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Topological Games and Alster Spaces
Dedicated to Ofelia T. Alas on the occasion of her 70th birthday

Leandro F. Aurichi and Rodrigo R. Dias

Abstract. In this paper we study connections between topological games such as Rothberger, Menger,
and compact-open games, and we relate these games to properties involving covers by Gδ subsets. The
results include the following: (1) If TWO has a winning strategy in the Menger game on a regular space
X, then X is an Alster space. (2) If TWO has a winning strategy in the Rothberger game on a topological
space X, then the Gδ-topology on X is Lindelöf. (3) The Menger game and the compact-open game
are (consistently) not dual.

1 Topological Games

We start by recalling some definitions. The following properties were introduced in
studies of strong measure zero and σ-compact metric spaces, respectively.

Definition 1.1 (Rothberger [26]) A topological space X is said to be a Rothberger
space if for every sequence (Un)n∈ω of open covers of X there is a sequence (Un)n∈ω
satisfying X =

⋃
n∈ω Un with Un ∈ Un for all n ∈ ω.

Definition 1.2 (Hurewicz [15]) A topological space X is said to be a Menger space if
for every sequence (Un)n∈ω of open covers of X there is a sequence (Fn)n∈ω satisfying
X =

⋃⋃
n∈ω Fn with Fn ∈ [Un]<ℵ0 for all n ∈ ω.

The following topological games are naturally associated with the above proper-
ties.

Definition 1.3 (Galvin [12]) The Rothberger game in a topological space X is played
according to the following rules. In each inning n ∈ ω, ONE chooses an open cover
Un of X, and then TWO chooses Un ∈ Un. The play is won by TWO if X =

⋃
n∈ω Un;

otherwise, ONE is the winner.

Definition 1.4 (Telgársky [37]) The Menger game in a topological space X is played
as follows. In each inning n ∈ ω, ONE chooses an open cover Un of X, and then
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TWO chooses a finite subset Fn of Un. TWO wins the play if
⋃

n∈ω Fn is a cover of X;
otherwise, ONE is the winner.

It is easy to see that if ONE does not have a winning strategy in the Rothberger
(resp. Menger) game in a topological space X, then X is a Rothberger (resp. Menger)
space. The following theorems show that these properties can in fact be expressed in
terms of such games.

Theorem 1.5 (Pawlikowski [23]) A topological space X is Rothberger if and only if
ONE does not have a winning strategy in the Rothberger game on X.

Theorem 1.6 (Hurewicz [15]) A topological space X is Menger if and only if ONE
does not have a winning strategy in the Menger game on X.

A more systematic study of combinatorial properties in topological spaces was
initiated by M. Scheepers in [29]. Scheepers introduced a framework for investigating
some classes of properties and their naturally associated games in greater generality,
which has originated the subject of selection principles. One such general selection
principle and its associated game are defined as follows.

Definition 1.7 (Scheepers [29]) LetA andB be nonempty families. Then S1(A,B)
denotes the following statement:

For every sequence (An)n∈ω of elements of A, there is a sequence (Bn)n∈ω such
that Bn ∈ An for each n ∈ ω and {Bn : n ∈ ω} ∈ B.

Definition 1.8 (Scheepers [30]) Let A and B be nonempty families with ∅ /∈ A.
The game G1(A,B) is played as follows. In each inning n ∈ ω, ONE chooses An ∈ A,
and then TWO chooses Bn ∈ An. TWO wins the play if {Bn : n ∈ ω} ∈ B; otherwise,
ONE is the winner.

Thus the Rothberger property is the particular case S1(O,O) of Definition 1.7,
whereO denotes the family of all open covers of the space; more explicitly, S1(OX,OX)
means that X is a Rothberger space, where OX = {U ⊆ τX : X =

⋃
U}. It is also

clear that X is a Menger space if and only if S1(O∗X,OX) holds, where

O∗X = {U ∈ OX : Uis closed by finite unions}.

Similarly, the Rothberger and Menger games can be regarded as the games G1(O,O)
and G1(O∗,O), respectively.1

The implication that was already observed in these particular cases holds in gen-
eral. Namely, the nonexistence of a winning strategy for ONE in the game G1(A,B)
implies S1(A,B). The converse, which holds in the particular cases previously con-
sidered (Theorems 1.5 and 1.6), is not always true; see [31, Example 3].

