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Blind bandwidth extension of audio signals
based on non-linear prediction and hidden
Markov model
xin liu and changchun bao

The bandwidth limitation of wideband (WB) audio systems degrades the subjective quality and naturalness of audio signals. In
this paper, a new method for blind bandwidth extension of WB audio signals is proposed based on non-linear prediction and
hiddenMarkov model (HMM). The high-frequency (HF) components in the band of 7–14 kHz are artificially restored only from
the low-frequency information of the WB audio. State-space reconstruction is used to convert the fine spectrum of WB audio
to a multi-dimensional space, and a non-linear prediction based on nearest-neighbor mapping is employed in the state space to
restore the fine spectrum of the HF components. The spectral envelope of the resulting HF components is estimated based on an
HMM according to the features extracted from the WB audio. In addition, the proposed method and the reference methods are
applied to the ITU-TG.722.1WB audio codec for comparison with the ITU-TG.722.1C superWB audio codec. Objective quality
evaluation results indicate that the proposed method is preferred over the reference bandwidth extension methods. Subjective
listening results show that the proposed method has a comparable audio quality with G.722.1C and improves the extension
performance compared with the reference methods.
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I . I NTRODUCT ION

According to informal and formal listening tests, the vast
majority of listeners prefer a clean band-limited version of
audio over a heavily distorted full-band one. In perceptual
audio coding, commonly only the low-frequency (LF) com-
ponents are reproduced. For super wideband (SWB) audio
signals, which have a bandwidth of 50Hz–14 kHz, often
only wideband (WB) audio signals with the frequencies
below 7 kHz are coded in the existing telecommunication
network to facilitate transmission efficiency [1]. The result-
ing lack of frequency components above 7 kHz degrades the
naturalness and expressiveness of audio signals. As a result,
an important issue in mobile audio communications is how
to make the existing WB audio systems achieve the audi-
tory quality of SWB audio signals at minimum cost. This
motivates the use of bandwidth extension (BWE) of audio
signals. By analyzing the time–frequency characteristics of
WB audio signals, high-frequency (HF) components above
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7 kHz can be artificially restored at the decoder to improve
auditory quality [2].

The popular BWE methods used in audio coding stan-
dards are non-blind, such as spectral band replication of
MPEG4 [3], the noise-filling (NF) technique of the Inter-
national Telecommunication Union – Telecommunication
Standardization Sector (ITU-T) G.722.1 WB audio codec
[4], and the spectral folding technique of ITU-T G.719
full-band audio codec [5]. In these methods, first the time–
frequency energy of the audio signals is extracted at the
encoder. Then, the proper method of spectral patching for
each subband is determined according to the correlation
between HF and LF spectra. Finally, the time–frequency
energy and the control parameters of spectral patching are
quantized and transmitted to the decoder as side informa-
tion. If an appropriate decoder is used, the side information
is utilized to reconstruct the discarded high frequencies and
the subjective quality can be near transparent from the orig-
inal SWB signals [6]. But the drawback is that the additional
bit-rates of 1–5 kb/s should be provided for the non-blind
BWE module [7, 8]. Most communication systems over
existing mobile networks do not specifically allocate addi-
tional bits for BWEmodule and the decoder that cannot use
the side information only decodes the LF information [6].
Unlike non-blind BWE methods, blind BWE methods can
extend the bandwidth only using the statistical properties
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of the LF audio spectrum, without any auxiliary informa-
tion regarding the discarded HF components. Independent
of the sending side of the transmission link and of existing
source coding and network infrastructure, the SWB audio
signals can be artificially reproduced via blind BWE meth-
ods in the terminal device at the receiving end to enhance
the auditory quality of the bandwidth-limited audio signals
[9]. This motivates the focus on blind BWEmethods in this
paper.

Conventional blind BWE methods can be split into two
subtasks: the extension of the spectral envelope and the
extension of the fine spectrum. The spectral envelope can
be estimated from some a priori information about the
nature of correlation betweenWB audio and the HF signals
using codebook mapping [10, 11], Gaussian mixture mod-
els (GMM) [12–14], hiddenMarkovmodels (HMM) [15–17],
and neural network [18]. The commonly used methods for
generating HF fine spectrum of audio signals are based
on a “harmonic + noise” model [2, 8, 19]. For most BWE
schemes, spectral folding [18, 20] and spectral translation
(ST) [21, 22] are applied and have shown high effective-
ness. The fine spectrum of the low frequencies is directly
folded or translated into the HF bands; however, the har-
monic relations of the audio signal may be destroyed by
spectral shifting within the boundary region between HF
andLF spectra, which can lead to undesired auditory rough-
ness [23]. In the G.722.1C audio codec [24], the noise is
generated frame-wise and is filled into the fine spectrum in
the HF bands, which are not quantized and coded. Alter-
natively, a harmonic bandwidth extension method (HBE)
[23] can be applied as a blind BWE method combined with
the estimation of spectral envelope based on a GMM [25].
Spectral stretching is utilized to extend the LF components
between 3.5 and 7 kHz to the higher octave in order to
restore partial HF harmonics. In addition, non-linear pro-
cessing in the time domain (TDNP) [26] can reproduce new
HF harmonic components using non-linear filtering meth-
ods, such as power function and rectification. However,
there are an unlimited number of possible non-linear filter-
ing functions, and it is quite difficult to find that particular
function that yields the best results in the BWE application.
Besides, the effects of the non-linear function for differ-
ent types of audio signals are very difficult to predict, and
this significantly affects the auditory quality of the extended
signals [6].

The aforementioned methods of fine spectrum estima-
tion are all derived from the “harmonic + noise” model.
They emphasize the restoration of the HF harmonics
for tonal signals and maintain the random-like struc-
ture for noise signals [22]. However, audio signals gen-
erated from different instruments exhibit various spectral
characteristics. The HF components generated by percus-
sion instruments are nearly independent of the fundamen-
tal frequency. For stringed instruments, the vibration of
strings gives rise to a series of strong harmonics. Wind
instruments can shape a steady air current and produce
resonances with specific frequencies. Meanwhile, for all
the types of audio signals, the resonance and radiation of

sound in diverse resonators determine audio spectra and
weaken the overtone structure with the increasing of fre-
quencies. Furthermore, if diverse instruments perform at
the same time, the HF spectrum of audio signals cannot
maintain identical tonality with the LF spectrum. Accord-
ingly, the resulting spectra display non-linear characteris-
tics, but cannot be simply described by adding the noise
to the harmonics. Inspired by these facts, we introduced
the non-linear prediction theory into BWE and proved that
audio spectrum has remarkable non-linearity in the pre-
vious studies [27–29]. This paper presents a new method
of non-linear prediction to implement audio bandwidth
extension from WB to SWB in the frequency domain.
Firstly, the LF fine spectrum which is separated from WB
audio is converted into a multi-dimensional space using a
state-space reconstruction (SSR). According to the dynam-
ical system theory, the trajectory in the reconstructed state
space is completely equivalent to the original audio sys-
tem in terms of diffeomorphism, and the point in state
space shares the similar evolving behaviors with its near-
est neighbors. Inspired by these, a non-linear prediction
based on nearest-neighbor mapping (NNM) is employed to
restore the fine spectrum of the high frequencies. The near-
est neighbor of the given state point is selected from the state
points of the LF components, and the evolving trajectory
of the nearest neighbor is used to substitute the evolution
of the given point for further predicting the unknown HF
fine spectrum.Moreover, anHMM is applied in the spectral
envelope extension of the high frequencies. By exploiting
the state transition process of HMM, the temporal correla-
tion between adjacent frames can be captured to make the
spectral envelope of the extended audio signals smoother
over time and better-matched to the original ones. This
is beneficial to the auditory quality of the extended audio
signals. Then, a minimummean square error (MMSE) esti-
mator based on HMM is utilized to estimate the spectral
envelope of the HF components. Finally, the HF compo-
nents are regenerated by appropriately shaping a recovered
fine spectrum and are combinedwith the originalWB audio
to form a SWB audio signal with a bandwidth of 14 kHz.

