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Abstract. In this paper we shall first show that if T is a class A(k) operator then
its operator transform T̂ is hyponormal. Secondly we prove some spectral properties
of T via T̂ . Finally we show that T has property (β).
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Let H be a complex Hilbert space and L(H) the algebra of all bounded linear
operators on H. An operator T ∈ L(H) has a unique polar decomposition T = U|T |
where |T | = (T∗T)

1
2 and U is the partial isometry satisfying N(U) = N(T) = N(|T |)

and N(U∗) = N(T∗).
An operator T ∈ L(H) is said to be hyponormal if T∗T ≥ TT∗ where T∗ is the

adjoint of T . As a generalisation of hyponormal operators, p-hyponormal and log-
hyponormal operators are defined in [2] and [9] respectively. An operator T is said
to be p-hyponormal if and only if (T∗T)p ≥ (TT∗)p for a positive number p and log-
hyponormal if and only if T is invertible and log(T∗T) ≥ log(TT∗). An operator T is
said to be of class A if and only if |T2| ≥ |T |2. See [9]. As a generalisation of class A,
class A(k) and class A(s, t) are defined in [9] and [8] respectively. T belongs to class
A(k), if and only if (T∗|T |2kT)

1
k+1 ≥ |T |2 where k > 0. For positive numbers s and t,

T belongs to class A(s, t) if and only if (|T∗|t|T |2s|T∗|t) t
s+t ≥ |T∗|2t. In particular a

class A(k, 1) operator is a class A(k) operator [18]. It is well known that inequalities
(T∗|T |2kT)

1
k+1 ≥ |T |2 and (|T∗||T |2k|T∗|) 1

k+1 ≥ |T∗|2 are equivalent [18].
The following inclusion relations hold among these classes:

{hyponormal} ⊂ {p-hyponormal, 0 < p < 1} [12]

⊂ {class A(s, t), s, t ∈ (0, 1]} [8]

⊂ {class A} [12]

⊂ {class A(k), k ≥ 1} [9].

The Aluthge transform T̃ = |T | 1
2 U|T | 1

2 was introduced in [1]. An operator is w-
hyponormal if |T̃ | ≥ |T | ≥ |T̃∗| [3]. The Aluthge transforms are useful in the study of
these new classes of operators. “The Aluthge transform is an operator transform
from the class of w-hyponormal and semi-hyponormal operators to the class of
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semi-hyponormal and hyponormal respectively. By using Aluthge transforms we can
obtain spectral properties of these new classes of operators from those of hyponormal
operators” [7]. But so far we have not obtained any property of a class A(k) operator
and it becomes difficult to study its properties. In this paper a new operator transform
T̂ of T from the class A(k) to the class of hyponormal operators is given by

|T̂ | = ||T |kT | 1
k+1 .

We denote the spectrum, the point spectrum, the approximate point spectrum and
the residual spectrum of an operator T by σ (T), σp(T), σa(T) and σr(T) respectively.
A complex number λ is in the normal approximate point spectrum σna(T) if there
exists a sequence {yn} of unit vectors such that (T − λ)yn → 0 and (T − λ)∗yn → 0
as n → ∞. For a hyponormal operator T , σa(T) = σna(T) because the inequality
‖(T − λ)∗y‖ ≤ ‖(T − λ)y‖ always hold for all λ ∈ C and all y ∈ H [7].

In the following theorem we shall show that the operator transform T̂ is
hyponormal when T is a class A(k) operator, where k > 1. Throughout this paper
we assume that k > 1.

THEOREM 1. If T = U|T | is the polar decomposition of a class A(k) operator,
then T̂ = WU||T |kT | 1

k+1 is hyponormal, where |T ||T∗| = W | |T ||T∗| | is the polar
decomposition.

The following theorems play an important role in the proof of Theorem 1.

Theorem R1 [12]. Let A and B be positive operators. Then for each p ≥ 0 and r ≥ 0 the
following assertions hold:

(a) If (B
r
2 ApB

r
2 )

r
p+r ≥ Br, then Ap ≥ (A

p
2 BrA

p
2 )

p
p+r .