We now turn to (what appears to be) another game.

1Although the rules of G1(O∗,O) and the Menger game are not quite the same, it is easy to see that
these games are equivalent; i.e., a player has a winning strategy in G1(O∗,O) if and only if that player has
a winning strategy in the Menger game.
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Definition 1.9 (Galvin [12]) The point-open game in a topological space X is de-
fined by the following rules. In each inning n ∈ ω, ONE picks a point xn ∈ X, and
then TWO chooses an open set Un ⊆ X with xn ∈ Un. The play is won by ONE if
X =

⋃
n∈ω Un; otherwise, TWO is the winner.

In [12], F. Galvin showed that the point-open game is essentially the same as the
Rothberger game, in the following sense. We say that two games G and G′ are dual if

• ONE has a winning strategy in G if and only if TWO has a winning strategy in G′;
and

• TWO has a winning strategy in G if and only if ONE has a winning strategy in G′.

Theorem 1.10 (Galvin [12]) The Rothberger game and the point-open game are
dual.

We may then wonder how the point-open game could be modified to produce a
similar game that is dual to the Menger game. The following is a natural candidate.

Definition 1.11 (Telgársky [35]) The compact-open game in a topological space X
is defined as follows: in each inning n ∈ ω, ONE chooses a compact subset Kn of X,
and then TWO chooses an open subset Un of X such that Kn ⊆ Un. The play is won
by ONE if X =

⋃
n∈ω Un; otherwise, TWO is the winner.

In [37, Corollary 3], R. Telgársky proved that ONE has a winning strategy in the
compact-open game if and only if TWO has a winning strategy in the Menger game.
Telgársky also observes (in Proposition 1 of the same paper) that ONE having a win-
ning strategy in the Menger game implies TWO having a winning strategy in the
compact-open game, and then asks the following question.

Problem 1.12 (Telgársky [37]) Does the converse hold, i.e., are the Menger game
and the compact-open game dual?

As we shall see later, in Examples 3.12 and 3.13, this may not always be the case.
The relationship between these two games may be more clearly understood by con-
sidering the following definition.

Definition 1.13 Let X be a topological space. An open cover U of X is said to be a
k-cover of X if for every compact subset K of X there is U ∈ U such that K ⊆ U . The
family of all k-covers of X will be denoted by KX .

The next result is a particular case of [36, Theorem 6.2].

Proposition 1.14 (Galvin, Telgársky [36]) The game G1(K,O) and the compact-
open game are dual.

Problem 1.12 can then be rewritten as follows.
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Problem 1.15 (Telgársky [37]) Does the existence of a winning strategy for ONE in
G1(K,O) imply the existence of a winning strategy for ONE in the game G1(O∗,O)?

Note that O∗ ⊆ K; thus, a counterexample to Problem 1.12 (i.e., Problem 1.15)
must be a space in which these two classes of open covers are, in a certain sense, very
far from each other. These problems shall be further discussed in Section 3.

As has already been observed, if ONE does not have a winning strategy in
G1(K,O) (i.e., TWO does not have a winning strategy in the compact-open game),
then S1(K,O) holds. The question of whether the converse holds remains unsettled.

Problem 1.16 Is S1(K,O) equivalent to ONE not having a winning strategy in
the game G1(K,O) (i.e., TWO not having a winning strategy in the compact-open
game)?

2 Alster Spaces

We now turn to properties of covers of topological spaces by Gδ subsets. The main
object of our interest is the Alster property; see Definition 2.2.

Definition 2.1 Let X be a topological space. A cover W of X by Gδ subsets is said
to be an Alster cover if every compact subset of X is included in some element of W.
The set of all Alster covers of X will be denoted by AX .

Definition 2.2 (Alster [1]) A topological space X is an Alster space if for every
U ∈ AX there is a countable V ⊆ U with X =

⋃
V.

Alster spaces were introduced in [1] in an attempt to characterize the class of pro-
ductively Lindelöf spaces, i.e., the class of topological spaces X such that X × Y is
Lindelöf whenever Y is a Lindelöf space.

Theorem 2.3 (Alster [1]) Alster spaces are productively Lindelöf. Assuming the Con-
tinuum Hypothesis, productively Lindelöf regular spaces of weight not exceeding ℵ1 are
Alster.