In the next section, the new BWE method is described
in detail, and then the application of the proposed BWE
method in the G.722.1 WB audio codec is briefly discussed.
In Section III, the proposedmethod and the reference BWE
methods are evaluated in terms of objective quality mea-
surements and subjective listening tests. Then, analysis of
computational complexity is further presented for the pro-
posedmethod. Finally, conclusions are drawn in Section IV.

I I . BANDWIDTH EXTENS ION
METHOD

The proposed BWE method extends the audio bandwidth
of WB audio by generating the frequency components in
the band 7–14 kHz without any auxiliary information and
can therefore be done at the decoder in the terminal device.
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Fig. 1. Block diagram of the proposed BWE method.

A block diagram of the proposed BWEmethod is shown in
Fig. 1.

The input signal is a WB audio signal sampled at 16 kHz
and the bandwidth is 7 kHz. By up-sampling and low-pass
filtering, the resulting signal with a sampling rate of 32 kHz
is divided into frames with 20ms length and a window with
50 overlap is used between frames. Then, the windowed
signal is transformed into the frequency domain by a mod-
ulated lapped transform (MLT), which is also used in the
G.722.1 codec as time–frequency transform [24]. The MLT
coefficients below 7 kHz, Cmlt(i), i = 0–279, are uniformly
divided into 14 sub-bands and the root-mean square (RMS)
of each sub-band, E rms(r ), r = 0, . . . , 13, is computed to
roughly present the spectral envelope of LF spectrum as
follows:

E rms(r ) =
√√√√ 1

20

19∑
n=0

Cmlt(20r + n)Cmlt(20r + n),

0 ≤ r < 14. (1)

Here, the normalized MLT coefficients Cnorm_mlt(i) are
adopted to represent fine spectrum of audio signals as
follows:

Cnorm_mlt(i) = Cmlt(i)

Erms (r )
, 0 ≤ i < 280, r =

⌊
i

20

⌋
.

(2)
The one-dimensional fine spectrum can be converted into a
multi-dimensional space via SSR [30, 31]. A non-linear pre-
diction model is built up to recover the HF fine spectrum
from the vectors in the multi-dimensional space represent-
ing the LF fine spectrum. The recovered HF fine spectrum
needs to be further normalized to ensure that its spectral
flatness is consistent with the LF fine spectrum.

In addition, the normalized MLT coefficients in the HF
bands are also uniformly divided into 14 sub-bands. The
RMS of HF sub-bands indicating the HF spectral envelope
is estimated by an HMM-based Bayesian estimator accord-
ing to a set of time-domain and frequency-domain features
extracted frame by frame from the WB audio [29]. Then,
the spectral shape of the predicted fine spectrum is adjusted
by using the estimated energy of HF sub-bands. Finally, the
artificially generated HF components are combined with
the original LF components to reproduce the bandwidth-
extended audio signals by using inverse MLT (IMLT). The
remainder of this section will describe the details of the
proposed blind BWE method.

A) State-space reconstruction
In our earlier works [27, 28], the statistical analysis based
on the maximum Lyapunov exponent has been made on
the audio spectrum. The results show that for various types
of audio signals there is significantly non-linear correla-
tion between spectral coefficients. Inspired by these facts,
a non-linear prediction model is built up to simulate the
relationship between spectral coefficients.

A normalized MLT coefficients Cnorm_mlt(i), is repre-
sented by a non-linear function of the adjacent MLT
coefficients, Cnorm_mlt(i − 1), Cnorm_mlt(i − 2), Cnorm_mlt
(i − 3), . . . , using the formula

Cnorm_mlt(i) = F [Cnorm_mlt(i − 1), Cnorm_mlt(i − 2),

Cnorm_mlt(i − 3), . . .], (3)

where F [.] denotes a non-linear function and i is the fre-
quency index of the normalized MLT coefficients.

1) Selection of embedding delay
In order to reduce correlation redundancy between adjacent
MLT coefficients, only someMLT coefficients are selected to
predictCnorm_mlt(i) and Formula (3) needs to be revised into
a sparse form via a delay reconstruction method [30, 32] as
follows:

Cnorm_mlt(i) = F [Cnorm_mlt(i − 1), Cnorm_mlt(i − 1 − �i),

Cnorm_mlt(i − 1 − 2�i),

Cnorm_mlt(i − 1 − 3�i), . . .], (4)

where �i is defined as the embedding delay, and any
two adjacent MLT coefficients stand �i frequency indices
apart. The value of �i determines the sparseness of non-
linear prediction model. A quite small �i will lead to a
strong correlation between the spectral coefficients used
for prediction and reduces the generalization performance
of the prediction model. If �i is quite large, then the
spectral coefficients may be mutually independent and
the error of prediction model is increased. Therefore,
an autocorrelation-based selection method of embedding
delay [30] is adopted in this paper to improve the sparseness
of the non-linear prediction model. The autocorrelation
function of the normalized MLT coefficients Cnorm_mlt(i) at
lag i ′ is defined as

RX X(i ′) = 1

N − 1 − i ′

N−1−i ′∑
i=0

Cnorm_mlt(i)Cnorm_mlt(i + i ′).

(5)
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Fig. 2. Fine spectrum for a frame of violin signals.

According to the experimental results, when the autocor-
relation value of f (i) is initially down to the empirical
threshold, (1 − 1/e) of RX X(0), the lag of frequency indices
i ′ is set to the optimal embedding delay �i . The fine spec-
trum for a frame of violin signals and the autocorrelation
function of MLT coefficients are shown in Figs 2 and 3,
respectively. For this example, the appropriate embedding
delay �i is chosen as 1.

2) Selection of embedding dimension
The delay reconstruction method also restricts the num-
ber of the input coefficients for the prediction model due to
the weak correlation between two coefficients, which are far
apart from each other. The finite-order model of non-linear
prediction is implemented as follows:

Cnorm_mlt(i) = F [Cnorm_mlt(i − 1), Cnorm_mlt(i − 1 − �i),

Cnorm_mlt(i − 1 − 2�i), . . . ,

Cnorm_mlt(i − 1 − (m − 1)�i)]

= F [s(i − 1)]. (6)

Here, the input coefficients of the non-linear function F [.]
can be represented by a state vector s(i) which describes
the local structure of audio spectrum. The variable i cor-
responds to the frequency index of the normalized MLT
coefficients. The variable m is defined as the embedding
dimension of state vector s(i). According to Embedding
theorem [33], m should be large enough to ensure that
a state vector can preserve the sufficient information to
describe the outputMLT coefficients in most cases. In prac-
tice, if m is much larger, the reliability of the prediction is
also affected. Therefore, the false nearest-neighbor (FNN)
method [34, 35] is utilized to select a proper embedding
dimension m.