(b) If Ap ≥ (A
p
2 BrA

p
2 )

p
p+r and N(A) ⊂ N(B), then (B

r
2 ApB

r
2 )

r
p+r ≥ Br.

Theorem R2 (Löwner-Heinz inequality [12]). A ≥ B ≥ 0 ensures that Aα ≥ Bα for any
α ∈ (0, 1].

Theorem R3 [13]. Let T = U|T | and S = V |S| and |T ||S∗|= W | |T ||S∗| | be the polar
decompositions. Then TS = UWV |TS| is also the polar decomposition.

Proof of Theorem 1. By assumption T is a class A(k) operator. The following
inequalities hold.

(T∗|T |2kT)
1

k+1 = (|T |U∗|T |2kU|T |) 1
k+1 ≥ |T |2 ⇐⇒ (|T∗||T |2k|T∗|) 1

k+1 ≥ |T∗|2. (1)

Applying Theorem R1 we obtain

|T |2k ≥ (|T |k|T∗|2|T |k)
k

k+1 . (2)

Since 1
k < 1, by Theorem R2 we have

|T |2 ≥ (|T |k|T∗|2|T |k)
1

k+1 = (|T |kU|T |2U∗|T |k)
1

k+1 . (3)

From (1) and (3) we get

(|T |U∗|T |2kU|T |) 1
k+1 ≥ |T |2 ≥ (|T |kU|T |2U∗|T |k)

1
k+1 . (4)

Let S = |T |kU|T | = |T |kT . Then (4) becomes, (S∗S)
1

k+1 ≥ (SS∗)
1

k+1 . This shows that
S = |T |kT is 1

k+1 hyponormal. Besides, since T = U|T | and |T |k = U∗U|T |k are the
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polar decompositions, by Theorem R3, |T |kT has the following polar decomposition

|T |kT = U∗UWU||T |kT |, (5)

where |T |k|T∗| = W ||T |k|T∗|| is the polar decomposition. Accordingly we have
N(U) ⊆ N(|T∗||T |k) = N(W ∗) and W ∗U∗U = W ∗ on H = N(U) ⊕ R(U∗).

Hence (5) can be written as |T |kU|T | = U∗UWU||T |kU|T || = WU||T |kT | which
is 1

k+1 hyponormal. It follows that T̂ = WU||T |kT | 1
k+1 is hyponormal. �

We note that T̂ ||T |kT | k
k+1 = T̂ |T̂ |k = WU||T |kT | = |T |kT .

THEOREM 2. Let T be a class A(k) operator and {yn} be a sequence of unit vectors
in H such that limn→∞ (T̂ − λ)yn = 0. If limn→∞ |T̂ |kyn and limn→∞ |T |kyn exist, then
limn→∞ (T − λ)yn = 0 and limn→∞ (T − λ)∗yn = 0 where λ ∈ C.

Proof. Since T̂ is hyponormal, limn→∞ (T̂ − λ)yn = 0 implies that limn→∞
(T̂ − λ)∗yn = 0. When λ = 0 , limn→∞ T̂yn = 0 and hence limn→∞ ‖T̂yn‖ = 0. Since
T is a class A(k) operator we have

‖Tyn‖2 = (|T |2yn, yn)

≤ ((T∗|T |2kT)1/k+1yn, yn)

= (||T |kT |2/k+1yn, yn)

= ‖T̂yn‖2 since T̂ = WU||T |kT |1/k+1.