An internal characterization of productive Lindelöfness — a problem attributed to
H. Tamano in [24, Problem 5] — is still unknown. The following problem, implicitly
raised in [1] (see also [6]), remains open.

Problem 2.4 (Alster [1], Barr–Kennison–Raphael [6]) Is is true that every produc-
tively Lindelöf space is an Alster space?

After observing that both the properties “X is an Alster space” and “TWO has a
winning strategy in the Menger game on X” are implied by “X is σ-compact”2 and
imply “X is Lindelöf and every continuous image of X in a separable metrizable space
is σ-compact”, F. Tall asks the following question in [34, Problem 5].

2A space is σ-compact if it is a countable union of compact subsets.
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Problem 2.5 (Tall [34]) Is there any implication between the Alster property and
TWO having a winning strategy in the Menger game?

We shall provide a complete answer to Problem 2.5 by showing the following:

• If TWO has a winning strategy in the Menger game on a regular space X, then X is
Alster (Corollary 2.13).

• The regularity hypothesis in the above result is essential (Example 3.6).
• The converse implication does not hold (Example 3.5).

In what follows, we will denote by Oδ
X the family of all covers of a topological

space X by Gδ subsets. We start by proving a characterization of the Alster property
in terms of the selection principle S1.3

Proposition 2.6 A topological space X is an Alster space if and only if S1(AX,O
δ
X)

holds.

Proof The converse is clear. For the direct implication, suppose that X is an Alster
space and let (Un)n∈ω be a sequence in AX . Let S =

∏
n∈ω Un and, for each f ∈ S,

define V f =
⋂

n∈ω f (n). It follows that {V f : f ∈ S} is an Alster cover of X; therefore,
there is { fn : n ∈ ω} ⊆ S such that X =

⋃
n∈ω V fn . Now, for every n ∈ ω, define

An = fn(n). Then

X =
⋃

n∈ω
V fn =

⋃
n∈ω

⋂
k∈ω

fn(k) ⊆
⋃

n∈ω
fn(n) =

⋃
n∈ω

An,

and since An ∈ Un for all n ∈ ω, we are done.

Corollary 2.7 Every Alster space satisfies S1(K,O).

Proof This is immediate in view of Proposition 2.6, since K ⊆ A .

Let us now consider a natural modification of the compact-open game.

Definition 2.8 (Telgársky [36]) The compact-Gδ game in a topological space X
is defined in the same way as the compact-open game with the difference that now
TWO is allowed to play Gδ subsets of X.

The proof of the following result is analogous to the proof of Proposition 1.14; see
[36, Theorem 6.2].

Proposition 2.9 The game G1(A ,Oδ) and the compact-Gδ game are dual.

Propositions 2.6 and 2.9 yield the following corollary.

Corollary 2.10 If TWO does not have a winning strategy in the compact-Gδ game on
a topological space X, then X is an Alster space.

3Proposition 2.6 has also been obtained (independently) by L. Babinkostova, B. Pansera, and
M. Scheepers in [4].

https://doi.org/10.4153/CMB-2013-048-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-048-5


688 L. F. Aurichi and R. R. Dias

As usual, the characterization of the selective property in terms of its naturally
associated game is of interest.

Problem 2.11 Is the Alster property equivalent to TWO not having a winning
strategy in the compact-Gδ game?

Finally, [36, Theorem 5.1] and [37, Corollary 3] can be combined to yield the
following theorem.

Theorem 2.12 (Telgársky [36, 37]) Consider the following statements about a topo-
logical space X:

(i) ONE has a winning strategy in the compact-Gδ game on X;
(ii) ONE has a winning strategy in the compact-open game on X;
(iii) TWO has a winning strategy in the Menger game on X.

Then (i)↔ (ii)→ (iii). Furthermore, if X is regular, then the three statements are
equivalent.

This allows us to relate the Menger game to the Alster property.

Corollary 2.13 If TWO has a winning strategy in the Menger game on a regular
space X, then X is an Alster space.

Proof This is proved by Theorem 2.12 and Corollary 2.10.

In [37, Corollary 4], Telgársky showed the following theorem.