Based on the theory of non-linear dynamics [30], the set
of state vectors s(i) is defined as a multi-dimensional state

Fig. 3. Example of autocorrelation function for fine spectrum of violin signals.

space S,

S = {s((m − 1)�i), s((m − 1)�i + 1), . . . , s(N − 1)}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cnorm_mlt((m − 1)�i) Cnorm_mlt((m − 1)�i + 1)
Cnorm_mlt((m − 2)�i) Cnorm_mlt((m − 2)�i + 1)

...
...

Cnorm_mlt(0) Cnorm_mlt(1)

. . . Cnorm_mlt(N − 1)

. . . Cnorm_mlt(N − 1 − �i)
. . .

...
. . . Cnorm_mlt(N − 1 − (m − 1)�i)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (7)

where N − 1 = 279 corresponds to the cut-off frequency
of the WB audio. Any two state vectors whose distance is
the minimum in the state space are defined as a pair of
nearest neighbors. In an appropriate embedding dimension,
some neighbors in the state space with a low embedding
dimension will no longer be neighbors. This type of near-
est neighbors in the low-dimensional space is defined as
FNN. With the increase of embedding dimension, FNNs
will gradually disappear. So themain idea of FNNmethod is
to examine how the number of FNNs changes as a function
of dimension. If the ratio of FNN to all the state vectors does
not decrease with the increase of dimension, an appropriate
embedding dimension can be determined. The detection
method of FNN is detailed in [34]. For an example of the
frame of violin signals shown in Fig. 2, the ratio of FNN to
all the state vectors as a function of dimension is shown in
Fig. 4. If the dimension is larger than 20, the ratio of FNN
is not obviously decreasing. The fine spectrum of audio
signals is reliably embedded into the state space with the
embedding dimension of 20.

3) Analysis of state trajectory
Once the embedding delay �i and the embedding dimen-
sion m are determined, a state space can be reconstructed
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Fig. 4. The relationship between ratio of FNN to all the state vectors and
state-space dimension.

from the fine spectrum of audio signals via the delay recon-
struction method derived from Formula (7). Here, by map-
ping the multi-dimensional space into a three-dimensional
space, the change of state vectors with the increase of the
frequency index i , which are called the state trajectory, can
be visualized and guide us in the analysis of audio character-
istics. As a visualized example, we select a SWB audio signal
of a violin to reconstruct the state space and analyze the state
trajectory. The violin signal comes from the sound qual-
ity assessment material (SQAM) recordings for subjective
tests of audio signals by the European Broadcasting Union
[36]. The semitone of violin segment is D4, and the pitch is
about 296Hz. Embedding delay�i and embedding dimen-
sion m are set to 1 and 3, respectively. Audio signals with
the frame length of 20ms are transformed byMLT. The fine
spectrum of audio signals is represented by the normalized
MLT coefficients and the state space is reconstructed. The
state trajectories of the fine spectra for LF and HF signals
are demonstrated in Figs 5 and 6, respectively. It is mani-
fest that the state trajectories turn dispersed with increasing
frequency, but nearly all the state vectors for both the HF
and LF signals are localized in a certain range to form a
hyper-ellipsoidal structure which cannot be predicted by a
multivariate linearmodel. For other orchestral instruments,
symphony and pop music from SQAM, the analysis results
of state trajectory are similar. It indicates that the state tra-
jectories of audio spectrum are characterized by regular
structure and the state vectors are predictable once the state
space is properly reconstructed.Moreover, the audio spectra
of some percussion music and live background sound are
also analyzed in a three-dimensional space. Although the
state vectors are scattered in a disorderly way over a certain
area, the trajectories of both LF and HF fine spectra show
the similar characteristics of randomness.

The aforementioned results about state trajectory anal-
ysis show that the audio spectrum has significant non-
linearity and the state trajectories can be predictable for
different audio signals. Once two state vectors are a pair
of neighbors in the state space, they will share the similar

Fig. 5. Example of state trajectory for LF fine spectrum of audio signal.

Fig. 6. Example of state trajectory for HF fine spectrum of audio signal.

change processes with the increase of frequency. Inspired by
the facts, a prediction model based on NNM is built up in
this paper to recover the fine spectrum of high frequencies
from that of low frequencies.

B) Non-linear prediction based on NNM
For the fine spectrum of audio signals, a regular structure is
represented in an appropriate state space. The straightfor-
ward idea [27] is to adopt a non-linear function for describ-
ing the relationship between the unknownMLT coefficients
and the given state vector using Formula (6). The output
MLT coefficients of the non-linear function will be used to
generate a new state vector which becomes the input vec-
tor for the next iteration of non-linear prediction. Due to
no information transmitted about the error between the
predictive value and the true value, the accumulative error
cannot be controlled and the output coefficients go to a
constant value after multi-step predictions.

In this paper, a new non-linear prediction is adopted
according to NNM. Instead of parameterizing a non-linear
function, the NNM method considers the unknown MLT
coefficients and the given state vector as a pair of one-to-one
mapping for describing the change processes of audio spec-
trum in the state space. Each given state vector is compared
with each vector in the state space constructed by the LF fine
spectrum. Once the nearest neighbor is exactly determined,
the output of predictionmodel will be estimated by the out-
put MLT coefficient corresponding to the neighbor vector.
It is beneficial because the stability of prediction model is

https://doi.org/10.1017/ATSIP.2014.7 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2014.7


6 xin liu and changchun bao

Fig. 7. Block diagram of non-linear prediction for fine spectrum using NNM.

ensured without using the output coefficients of the pre-
diction model to re-generate the state vectors for searching
neighbors.

A block diagram of the prediction model for the fine
spectrum of high frequencies is shown in Fig. 7. After
removing the spectral envelope of the WB audio, the nor-
malizedMLT coefficientsCnorm_mlt(i), i = 0, . . . , 279 repre-
sents the LF fine spectrum below 7 kHz. The amplitude val-
ues of fine spectrum |Cnorm_mlt(i)|, i = 0, . . . , 279 are used
as the input coefficients and the amplitude values of HF fine
spectrum |Cnorm_mlt(i)|, i = 280, . . . , 559 are restored via
the non-linear prediction module. Finally, combining with
the estimated envelope of the HF spectrum and the sign
of MLT coefficients, the MLT coefficients in the range of
7–1 kHz are reproduced. The detailed algorithm is described
as follows.

1) Establishing shape set of LF fine spectrum
Using the normalized MLT coefficients in the LF bands
Cnorm_mlt(i), i = 0, . . . , 279, the state vector describing the
LF fine spectrum sp(i) can be represented as

sp(i) = {|Cnorm_mlt(i)|, |Cnorm_mlt(i − �i)|, . . . ,

|Cnorm_mlt(i − (m − 1)�i |)}. (8)

The embedding delay �i and the embedding dimension
m are computed via the autocorrelation method and the
FNN method, respectively, and are used to reconstruct
the state space Sp = {sp(i)|i = (m − 1)�i , (m − 1)�i +
1, . . . , 279}. Each vector of Sp can describe the local spectral
structure of the LF components. Accordingly, the state space
Sp is also defined as the shape set of the LF fine spectrum
and provide sufficient information for the dynamic struc-
ture of the LF fine spectrum with increasing frequency. It
is established every frame with different characteristics of
audio spectrum and is not updated by using the predicted
MLT coefficients.