It follows that limn→∞ ‖Tyn‖ ≤ limn→∞ ‖T̂yn‖ = 0 and hence limn→∞ Tyn = 0.
Also, since ‖T∗yn‖ ≤ ‖Tyn‖, we have limn→∞ ‖T∗yn‖ ≤ limn→∞ ‖Tyn‖ = 0 and

hence limn→∞ T∗yn = 0.
On the other hand, when λ �= 0 we have limn→∞ (T̂ − λ)yn = 0 and limn→∞

(T̂ − λ)∗yn = 0 so that

lim
n→∞ (|T̂ |2 − |λ|2)yn = 0 and lim

n→∞ |(T̂)∗|2 − |λ|2)yn = 0. (6)

Since |T̂ |2 = ||T |kT | 2
k+1 = (T∗|T |2kT)

1
k+1 and |(T̂)∗|2 = |T∗|T |k| 2

k+1 = (|T |k|T∗|2
|T |k)

1
k+1 , we obtain from (6) that

lim
n→∞((T∗|T |2kT)

1
k+1 − |λ|2)yn = 0 and lim

n→∞ ((|T |k|T∗|2|T |k)
1

k+1 − |λ|2)yn = 0. (7)

Since T belongs to class A(k),

(T∗|T |2kT)
1

k+1 ≥ |T |2 ≥ (|T |k|T∗|2|T |k)
1

k+1 ,

and hence by (7) we have

lim
n→∞

(
(|T |2 − |λ|2)yn, yn

) = 0. (8)

Also,

∥∥[
(T∗|T |2kT)

1
k+1 − |T |2] 1

2 yn
∥∥2 = ([(T∗|T |2kT)

1
k+1 − |λ|2]yn, yn) − ([|T |2 − |λ|2]yn, yn).

It follows from (7) and (8) that limn→∞ ‖[(T∗|T |2kT)
1

k+1 − |T |2]
1
2 yn‖2 = 0.
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Consequently we obtain

lim
n→∞(|T |2 − |λ|2)yn = lim

n→∞[|T |2 − (T∗|T |2kT)1/k+1]yn

+ lim
n→∞[(T∗|T |2kT)1/k+1 − |λ|2]yn = 0.

Hence limn→∞(|T | − |λ|)yn = 0. By hypothesis limn→∞ |T |kyn and limn→∞ |T̂ |kyn exist,
so that we get

lim
n→∞(|T |k − |λ|k)yn = 0, (9)

lim
n→∞(|T̂ |k − |λ|k)yn = 0. (10)

Now |T |kT = WU||T |kT | and T̂ = WU||T |kT |1/k+1 = WU|T̂ | implies |T |kT =
T̂ |T̂ |k. Hence T∗|T |k = |T̂ |k(T̂)∗ and so by (9) and (10)

(T∗ − λ)yn = T∗

|λ|k (|λ|k − |T |k)yn + |T̂ |k
|λ|k ((T̂)∗ − λ)yn + λ

|λ|k (|T̂ |k − |λ|k)yn −→ 0

as n → ∞. That is limn→∞(T − λ)∗yn = 0. Since | ‖T∗yn‖ − |λ| |≤ ‖(T − λ)∗yn‖, we
have

lim
n→∞ ‖T∗yn‖ = |λ|. (11)

Also

‖(TT∗ − |λ|2)1/2yn‖2 = ((TT∗ − |λ|2)yn, yn)

= (TT∗yn, yn) − |λ|2
= ‖T∗yn‖2 − |λ|2,

and by (11)

lim
n→∞((TT∗ − |λ|2)yn, yn) = 0. (12)

Hence by (12) and (8),

lim
n→∞ ‖(|T∗|2 − |T |2)1/2yn‖2 = lim

n→∞((|T∗|2 − |T |2)yn, yn)

= lim
n→∞[((|T∗|2 − |λ|2)yn, yn) − ((|T |2 − |λ|2)yn, yn)]

= 0.

It follows that

lim
n→∞(|T∗|2 − |T |2)yn= 0. (13)

By (13) limn→∞(|T∗|2 − |λ|2)yn = limn→∞[(|T∗|2 − |T |2)yn + (|T |2 − |λ|2)]yn = 0.