Theorem 2.14 (Telgársky [37]) If X is a metrizable space, then TWO has a winning
strategy in the Menger game on X if and only if X is σ-compact.

In [5], T. Banakh and L. Zdomskyy noted that Telgársky’s argument would follow
with “regular hereditarily Lindelöf” in place of “metrizable”. Since hereditarily Lin-
delöf regular spaces have the property that every compact subset is a Gδ (a condition
that clearly implies σ-compactness in the presence of the Alster property), Corol-
lary 2.13 extends the Banakh–Zdomskyy version of Theorem 2.14.

Telgársky’s proof of the equivalence between (ii) and (iii) in Theorem 2.12 is rather
indirect. Inspired by [28], we can give a more straightforward proof of Corollary 2.13,
which does not depend on the aforementioned equivalence.

An alternative proof of Corollary 2.13 Let σ : <ωOX\{∅} → [τX]<ℵ0 be a winning
strategy for TWO in the Menger game on X. Now let W be an Alster cover of X. Our
task is to find a countable subset of W that covers X.

The following claim is taken from [28].

Claim 1. For every s ∈ <ωOX , the set Ks =
⋂
{
⋃
σ(s_U) : U ∈ OX} is compact.

Indeed, let V be a cover of Ks by open subsets of X. For each x ∈ Ks, pick an open
neighbourhood Ux of X such that Ux is included in some element of V; now, for each
x ∈ X \ Ks, pick an open neighbourhood Ux of X with Ux ⊆ X \ Ks. Consider then
U0 = {Ux : x ∈ X} ∈ OX , and let F ∈ [X]<ℵ0 be such that σ(s_U0) = {Ux : x ∈ F}.
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Note that Ks ⊆
⋃
σ(s_U0) =

⋃
{Ux : x ∈ F}; thus, if for each x ∈ F ∩ Ks we pick a

Vx ∈ V with Ux ⊆ Vx, we will have Ks ⊆
⋃
{Vx : x ∈ F ∩ Ks}. This proves Claim 1.

For each s ∈ <ωOX , we can then fix a Ws ∈W with Ks ⊆Ws.

Claim 2. For every s ∈ <ωOX , there is a countable Cs ⊆ OX such that

Ks ⊆
⋂{⋃

σ(s_U) : U ∈ Cs

}
⊆Ws.

Since Ks ⊆Ws, the set {X \
⋃
σ(s_U) : U ∈ OX} is an open cover of X \Ws. But

X \Ws is an Fσ-subset of X. Since our hypothesis implies that X is a Lindelöf space,
it follows that X \Ws is Lindelöf as well, whence there is a countable Cs ⊆ OX such
that X \Ws ⊆

⋃
{X \

⋃
σ(s_U) : U ∈ Cs}. This proves Claim 2.

Now define recursively A0 = C∅ and An+1 = An ∪
⋃
{Cs : s ∈ n+1An} for

all n ∈ ω. Let A =
⋃
{An : n ∈ ω}. We will show that the countable subset

W0 = {Ws : s ∈ <ωA} of W is a cover of X.
Suppose, to the contrary, that there is p ∈ X \

⋃
W0. Since p /∈W∅, there is some

U0 ∈ C∅ such that p /∈
⋃
σ((U0)). We also have p /∈ W(U0), so there is U1 ∈ C(U0)

such that p /∈
⋃
σ((U0,U1)). By proceeding in this fashion (p /∈ W(U0,U1) and so

on), we obtain a play(
U0, σ((U0)),U1, σ((U0,U1)),U2, σ((U0,U1,U2)),U3, . . .

)
of the Menger game on X such that p /∈

⋃
σ((U0,U1, . . . ,Uk)) for all k ∈ ω. But

this is a contradiction, since TWO follows the winning strategy σ in this play.

A similar argument shows that, if “Menger” is replaced by “Rothberger” in Propo-
sition 2.13, the conclusion can be replaced by “Xδ is Lindelöf”. Here, Xδ is the set X
endowed with the topology generated by the Gδ subsets from its original topology.
But in this case we can avoid the requirement of any separation axioms by making
use of Theorem 1.10 (cf. [35, Theorem 6.1] and [12, Theorem 2]).

Proposition 2.15 If TWO has a winning strategy in the Rothberger game on a topo-
logical space X, then Xδ is a Lindelöf space.