2) Searching nearest neighbors
By using the FNN method, the FNNs are eliminated by
appropriately increasing the embedding dimension. So the

change processes of a given state vector can be estimated
by the change of the neighbors. The detailed procedure of
searching the nearest neighbors is as follows:

• Pitch detection: The pitch t0 of the band-limited SWB
audio signals is computed in the time domain by a nor-
malized cross correlation method. The frequency index
i f of MLT coefficient whose frequency corresponds to
the pitch t0 can be used for a coarse search of nearest
neighbors and is derived as,

i f =
⌊

1280

t0

⌋
, (9)

where �·� represents the rounding function.
• Coarse searching: The last state vector in the LF com-
ponents sp(i), i = 279, is determined as the estimated
state vector. And coarse searching will be performed. The
state vectors {sp(i − i f ), sp(i − 2i f ), sp(i − 3i f ), . . .} are
firstly chosen as the initial candidate nearest neighbors
of sp(i). Then, the distance between sp(i) and each ini-
tial candidate nearest neighbor is computed. If the dis-
tance is larger than a given threshold, the correspond-
ing candidate nearest neighbor is considered outside the
neighborhood of sp(i) and is discarded. Otherwise, it is
determined as a candidate nearest neighbor s′p( j) through
coarse searching.

• Fine searching: The inner product between sp(i) and each
candidate nearest neighbor {s′p( j)} are computed one by
one. Here, the inner product is adopted instead of the dis-
tance measurement due to takingmore angle information
of state space into consideration. The state vector sp(iN N)

which maximizes the modulus of the inner product is
selected as the nearest neighbor of sp(i). iN N is the index
of state vector with themaximalmodulus of inner product
and defined as,

iN N = arg max
j

{|〈s′p( j), sp(i)〉|}. (10)

3) Nearest neighbor mapping
By maximizing the inner product, the true neighbor of the
estimated state vector sp(i) is determined. The relationship
between the neighbor sp(iN N) and the amplitude of the nor-
malized MLT coefficients |Cnorm_mlt(iN N + 1)| is presented
by a mapping function F [.] as,

|Cnorm_mlt(iN N + 1)| = F [sp(iN N)]. (11)

Likewise, for the estimated state vector sp(i), i = 279, the
amplitude of the normalized MLT coefficients |Cnorm_mlt
(i + 1)| is predicted by the similar mapping function as
follows: ∣∣Cnorm_mlt(i + 1)

∣∣ = F [sp(i)]. (12)

Because the nearest neighbors are very close in the state
space, the distance between sp(i) and sp(iN N) is con-
sidered to be small. With the same mapping function,
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|Cnorm_mlt(i + 1)| can be approximately estimated by using
the output MLT coefficients fed by sp(iN N) as follows:

|Ĉnorm_mlt(i + 1)| ≈ F [sp(iN N)] = |Ĉnorm_mlt(iN N + 1)|.
(13)

Finally, we should decide whether the frequency corre-
sponding to |Ĉnorm_mlt(i + 1)| rises to the cut-off frequency
of 14 kHz. If so, the iterations will be stopped. Otherwise, let
i = i + 1, and repeat the steps of searching nearest neigh-
bors and NNM.

4) Preliminary discussion
As an example, a segment of audio signal from a violin
is preliminarily used to evaluate the proposed prediction
method about the fine spectrum of high frequencies. The
audio signal has a length of 12 s. The fine spectra of SWB
audio signal, WB audio signal, and the predicted audio
signal are given in Fig. 8. Analysis result shows that the har-
monic structure of the predicted audio signals is improved,
and theHF components of the audio signal arewell restored.
Good results are also achieved in the amplitude prediction
of fine spectrum for percussion music and live background
sound because the state trajectories of both their HF and LF
components share a similar characteristic. However, a chal-
lenge appears for some particular audio signals whose LF
components have large differences from the HF ones. Take
a very high-pitched voice to the accompaniment of bass
drums as an example. The noise-like sound produced by
drums blurs the harmonic structure in the LF components.
If the harmonic structure has emerged from the noisy spec-
trum in the LF region, the predicted HF components may
present characteristics similar to the original ones. Oth-
erwise, the proposed NNM method cannot work well to
recover the voice in the HF components. The similar sit-
uation may also appear for the audio signals which have
individual tonal components in HF regions.

In addition, normalized mean-square error is adopted to
analyze the influence of embedding delay and embedding
dimension over the extension performance of the proposed
method and further evaluate the prediction accuracy of HF
fine spectrum compared with different BWE methods. The
original fine spectrum of HF components is referred to as
Cnorm_mlt(i), i = 280, 281, . . . , 559 and its estimated values
is Ĉnorm_mlt(i), i = 280, 281, . . . , 559. Then, the normalized
mean-square error εN MS E is defined as,

εNMSE =
1

280

559∑
i=280

(Cnorm_mlt(i) − Ĉnorm_mlt(i))2

σ 2
m

, (14)

where σ 2
m is the variance of Cnorm_mlt(i). If εN MS E is

quite large, then the spectral distance induced by BWE is
large.

In the proposed BWE method, the autocorrelation
method is used to select a proper embedding delay.
We experimented with different thresholds and selected an
empirical value according to the extension performance of
the proposed method. Figure 9 shows little difference of

(a)

(b)

(c)

Fig. 8. The comparison of fine spectrum for audio signals from violin. (a)
Original spectrum; (b) truncated spectrum; (c) extended spectrum.

extension performance with different thresholds in auto-
correlation method. Therefore, the SSR-based prediction
method is not sensitive to the parameter of delay and
the traditional threshold (1 − 1/e)RX X(0) is used. Also,
the threshold in the FNN method needs to be analyzed.
We experimented with several values of ratio and empiri-
cally optimized the threshold under the extension perfor-
mance. As shown in Fig. 10, the value of εNMSE diminished
with the decrease of ratio threshold of FNN. But in practice,
a small threshold may cause an increase in the compu-
tational complexity. According to the preliminary experi-
ments, when the threshold is down to 5, the embedding
dimension selected by the FNN method will be up to over
25. Due to the increase of embedding dimension, the com-
plexity of the SSR module will increase to more than 6
weighted million operations per second (WMOPS) for the
worst case, and is almost double the complexity when the
threshold is selected to 10. Therefore, a proper threshold
should be selected which considers both extension per-
formance and computational complexity. Here, it is set
to 10.

In addition, the prediction accuracy of HF fine spectrum
is evaluated and compared with different BWE methods
by εNMSE. εNMSE can guide us in measuring the distortion
between the predicted fine spectrum and the original one.
In our BWE method, the embedding delay and embedding
dimension are adaptively determined by using the auto-
correlation method and the FNN method. For the HBE
method, the stretching factor is set to 2. And the square
function is used as a non-linear function in the TDNP
method. Thus, the normalized mean-square error values
from four methods are listed in Table 1. It is shown that the
prediction error of HBE is the largest because the odd har-
monics are not completely reconstructed and the spectral
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Fig. 9. εN MS E of proposed BWEmethod with different thresholds in autocor-
relation method.
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Fig. 10. εN MS E of proposed BWE method with different ratio of FNN.

shape of even harmonics is also changed. And the predic-
tion errors from the ST method and TDNP method are
in the range of 3.5–5. The TDNP method is suitable for
harmonic signals with regards to auditory quality, but the
frequency-mixing distortion generated by non-linear pro-
cessing in time domain leads to a larger error. The ST
method directly translates the LF fine spectrum into the HF
region. This method reacts sensitively to the spectral char-
acteristics of audio signals. For the violin signals, both the
HF and LF components share the strong harmonic char-
acteristics. The moderate distortion is mainly caused by
spectral shifting between HF and LF spectra. For some pop
music, the noise-like components below 2 kHz generated by
accompanying instruments may directly translate into the
HF components and lead to more perceptible distortion. In
addition, the prediction error of the proposed method is
only 2.86. As shown in Fig. 8(c), the HF harmonic structure
predicted by the proposed NNM method is substantially
consistent with that of the LF spectrum although some
artifacts still exist in the HF region. Therefore, it indi-
cates that the proposed BWE method has higher accuracy
for spectral prediction compared with conventional BWE
methods.

