\right)^{h^{p-1}}\right]=T\left[b_{f(0)}, b_{f(1)}^{h}, \ldots, b_{f(p-1)}^{h^{p-1}}\right]$ where f runs through the set F of functions from $\{0, \ldots, p-1\}$ to $\{1,2\}$. Define a mapping τ on F by

$$
f \tau(i)=f(i+1) \text { for all } i \quad(\text { taking }(p-1)+1=0)
$$

The orbits of τ in F are all of length p except for two of length l corresponding to the two constant functions. The desired result comes by proving $b^{*}=\prod_{j=0}^{p-1}\left[b_{f \tau^{j}(0)}, b_{f \tau^{h}(1)}, \cdots, b_{f \tau^{h^{p-1}}(t-1)}\right]$ belongs to R for all f in F. Now by the definition of τ, $b^{*}=\prod_{j=0}^{p-1}\left[b_{f(j)}, b_{f(j+1)}^{h}, \ldots, b_{f(j-1)}^{h^{p-1}}\right]$. It follows from the observation in the last paragraph that $b^{*}=\prod_{j=0}^{p-1}\left[b_{f(j)}^{h^{j}}, \ldots, b_{f(j-1)}^{h^{j-1}}\right] r$ for some r in R. Use of relations of the type (*) yields $b^{*}=r$ and the proof is complete.

References

[1] S.I. Adjan, "Infinite irreducible systems of group identities" (Russian), Dokl. Akad. Wauk SSSR 190 (1970), 499-501; Soviet Math. Dokl. 11 (1970), 113-115.
[2] L.G. Kovács and M.F. Newman, "On non-Cross varieties of groups", J. Austral. Math. Soc. 12 (1971), 129-144.
[3] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[4] A.Ju. Ol'šanskiT, "On the problem of a finite basis for the identities of groups" (Russian), Izv, Akad. Nauk SSSR 34 (1970), 376-384.
[5] M.R. Vaughan-Lee, "Uncountably many varieties of groups", BuZZ. London Math. Soc. 2 (1970), 280-286.

Institute of Advanced Studies, Australian National University, Canberra, ACT.

[^0]: Received 23 November 1970. Done while holding a post-doctoral fellowship in the University of Illinois at Champaign-Urbana. The author is indebted to Dr M.R. Vaughan-Lee for sending him a preprint of his paper [5] which inspired and served as a model for this work.