Proof By Theorem 1.10, this hypothesis is equivalent to the existence of a winning
strategy for ONE in the point-open game. Let then σ : <ωτ → X be such a strategy,
where τ is the topology of X.

Now let W be a cover of X by Gδ subsets. For each W ∈ W, fix a sequence
(U (W, n))n∈ω of open sets with W =

⋂
n∈ω U (W, n). Proceeding by induction on

n ∈ ω, we shall assign to each s ∈ nω an element Ws of W as follows.
First, pick W∅ ∈ W such that σ(∅) ∈W∅. Now let n ∈ ω be such that Ws ∈ W

has already been defined for all s ∈ nω. For each s ∈ nω and each k ∈ ω, choose
Wsak ∈ W satisfying σ(ts,k) ∈ Wsak, where ts,k ∈ n+1τ is the sequence defined by
ts,k(i) = U (Ws�i , s(i)) for all i < n and ts,k(n) = U (Ws, k).

We claim that {Ws : s ∈ <ωω} ⊆ W is a cover of X. Suppose not, and fix p ∈
X \

⋃
s∈<ωω Ws. For n ∈ ω, we can recursively pick kn ∈ ω with p /∈ U (W(ki )i<n , kn).
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But then we get a contradiction from the fact that

(σ(∅),U (W∅, k0), σ(U (W∅, k0)),U (W(k0), k1),

σ(U (W(k0), k1)),U (W(k0,k1), k2), . . . )

is a play of the point-open game in which ONE plays according to σ and loses.

We shall see later, in Example 3.6, that the regularity hypothesis in Corollary 2.13
is essential.

The following diagram summarizes the connections between the properties con-
sidered in this paper. We will now quote some results from which some of the impli-
cations in the diagram follow.

For the first result (proved in [35, Theorem 9.3]), recall that a topological space X
is scattered if every nonempty subspace Y ⊆ X has an isolated point (relative to Y ).

Theorem 2.16 (Telgársky [35]) If a regular space X is Lindelöf and scattered, then
TWO has a winning strategy in the Rothberger game on X.

The next result is attributed to F. Galvin in [13]; see [32, Theorem 47]. Recall that
a P-space is a topological space in which every Gδ subset is open.

Proposition 2.17 (Galvin) A P-space is Lindelöf if and only if it is Rothberger.

Finally, recall that a Michael space is a Lindelöf space X such that X × ωω is not
Lindelöf. Michael spaces have been constructed with the aid of several set-theoretical
hypotheses; see e.g., [18, 20, 21]. In [25, Proposition 3.1], it was shown:4

Theorem 2.18 (Repovš-Zdomskyy [25]) If there is a Michael space, then every pro-
ductively Lindelöf space is Menger.

Each arrow in Figure 1 has the number of the result from which the implication
follows as well as the number of the counterexample (in Section 3) showing that the
implication cannot be reversed or that the regularity assumption is necessary, if this
is the case.

3 Counterexamples

We shall now see that unless the question of whether the converse implication holds
is indicated, the implications in Figure 1 cannot be reversed (at least consistently);
moreover, the regularity assumptions that appear in Figure 1 cannot be dropped
(again, at least consistently). This will follow from the examples listed below.

Example 3.1 A regular nonscattered space on which TWO has a winning strategy
in the Rothberger game.

This is just the space Q of rational numbers with the usual topology.

4We thank Lyubomyr Zdomskyy for bringing this result to our attention.
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Example 3.2 A compact Hausdorff space that is not Rothberger.

The Cantor set 2ω satisfies these conditions: it is folklore that the sequence (Un)n∈ω
of open covers of 2ω defined by Un = {π−1

n [{0}], π−1
n [{1}]}, where πn : 2ω → 2 is

the projection onto the n-th coordinate, witnesses the failure of the Rothberger prop-
erty.

Example 3.3 A Lindelöf scattered regular space that is not σ-compact.

This is the one-point Lindelöfication of an uncountable discrete space, i.e., the
space X = A ∪ {p}, where A is uncountable and p /∈ A, in which every point of A is
isolated and cocountable subsets of X are open.

Example 3.4 A Rothberger regular space that is not productively Lindelöf.