Table 1. Comparison of normalized mean square error for four BWE
methods.

εN MS E

ST method 3.7
HBE method 6.0
TDNP method 4.95
Proposed method 2.86

C) Estimation of spectral envelope based on
HMM
The WB signals are up-sampled at 32 kHz and framed with
the length of 20ms. Time-domain and frequency-domain
features FX are computed from the resulting signals and
used to estimate the spectral envelope of the HF com-
ponents FY based on MMSE by a hidden Markov model
[15, 17, 29]. After the energy adjustment of the HF compo-
nents, the HF spectrum from 7 to 14 kHz is restored and
is combined with the original LF components to reproduce
the SWB audio signals via an IMLT.

1) Feature selection
The features extracted from the WB signals are selected
for the purpose of differentiating between various audio
signals with a different spectral envelope in the HF compo-
nents. Considering computational complexity, correlation,
and independence among data, a 26-dimensional time–
frequency feature vector is extracted to describe the audi-
tory perception of the WB audio signals, as shown in
Table 2. The precise definition of these specific features of
audio signals was given in Reference [25]. The zero-crossing
rate FZCR and the gradient index Fg are adopted to distin-
guish the harmonic signal from the noise-like signal [2].
The sub-band RMS, Frms(i), i = 0, . . . , 13, and the flux
of sub-band Fflux are used to further represent the spec-
tral envelope information of the WB audio signals. Besides,
three MPEG-7 audio descriptors (audio spectrum centroid
FASC, audio spectrum spread FASS and spectrum flatness
measurement FSFM(i), i = 7, . . . , 13) are also employed to
supplement the timbre features [37, 38]. FASC describes the
position of dominant spectral content in the power spec-
trum and roughly indicates the timbre of audio signals. FASS
describes the departure of audio spectrum from FASC to
depict the auditory brightness of audio signals. FSFM(i) are
defined as the ratio of geometric mean value to algebraic
mean value forMLT coefficients in each sub-band in the fre-
quencies from 3.5 to 7 kHz. The values of FSFM(i) are fixed
between 0 and 1. If FSFM(i) = 0, the signal is totally tonal,
otherwise if FSFM(i) = 1 it is noise-like.

In addition, the estimated spectral envelope of HF com-
ponents FY can be represented by RMS of sub-bands,
Frms(i), i = 14, . . . , 27, in the frequencies from 7 to 14 kHz.
In the training of a priori knowledge, the statistical distri-
bution of joint feature vector FZ = {FX,FY} is computed to
guide us in estimating FY under the given FX.
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Table 2. Time–frequency features for describing WB audio signals.

Feature Dimension

Zero-crossing rate FZCR 1
Gradient index Fg 1
Sub-band RMS, Frms (i), i = 0, . . . , 13 14
Flux of sub-band Fflux 1
Audio spectrum centroid FASC 1
Audio spectrum spread FASS 1
Spectrum flatness measurement FSFM(i), i = 7, . . . , 13 7
Total 26

Fig. 11. Block diagram of a priori knowledge training.

2) Training of a priori knowledge
The block diagram of a priori knowledge training based
on HMM is shown in Fig. 11. Firstly, an LBG-based vector
quantization method [39] is employed to divide the feature
space of FY into Ns = 16 cells. Each cell is referred to as
a model state Si . According to the state transition process,
the actual state transition series {Si } can be obtained, and
the distribution probability of each state P (Si ) and the one-
step transition probability of actual state series P (Si |S j ) are
computed, respectively. Next, for the joint feature vector
FZ = {FX,FY}, an independent subset FZ|Si = {FX,FY|Si }
is built for each model state. The joint probability den-
sity of each state p(FX,FY|Si ) is modeled by a GMM with
32 mixtures and full covariance matrices, and the param-
eters of a GMM are trained by the standard expectation–
maximization algorithm [40]. Thereby, P (Si ), P (Si |S j ),
and p(FX,FY|Si ) are used as a priori knowledge for training
with an off-line approach.

3) Estimation of the HF spectral envelope
For each state Si of the HMM model, an MMSE estimator
is used to obtain the conditional expectation E {FY|Si ,FX}

of FY given the WB features FX,

E {FY|Si ,FX} =
∫

FY p(FY|Si ,FX)dFY, (15)

which can be calculated from the joint probability distribu-
tion function p(FX,FY|Si ) [12].

If the WB feature vector of the mth
k frame, FX(mk) =

{FX(mk − 1),FX} is known, a posterior probability of the i th
state, P (Si |FX(mk)) can be computed in a recursive fashion
[41] as follows:

P (Si |FX(mk)) = C · p(FX|Si (mk))

·
Ns∑
j=1

P (Si (mk)|S j (mk − 1))

· P (S j (mk − 1)|FX(mk − 1)), (16)

where the marginal probability density p(FX(mk)|Si (mk))

of FX, can be derived from the GMM corresponding to the
i th state and C is the normalized factor, which keeps the
sum of P (Si (mk)|FX(mk)) over all the states be equal to 1.

Taking the state transition process into consideration, the
HHM-based MMSE estimator can be performed to obtain
the optimal estimation of the HF spectral envelope F̂Y and
is expressed as,

F̂Y =
Ns∑
i=1

E {FY|Si ,FX}P (Si |FX(mk)). (17)

It is worth noting that each state defined by vector quanti-
zation is assumed to be stationary and represents the char-
acteristics of one particular SWB audio. The state transition
process described by aMarkov chain can effectively describe
the evolution among “attack, decay, sustain and release” part
of a sound in the time domain. Accordingly, the dynamic
performance of the BWEmethod can be improved by using
an HMM-based estimator [17]. Especially for the transition
between different parts of audio, the sudden change of the
HF energy caused by misestimating the spectral envelope is
reduced.

D) Synthesis of HF components
The fine spectrum of HF components is reconstructed by
using non-linear prediction based on NNM, but the sign
information of MLT coefficients is not independently pre-
dicted.One alternativemethod is to fill the randomsign into
the HF coefficients. But informal listening tests show that if
the random sign is filled into the HF coefficients, the spo-
radic noise will be included in the reproduced audio signals
with BWE. Thereby, the sign information in the frequency
range from0 to 7 kHz is translated into the sign ofHF coeffi-
cients for improving the continuity of HF tonal components
in the time domain, and the HF components in the band
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Fig. 12. Block diagram of G.722.1 encoder.

7–14 kHz are generated via the energy adjustment of the HF
fine spectrum according to the estimated spectral envelope
Êrms (r ) as follows:

Ĉmlt(i) = sign(Ĉmlt(i − 280))|Ĉnorm_mlt(i)|Ê rms(r ),

280 ≤ i < 560, r =
⌊

i

20

⌋
. (18)

E) Application of blind bandwidth extension
in audio codec
In order to verify the performance of bandwidth extension
in practical audio codecs, the proposed method has been
used on the audio signals decoded by ITU-T G.722.1 WB
audio codec [4] at 24 kb/s to implement blind BWE. The
audio signals decoded by ITU-TG.722.1C SWB audio codec
[24] are used to compare the performancewith the extended
SWB audio signals. The encoding and decoding principles
of G.722.1 and G.722.1C are described as follows.