J. Moore’s L space [22] is Rothberger (see [32, section 4]) but has a non-Lindelöf
finite power (see [38, Theorem 3.4(2)] and [2, Theorem 2]).5

Example 3.5 There is a Lindelöf regular nonscattered space Y such that Yδ is Lin-
delöf (hence, in particular, Y is Alster) and TWO does not have a winning strategy in
the Menger game on Y .

Let Y be the space considered by Telgársky in [36, Section 7]. For each λ ∈
lim(ω1) = {γ ∈ ω1 : γ is a limit ordinal}, fix a cofinal subset Cλ ⊆ λ such that
|Cλ ∩ α| < ℵ0 whenever α < λ. The set

Y = {χCλ
: λ ∈ lim(ω1)} ∪ {χF : F ∈ [ω1]<ℵ0}

is then regarded as a subspace of 2ω1 with the countable box product topology τ .6

Note that Y = Yδ and that {χF : F ∈ [ω1]<ℵ0} is a closed subset of Y without
isolated points. In [36], it was proved that the compact-open game on Y is undeter-
mined; thus, in view of Theorem 2.12, there is no winning strategy for TWO in the
Menger game on Y .

As in Corollary 2.13, we can give a proof for this last fact that does not rely on the
equivalence between (ii) and Theorem 2.12(iii).

A direct proof for Example 3.5 For each p ∈ Y and each α ∈ ω1, we shall write
V (p, α) = {y ∈ Y : y �α = p �α} ∈ τ .

Let σ be a strategy for TWO in the Menger game on Y . By expanding the answers
of TWO if necessary, we can regard σ as a function

σ : (<ω lim(ω1)) \ {∅} → [ω1]<ℵ0 ,

meaning that, if ONE gives an open cover {V (y, α) : y ∈ Y} of Y with α ∈ lim(ω1)
(note that, as Y is Lindelöf and ω1 is regular, any open cover of Y has an open refine-
ment of this form), TWO responds by choosing, for some F ∈ [α]<ℵ0 , the open sets
V (y, α) with y ∈ {χG : G ⊆ F} ∪ {χCγ

: γ ∈ F ∩ lim(ω1)} ∪ {χCα
}.

5We thank Marion Scheepers and Boaz Tsaban for pointing this out to us.
6Here, χA denotes the function in ω1 2 satisfying {α ∈ ω1 : χA(α) = 1} = A.

https://doi.org/10.4153/CMB-2013-048-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-048-5


Topological Games and Alster Spaces 693

For each t ∈ <ω lim(ω1), we have max(σ(t_α)) < α for all α ∈ lim(ω1); thus,
it follows from Fodor’s Lemma ([10, Theorem 2]; see e.g., [17, Theorem 21.12]) that
there exist βt ∈ ω1 and a stationary set St ⊆ lim(ω1) such that for all α ∈ St , we
have max(σ(t_α)) = βt . Let M be a countable elementary submodel of Hθ for
a convenient choice of θ (see e.g., [9] or [17, Chapter 24]) such that Y, τ , σ ∈ M,
and consider λ = M ∩ ω1 ∈ lim(ω1). By elementarity, it follows that for each
t ∈ <ω lim(λ) there exist βt ∈ λ and an unbounded subset St of λ with St ⊆ lim(λ)
such that max(σ(t_α)) = βt for all α ∈ St .

We shall now prove that σ is a not a winning strategy by showing that ONE can
prevent the point χCλ

∈ Y from being covered if TWO plays according to σ.
In order to accomplish this, ONE starts by picking ξ0 ∈ Cλ with β∅ < ξ0 and

then plays α0 ∈ S∅ such that ξ0 < α0 — which, we recall, is short for saying that
she plays the open cover {V (y, α) : y ∈ Y}. Since TWO follows the strategy σ, he
responds with σ((α0)) ∈ [λ]<ℵ0 ; now ONE picks ξ1 ∈ Cλ satisfying β(α0) < ξ1 and
then plays α1 ∈ S(α0) with ξ1 < α1. In general, in the n-th inning, if tn = (αk)k<n is
the sequence of ONE’s moves so far, she picks ξn ∈ Cλ such that βtn < ξn and then
plays αn ∈ Stn with ξn < αn. It is clear that the point χCλ

∈ Y is not covered in
any of the innings, since for all n ∈ ω we have maxσ((α0, . . . , αn)) < ξn < αn and
χCλ

(ξn) = 1.

Example 3.6 There is a Hausdorff non-regular space X such that S1(KX,OX) fails
and yet TWO has a winning strategy in the Menger game on X; in particular, X is a
Menger space.

This is the space X obtained by taking the real line R (with the usual topology)
and then declaring every countable subset closed. Since every compact subset of X is
finite, it follows from [29, Theorem 17] that S1(KX,OX) is equivalent to S1(OX,OX),
which does not hold since R is not a Rothberger space.

Now write

{2k + 1 : k ∈ ω} =
⋃̇

j∈ω
A j

with |A j | = ℵ0 for each j ∈ ω and let % be a winning strategy for TWO in the
Menger game played on the real line with the usual topology; such a strategy exists,
since R is σ-compact. We may assume that in the Menger game on X ONE only
plays covers constituted by basic open sets of the form U \ C , where U is open in R
and C ⊆ R is countable. For each such basic open set W , fix U (W ) open in R and
C(W ) ∈ [R]≤ℵ0 with W = U (W ) \C(W ). Then, for each basic open cover W of X,
define U(W) = {U (W ) : W ∈W} ∈ OR.

We shall now describe a winning strategy for TWO in the Menger game on X. In
each even inning 2k ∈ ω if (Wi)i≤2k is the sequence of open covers played by ONE
so far, TWO responds with F2k ∈ [W2k]<ℵ0 such that

%
(

(U(W2i))i≤k

)
= {U (W ) : W ∈ F2k};

i.e., {U (W ) : W ∈ F2k} is TWO’s answer to the sequence (U(W2i))i≤k in the Menger
game on R according to the strategy %. Now TWO makes use of the innings in Ak

to cover the countably many points in
⋃

W∈F2k
C(W ). The fact that % is a winning
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strategy for TWO in the Menger game on R guarantees that X will be covered by
TWO through this procedure.

Example 3.7 If there is a Luzin subset of the real line,7 then there is a Hausdorff
nonregular space X that is Lindelöf scattered and such that Xδ is not Lindelöf.

Let L ⊆ R be a Luzin set, which we may assume to consist only of irrational
numbers. On the set X = L ∪ Q , consider the topology in which every point of L is
isolated and basic neighbourhoods of q ∈ Q are of the form

{q} ∪
{

x ∈ L : |x − q| < 1

n + 1

}
for n ∈ ω. It is clear that X is scattered and that Xδ , being discrete and uncountable,
is not Lindelöf. Yet X is Lindelöf. From any open cover U of X, we can extract a
countable subset U0 that covers Q ; as L is a Luzin set, U0 leaves only countably many
points of L uncovered.

Definition 3.8 An open cover U of a topological space X is an R-cover if every
Rothberger subspace of X is included in some element of U. The set of all R-covers
of X will be denoted by RX .

The following is a straightforward generalization of the implication (3)⇒ (1) of
[29, Theorem 17]; its proof is essentially the same.

Proposition 3.9 A topological space X satisfies S1(R,O) if and only if X is a Roth-
berger space.

Corollary 3.10 Let X be a topological space such that every compact subspace of X is
Rothberger. Then X satisfies S1(K,O) if and only if X is a Rothberger space.8

Proof Since in this case we have RX ⊆ KX , it follows that S1(KX,OX) implies
S1(RX,OX), which, by Proposition 3.9, is equivalent to X being Rothberger.

Corollary 3.11 Let X be a topological space every compact subspace of which has an
isolated point. Then X satisfies S1(K,O) if and only if X is a Rothberger space.

Proof This follows directly from Corollary 3.10, since every compact scattered space
is Rothberger (folklore; see e.g., [3, Proposition 5.5]).

Example 3.12 If cov(M) < d, then there is a Menger regular space that does not
satisfy S1(K,O).

It follows from [11, Theorem 5] that cov(M) is the least cardinality of a non-
Rothberger subspace of the real line. Let X ⊆ R be such a subspace. As |X| < d, it
follows from [16, Theorem 5] (see also [11, Theorem 3]) that X is a Menger space. By

7That is, an uncountable set L ⊆ R such that L ∩ A is countable for every nowhere dense subset A
of R. The Continuum Hypothesis implies the existence of a Luzin set [19, Theorem 1].