1) G.722.1 and G.722.1C codec
For the G.722.1 codec, the bandwidth of input signals is
7 kHz, and the sampling rate is 16 kHz. As shown in Fig. 12,
an MLT is performed with the frame length of 20 ms and a
50 overlap is used between frames. The MLT coefficients
below 7 kHz are uniformly divided into 14 sub-bands. The
spectral envelope of each sub-band is scalar quantized and
Huffman coded, and 4 bits of control bits are used to indi-
cate the bit allocation and quantization strategy. At last, the
Scalar Quantization and Vector Huffman coding (SQVH)
of the normalized MLT coefficients is performed.

The inverse process of quantization and encoding is per-
formed in the decoder to reproduce the WB audio signals.
However, for some sub-bands with lower energy, no MLT
coefficients are transmitted as the fine spectrum due to the
limitation of coding bit-rates. To avoid audible artifacts, the
decoder reproduces these MLT coefficients using NF for
which these coefficients are replaced with values of random
sign and amplitude proportional to the sub-band energy.

As an extended mode of G.722.1, the G.722.1C codec
adopts the same framework as the G.722.1 main body and is
designed to operate with an audio signal sampled at 32 kHz.

Spectral envelope 
extension

Fine spectrum 
extension
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IMLT
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Quantization

Strategy

Fine spectrum 
decoding

D
E
M
U
X
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Fig. 13. Block diagram of G.722.1 decoder with BWE.

Since the frequency information transmitted by G.722.1C is
double that of G.722.1, G.722.1C must allocate more bits to
the LF information in order to facilitate coding efficiency.
For G.722.1C at 24 kb/s, only the sub-band energy of the HF
components is transmitted to the decoder at about 2 kb/s,
while the fine structure of the HF spectrum is almost repro-
duced by NF.With the increasing of bit-rate, more informa-
tion describing the fine spectrum is encoded and the quality
of the reproduced signals is further enhanced. G.722.1C
can be referred to as a non-blind BWE method, which can
improve the brightness of the reproduced audio signals at
low bit rates. Therefore, it is selected as an important refer-
encemethod to evaluate the performance of proposed blind
BWE method.

2) Application framework of the proposed
BWE method
In order to extend the bandwidth of audio signals decoded
by G.722.1, the proposed BWE method is embedded into
G.722.1 decoder as a separate module. The block diagram
of the G.722.1 decoder with BWE is depicted in Fig. 13, and
the algorithm is presented in Table 3.

The normalized MLT coefficients decoded from the fine
spectrum code words according to control bits are used
to recover the HF fine spectrum by using the non-linear
prediction based on NNM. In addition, a set of features
computed from the decoded sub-band energy and the
reproduced WB audio is fed into the HMM-based estima-
tor. After the energy adjustment, the regenerated HF com-
ponents are combined with the original WB audio to form
a SWB audio signal via an IMLT. It is worth noting that,
because the G.722.1 codec and the proposed BWE method
adopt the same time–frequency transform, no additional
complexity of time–frequency transform is required in the
G.722.1+BWE scheme.
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Table 3. Algorithm of G.722.1 decoder with the BWE function.

For each frame of audio signal
Decode Êrms (r ), r = 0, . . . , 13;
Determine bit allocation and quantization strategy;
Decode Ĉnorm_mlt(i), i = 0, . . . , 279;
Produce 320 samples of WB audio by IMLT;
Pitch detection;
FX=WB feature vector;
HMM-based estimation for obtaining Êrms (r ), r = 14, . . . , 27;
Reconstruct the state space Sp from Ĉnorm_mlt(i), i = 0, . . . , 279;
i = 279;
repeat
Determine the state point sp(i);
Search the candidate nearest neighbors s′p( j) from Sp ;
Finely search the nearest neighbor sp(iN N );
|Ĉnorm_mlt(i + 1)| = |Ĉnorm_mlt(iN N + 1)|;
i = i + 1;

until the cut-off frequency of 14 kHz;
Ĉmlt(i) = sign(Ĉmlt(i − 280))|Ĉnorm_mlt(i)|Êrms (r ), 280 ≤ i < 560,
r = � i

20 �;
Produce 640 samples of the extended SWB audio by IMLT;

End

I I I . EVALUAT ION AND TEST
RESULT

The goal of this work is to enhance the auditory quality of
theWB audio, and to make the reproduced signal achieve a
comparable performance with the SWB audio coding. This
section will describe the subjective and objective evalua-
tions of the proposed BWE method in comparison with
the reference methods, as well as the WB audio decoded by
G.722.1 and the SWB audio decoded by G.722.1C. Analysis
of computational complexity is also presented.

A) Training
In the proposed method, statistical dependencies between
the features computed from theWB audio and the HF spec-
tral envelope are modeled as an HMM. The training data
come from the lossless audio data of the 39th Annual Amer-
icanMusic Awards recorded by the American Broadcasting
Corporation. It contains different types of dialogues, music,
singing, and live background sound. The audio signals were
transcoded by high-quality equipment and digitally stored
by using 16-bit PCMwith the sampling frequency of 32 kHz
and the bandwidth of 14 kHz. The length of training data
was about 2 h and its level was normalized to −26 dBov.
The parallel WB audio signals were generated after low-
pass filtering and down-sampling. The time-domain and
frequency-domain features extracted from the WB signals
were used as the input featuresFX. TheHF spectral envelope
FY was computed from the training samples in the parallel
SWB database. The joint vector FZ = {FX,FY} were mod-
eled by an HMM. By using a LBG algorithm, the feature
space of FY is divided into 16 states. Additionally, the state
probability and transition probabilities are easily computed
according to the hybrid-training approach proposed by Jax
and Vary [15]. The joint probability density p(FX,FY|Si ) of
each state can be approximated by a GMM trained using the

standard expectation–maximization algorithm. The model
has 32 mixtures and full covariance matrices. According to
an informal listening test, no evident difference can be per-
ceived with increase of the number of states and Gaussian
mixtures.

B) Test data and reference methods
Eighteen audio signals were chosen for test from the stan-
dard audio quality assessment database of MPEG. None of
these signals was included in the training data. Each audio
signal had a length between 10 and 20 s and was sampled
at 32 kHz with the bandwidth of 14 kHz. These test signals
were clean and could be divided into three types: simple
audio, complicated audio, and singing audio. Each type had
six audio data. In the simple audio data, no more than
three instruments were performing at the same time. But
the complicated audio data contained more types of instru-
ments performing simultaneously. Singing with accompa-
niment was classified as singing data. Moreover, the sound
level of each test signal was also normalized to −26 dBov.

The test signals were down-sampled at 16 kHz and pro-
cessed with the G.722.1 codec at 24 kb/s as WB references.
SWB references were produced with the G.722.1C codec
at 24 and 32 kb/s. Test items for BWE were obtained by
applying the proposed method and reference methods to
the G.722.1-coded WB signals. In summary, the eight pro-
cessing types included in the evaluations are listed below.

• G.722.1:WB audio codedwith theG.722.1 codec at 24 kb/s;
• G.722.1C-24: SWB audio coded with the G.722.1C codec
at 24 kb/s;

• G.722.1C-32: SWB audio coded with the G.722.1C codec at
32 kb/s;

• NNM: G.722.1-coded WB audio processed with the pro-
posed BWE method;

• ST: G.722.1-coded WB audio processed with the ST
method;

• TDNP: G.722.1-coded WB audio processed with the
TDNP method;

• HBE: G.722.1-coded WB audio processed with the HBE
method;

• CP: G.722.1-coded WB audio processed with the chaotic
prediction (CP) method [27].