8This has also been observed independently in [4].

https://doi.org/10.4153/CMB-2013-048-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-048-5


Topological Games and Alster Spaces 695

the Čech–Pospı́šil Theorem ([8]; see e.g., [14, Theorem 7.19]), any compact subspace
of X without isolated points would have size at least c ≥ d > |X|, which is impossible.
Thus, by Corollary 3.11, X does not satisfy S1(K,O).

Example 3.13 If there is a Sierpiński subset of the real line,9 then there is a Menger
regular space that does not satisfy S1(K,O).

Pick a Sierpiński set S ⊆ R and endow it with the Sorgenfrey line topology. By
[27, Corollary 3.6], S is Menger. Since S does not have measure zero, it cannot be
Rothberger [26]. Thus, as every compact subset of the Sorgenfrey line is countable,
it follows from Corollary 3.10 that S does not satisfy S1(K,O).

In view of Examples 3.12 and 3.13, it is natural to ask the following question.

Problem 3.14 Is it consistent with ZFC that every Menger regular space satisfies
S1(K,O)?

We conjecture that the answer is negative. Note that this could be proved by
means of a dichotomic argument, e.g., by showing that a counterexample exists under
cov(M) = d. Should this be the case, one might still ask the following question.

Problem 3.15 Is there a ZFC example of a Menger regular space that does not
satisfy S1(K,O)?

We point out that a set of reals satisfying these conditions would have to be, in par-
ticular, a ZFC example of a Menger non-σ-compact subspace of R — a kind of set
that only recently has been constructed (see [7, Theorem 16]), even though the exis-
tence of a Menger non-σ-compact set of reals had been known to follow from ZFC
since D. Fremlin and A. Miller’s dichotomic proof from [11, Theorem 4]. Note also
that if the regularity requirement is dropped, then Example 3.6 answers Problem 3.15
in the affirmative.
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Lindelöf space is Lindelöf. Fund. Math. 129(1988), no. 2, 133–140.
[2] A. V. Arkhangel’skii, On some topological spaces that occur in functional analysis. (Russian) Uspehi

Mat. Nauk 31(1976), no. 5, 17–32.
[3] L. F. Aurichi, D-spaces, topological games, and selection principles. Topology Proc. 36(2010), 107–122.
[4] L. Babinkostova, B. A. Pansera, and M. Scheepers, Weak covering properties and selection principles.

Topology Applic. 160(2013), no. 18, 2251–2271. http://dx.doi.org/10.1016/j.topol.2013.07.022
[5] T. Banakh and L. Zdomskyy, Selection principles and infinite games on multicovered spaces. In:

Selection principles and covering properties in topology, Quad. Mat., 18, Dept. Math., Seconda
Univ. Napoli, Caserta, 2006, pp. 1–51.

[6] M. Barr, J. F. Kennison, and R. Raphael, On productively Lindelöf spaces. Sci. Math. Jpn. 65(2007),
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[24] T. C. Przymusiński, Products of normal spaces. In: Handbook of set-theoretic topology,

North-Holland, Amsterdam, 1984, pp. 781–826.
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Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Caixa Postal 66281, São Paulo, SP, 05315-
970, Brazil
e-mail: roque@ime.usp.br

https://doi.org/10.4153/CMB-2013-048-5 Published online by Cambridge University Press

http://dx.doi.org/10.1016/0166-8641(82)90065-7
http://dx.doi.org/10.1007/BF01216792
http://dx.doi.org/10.1090/S0002-9939-99-04808-X
http://dx.doi.org/10.1090/S0894-0347-05-00517-5
http://dx.doi.org/10.1090/S0002-9939-2011-10945-6
http://dx.doi.org/10.1090/S0002-9939-09-09887-6
http://dx.doi.org/10.1016/0166-8641(95)00067-4
http://dx.doi.org/10.1080/16073606.1999.9632063
http://dx.doi.org/10.4064/fm210-1-1
http://dx.doi.org/10.4153/CMB-2011-150-2
http://arxiv.org/abs/1103.4957v1
mailto:aurichi@icmc.usp.br
mailto:roque@ime.usp.br
https://doi.org/10.4153/CMB-2013-048-5