For G.722.1C at 24 and 32 kb/s, the bit rate of about 2 kb/s
is used for the sub-band energy in the HF components. The
NF is used to reproduce the HF fine spectrum in the SWB
codec at 24 kb/s, while additional code-words describing
the HF fine spectrum are transmitted to decoder at 32 kb/s.
The original methods of ST, TDNP, and HBE need the cost
of small side information describing the spectral envelope
of the original HF components. In order to compare with
the blind BWE method, the same MMSE estimator based
on HMM as the proposed method is used in these meth-
ods to reconstruct the RMS energy of sub-bands in the HF
components. The ST and spectral stretching methods are
processed in the frequency domain for the ST and HBE
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methods, respectively. The TDNP method adopts the non-
linear processing based on a square function to reproduce
the new HF harmonic components in the time domain. So
the extended audio signals have to been translated into the
frequency domain for adjusting the spectral envelope. In
addition, the CP method reconstructs the HF fine spec-
trum by the joint prediction between linear and non-linear
functions, and further adjusts the harmonics and spectral
envelope without side information.

C) Objective evaluation
Audio signals generated using the proposed method, the
referencemethods (ST, TDNP,HBE, andCP), andG.722.1C,
were objectively evaluated in terms of the log spectral dis-
tortion (LSD) [42] and the segmental signal-to-noise ratio
(SNRseg) [43] in comparison with the original SWB audio.
Before evaluation, the processed signals are alignedwith the
original signals in the time domain and resampled at 32 kHz.

1) Log spectral distortion
For 18 test signals, differences between the differently pro-
cessed SWB signals and the original SWB signals were com-
pared in terms of LSDmeasure, which is commonly used for
the comparison of the audio spectra. LSD based on the fast
Fourier transform power spectrum has been employed for
the BWE evaluation in this paper, and its measurement is
defined as,

dL S D(i) =
√√√√ 1

Nhigh − Nlow + 1

Nhigh∑
n=Nlow

[
10 log10

Pi (n)

P̂i (n)

]2

,

(19)

where dL S D(i) is the LSD value of the i th frame, Pi and P̂i

are the power spectra of the original SWB audio signals and
the audio signals processed with different methods, respec-
tively. Nhigh and Nlow are the indices corresponding to the
upper and lower bound of the frequency band from 7 to
14 kHz. The analysis was performed using a discrete Fourier
transformation (DFT) in 20-ms frames without overlap-
ping. The frame-based LSD is averaged over all the frames
for each test signal and themean LSD is used as an objective
quality measurement for BWE.

The results of LSD measurement are shown in Fig. 14.
Through BWE, the LSD of complicated audio signals is
much larger than other types of audio signals. Because
various types of instruments are involved in the compli-
cated audio signals, the energy in the HF spectrum is
relatively high and not easy to estimate accurately. The
distortion of simple audio signals is the smallest, on one
hand, because the typical harmonic components in the
solo of violin, orchestral instruments, and guitar are easy
to recover. On the other hand, the energy attenuation of
their HF components is obvious, thus it may lead to a low
distortion.

As shown in Fig. 14, the SWB audio reproduced by
G.722.1C can achieve the best objective quality for all the
three types of audio. The spectral distortion induced by

Fig. 14. LSD for different BWE methods.

ST is the largest and the mean LSD of ST is about 11 dB.
The LSD of ST seems to be different from the normalized
mean-square error of ST in Section II. This is because LSD
emphasizes the distortion induced by an estimated spec-
tral envelope, instead of the fine spectrum of the extended
signals. For the complicated audio with a high energy in
the HF bands, some noisy components translated from the
components below 2 kHz lead to a higher average distor-
tion. Moreover, LSDs of the TDNP, HBE, and CP methods
are similar, and the mean values are around 10.5 dB. NNM
method shows a better extension performance than others
and the mean LSD is close to 9 dB. Furthermore, the LSD of
complicated audio is 1 dB higher than that of simple audio
for both the NNMmethod and the HBE method. Thus, the
fine spectrum prediction for complicated audio needs to be
further optimized.

2) Segmental signal-to-noise ratio
Besides LSD, SNRseg is also used as an objective quality
measurement to evaluate the differences between the repro-
duced signals and the original signals in the time domain.
It is defined as,

dS N Rseg = 10

M

M−1∑
m=0

log10

⎛
⎜⎜⎜⎝1 +

N·m+N−1∑
n=N·m

s 2(n)

N·m+N−1∑
n=N·m

(s (n) − ŝ (n))2

⎞
⎟⎟⎟⎠ ,

(20)

where s (n) and ŝ (n) are the original SWB audio signals and
the reproduced audio signals, respectively. N = 640 is the
frame length of audio signals and M represents the frame
number of each test signal. The SNRseg values of different
BWE methods are shown in Fig. 15.

As shown in Fig. 15, the mean SNRseg of complicated
audio is the lowest for each method. The CP method does
not specially amend the spectral envelope according to the
dynamic properties of audio signals, so the SNRseg value
is relatively low. The SNRseg values of ST, TDNP, HBE,
and NNM show a similar performance, because the simi-
lar estimationmethod based onHMM is employed to shape
the spectral envelope of the HF components. The proposed
NNM method achieves more than 1 dB improvement over
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Fig. 15. SNRseg for different BWE methods.

the reference methods, but is inferior to the G.722.1C SWB
audio coding.

D) Subjective listening tests
MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA) listening test and comparison category rating
(CCR) listening test are presented in comparison with WB
audio reproduced by G.722.1 and SWB audio reproduced by
G.722.1C.

1) MUSHRA listening tests
The listening test was conducted for subjective assessment
using MUSHRA methodology recommended by ITU-R
BS.1543-1 [44] and was mainly used to grade the degree
of audio quality impairment for the BWE methods, SWB
audio codec and WB audio codec. In each test case, the
listener was presented with the labeled reference, a certain
number of test signals, a hidden version of the reference and
an anchor. The original SWB audio signal was included as a
hidden reference and the low-pass filtered signal with band-
width of 3.5 kHz as an anchor. The impairments of audio
quality for G.722.1 codec at 24 k/s, G.722.1C codec at 24 k/s
and 32 kb/s, ST method, HBE method, TDNP method, CP
method and proposed NNM method were evaluated for
the subjective listening test using the following a 100-point
scale: 100–80, Excellent; 80–60, Good; 60–40, Fair; 40–20,
Poor; and 20–0, Bad.

15 male and 5 female listeners took part in the test and
the age range was from 22 to 30 years old. The test was
arranged in the quiet room conforming to the specifica-
tions of the ITU-R recommendation BS.1116-1 [45] and only
the test attendee was present in the room during the test.
Five test signals including popmusic, guitar, sax, and drums
were selected from theMPEGdatabase [46], and the level of
the original test signals and the processed signals was nor-
malized to −26 dB. They were played to both ears through
AKG K271 MKII headphones. Each listener compared all
the processing types of test signals. In each test case, the
listeners could switch at will between the reference signal
and any other differently processed signals under test. All
the audio signals could be repeated any number of times,
and no time limitation is required for giving the response.
Before the formal test, another test signal was used for train-
ing in order to obtain reliable results. The training phase

Fig. 16. Mean subjective scores with 95 confidence intervals for theMUSHRA
listening test.

exposed the listeners to the full range and nature of impair-
ments that would be experienced during the test. Moreover,
the listeners were instructed to adjust the sound volume to
a suitable level and knew well the test process. During each
test case, listeners derived their grade for a given test sig-
nal by comparing it to the reference signal, as well as to the
other signals, and recorded their assessment of the quality in
a previously prepared form. After the test, the comments on
the test signals for the listeners were collected and analyzed
by the experimenters.

On the assumption that the individual scores meet nor-
mal distribution, the mean scores and 95 confidence
interval are calculated according to the statistical analysis
method mentioned in ITU-R BS.1543-1, and the result for
each processing type are illustrated in Fig. 16. The G.722.1C
codec at 32 kb/s was considered substantially better than
the BWE methods and the WB codec. The performance of
the G.722.1C codec at 24 kb/s was a little weaker because the
fine spectra of both LF andHF are coarsely reproduced.Due
to the same estimation method of HF spectral envelope,
ST, HBE, TDNP, and NNM showed a similar performance
for extending the audio bandwidth and outperformed the
G.722.1 WB audio codec in terms of subjective auditory
quality with statistical significance. The proposed NNM
method gave marginally better performance than TDNP
and performs better than other three BWE methods with
statistical significance. But NNM showed slightly impair-
ment compared to the G.722.1C codec at 24 kb/s. In addi-
tion, the CP method adopts a different architecture from
other methods and also showed a moderate performance.

2) CCR listening tests
Additionally, a CCR listening test which is similar to the
subjective assessment method recommended by ITU-T
P.800 [47] was used to pairwise evaluate the differences of
audio quality for G.722.1C at 24 kb/s, TDNP, and NNM. In
each test case, two differently processed versions of the same
test signals were presented to the listeners. Listeners used
the following seven-point comparisonmean opinion scores
(CMOS) to judge the quality of the second audio sample rel-
ative to that of the first: 3, much better; 2, better; 1, slightly
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better; 0, the same; −1, slightly worse; −2, worse; −3 much
worse.

A total of 20 listeners who also participated in the CCR
test were invited to take part in the test. The test was
arranged in the quiet room and the differently processed
types of the five MPEG testing signals were played to both
ears through AKG K271 MKII headphones for listening
tests. Each listener had a short practice before actual tests to
adjust the volume setting to a suitable level, andwas allowed
to repeat each pair of testing data with no time limitation
before giving their answers.

Three groups of tests were presented to each listener.
They are the comparison between NNM method and
TDNP method, the comparison between G.722.1C codec
and TDNP method, and the comparison between NNM
method and G.722.1C codec. The distributions of listener
rating for each group of tests are shown in Fig. 17. The
bars indicate the relative frequencies of the scores given
in the comparisons between the two processing methods.
Bars on the positive side show preference for the latter
method. The mean score for each group of tests is also
shown on the horizontal axis with the 95 confidence inter-
val. The proposed NNM method and G.722.1C SWB audio
codec showed an improved performance compared with
the TDNP method. The SWB audio reproduced by NNM
method had the similar quality as the audio signals decoded
by G.722.1C. This means that the proposed NNM method
is able to enhance the quality of audio signals decoded by
G.722.1 and achieves better performance than the TDNP
method on average.

E) Algorithmic complexity
Table 4 lists the relevant complexity figures for the proposed
BWE method. The algorithm complexity is measured in
WMOPS for theworst case [48]. Formemory requirements,
the proposedmethod needs about 32 K bytes RAMand 47K
bytes ROM. The test signals from the MPEG database were
used to evaluate the proposedmethod. Except theMLT and
the IMLT, the major contributions come from the estima-
tion of the HF spectral envelope and from the SSR. We
additionally observe that the complexity of the modules for
the SSR and the fine spectrum restoration is relevant to the
values of two embedding parameters (�i and m). In order
to reduce the increasing complexity, the fixed embedding
parameters can be used instead of the adaptive selection
methodsmentioned in Section II and the space gridmethod
can be employed to describe state space in order to imple-
ment fast searching for nearest neighbors. Using these fast
algorithms, a suboptimal version is built up and the reduced
complexity is about 3.2WMOPS, while the LSD value of the
revised version rises about 1 dB on average.

F) Discussion
The proposed method adopts the framework of the
frequency-domain processing methods as most modern
audio codecs and is able to directly adjust the envelope

(a)

(b)

(c)

Fig. 17. Distributions of listener rating in CCR tests. (a) Comparison between
NNM and TDNP. (b) Comparison between TDNP and G.722.1C. (c) Compari-
son between G.722.1C and NNM.

Table 4. Algorithm complexity of proposed BWE method.

Module Complexity (WMOPS)

MLT and IMLT 3.42
Spectral envelope estimation 4.36
State-space reconstruction 3.14
Fine spectrum restoration 1.57

and tonality on the audio spectrum of the reproduced sig-
nals. Taking the actual audio codecs into consideration, the
frequency-domain blind BWE methods show more feasi-
bility, because it can be appropriately revised and be easily
applied into the actual SWB audio decoder to substitute for
all or parts of the true HF reconstruction module [22, 49] at
the mode of low bit-rates. It helps reduce the quality vari-
ations between the audio signals with different bandwidth
[6]. So the proposed method is also feasible to actual audio
codec.
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In comparison with the state-of-the-art time-domain
method of TDNP, the subjective listening tests indicate that
the proposed NNM method gives slightly better perfor-
mance. For the TDNP method, the partial harmonic com-
ponents in HF regions are exactly reproduced by non-linear
filtering and the phase of restored HF signals is continu-
ous. So this method shows particular advantages for signals
with strong harmonics. For a common audio, the spectrum
may switch from the harmonic-like one to the noise-like
one with the increase of frequency. The additional tonal
components reproduced by TDNP, which do not appear in
the original HF regions, will introduce audible artifact. The
proposed method trends to follow the evolution of spectral
characteristics from LF to HF and preserves a proper level
of residual noise in the HF regions. Especially for compli-
cated audio and singing, this can improve the robustness
of BWE methods when the HF spectrum shows a different
characteristic from the LF one.

Additionally, it can be found from the observation on
some stringed music during test that the audio signals
reproduced byNNMmay show some distortion because the
estimation of pitch becomes unstable, when the fundamen-
tal frequency of audio signals varies rapidly. During coarse
searching, the improper neighbors might be searched out
and lead to some perceptible distortion. The pitch smooth-
ing methods, such as median filtering, parabola interpola-
tion, and dynamic programming, might solve this problem
during a vibrato arises. By reducing the variation of HF
overtone frequencies, the auditory quality of reproduced
audio can be guaranteed to a certain extent.

I V . CONCLUS IONS

A new method for blind bandwidth extension from WB to
SWBaudio signalswas presented in this paper.Our research
was motivated by studies of the non-linear characteristics
for the fine spectrum of audio signals. In state space, a non-
linear prediction based on NNM was employed to restore
the fine spectrum of high frequencies from the LF state
vectors. In addition, the spectral envelope of HF compo-
nents was estimated by HMM without any side informa-
tion. The proposed BWE method was applied to extend
the bandwidth of the audio signals coded by the G.722.1
codec at 24 kb/s. The results of the objective measure-
ments indicate that the NNM method effectively restores
the original HF components and performs better than the
reference BWE methods. In terms of the subjective listen-
ing tests the NNMmethod is preferable over G.722.1 codec,
ST method, CP method, and HBE method on an average.
Moreover, NNM gives marginally better performance than
TDNP method and shows a quality similar to the G.722.1C
SWB audio codec at 24 kb/s.
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