Finally, limn→∞(T − λ)yn = limn→∞(λ̄)−1[(|T∗|2 − |λ|2)yn − T(T∗ − λ)yn] = 0. �
COROLLARY 3. Let T be a class A(k) operator. Suppose that λ ∈ σna(T̂) and {yn} is a

corresponding sequence of unit vectors such that (T̂ − λ)yn → 0 and (T̂ − λ)∗yn → 0 as
n → ∞. If limn→∞ |T̂ |kyn and limn→∞ |T |kyn exist, then σna(T̂) ⊆ σna(T).
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Proof. By hypothesis, λ ∈ σna(T̂) =⇒ limn→∞ (T̂ − λ)yn = 0 and by Theorem 2
limn→∞(T − λ)yn = 0 and limn→∞(T − λ)∗yn = 0.

That is λ ∈ σna(T). Hence σna(T̂) ⊆ σna(T). �
THEOREM 4. Let T be a class A(k) operator and {yn} be a sequence of unit vectors

in H such that limn→∞ |T̂ |kyn and limn→∞ |T |kyn exist then limn→∞ (T − λ)yn = 0 and
limn→∞ (T − λ)∗yn = 0 =⇒ limn→∞ (T̂ − λ)yn = 0, where λ ∈ C.

Proof. When λ = 0 we have

‖T̂yn‖2 = ‖WU||T |kT | 1
k+1 yn‖2

= (||T |kT | 2
k+1 yn, yn)

≤ (T∗|T |2kTyn, yn)
1

k+1 . (14)

Since limn→∞ Tyn = 0 we have limn→∞(T∗|T |2kTyn, yn) = 0. Also from (14)
we have limn→∞ ‖T̂yn‖ = 0 and limn→∞ T̂yn = 0. When λ �= 0, by hypothesis
limn→∞ (T − λ)yn = 0 and limn→∞ (T − λ)∗yn = 0. It follows that

lim
n→∞(|T |2 − |λ|2)yn = 0 and lim

n→∞(|T | − |λ|)yn = 0.

By the continuity of operators we have the following equations

lim
n→∞(|T |k − |λ|k)yn = 0,

lim
n→∞(|T |kT − |λ|kλ)yn = 0,

lim
n→∞(T∗|T |k − |λ|kλ)yn = 0, (15)

lim
n→∞((T∗|T |k|T |kT) − |λ|2(k+1))yn = 0,

lim
n→∞(

∣∣|T |kT
∣∣2 − |λ|2(k+1))yn = 0,

lim
n→∞(

∣∣|T |kT
∣∣ 2

k+1 − |λ|2)yn = 0.

That is limn→∞(|T̂ |2 − |λ|2)yn = 0 and limn→∞(|T̂ | − |λ|)yn = 0. By hypothesis,
limn→∞ |T̂ |kyn exists and hence,

lim
n→∞(|T̂ |k − |λ|k)yn = 0. (16)

Since T̂ |T̂ |k = |T |kT we have (T̂ − λ)yn = (−) T̂
|λ|k (|T̂ |k − |λ|k)yn + |T |k

|λ|k (T − λ)yn +
λ

|λ|k (|T |k − |λ|k)yn. Consequently by (15) and (16) we get limn→∞(T̂ − λ)yn = 0. �
COROLLARY 5. Let T be a class A(k) operator. Suppose λ ∈ σna(T) and {yn} is a

corresponding sequence of unit vectors such that (T − λ)yn → 0 and (T − λ)∗yn → 0 as
n → ∞. If limn→∞ |T̂ |kyn and limn→∞ |T |kyn exist, then σna(T) ⊆ σna(T̂).

Proof. By hypothesis, λ ∈ σna(T) =⇒ limn→∞(T − λ)yn = 0 and limn→∞(T −
λ)∗yn = 0. By Theorem 4 limn→∞(T̂ − λ)yn = 0. That is λ ∈ σna(T̂). Hence σna(T) ⊆
σna(T̂) �

In the following theorem we shall show that for a class A(k) operator T, σa(T) =
σna(T).
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THEOREM 6. Let T be a class A(k) operator. Suppose {yn} is a sequence of unit vectors
in H such that (T − λ)yn → 0 and ‖|T̂ |2yn‖ − |λ|2 → 0 as n → ∞, then limn→∞(T −
λ)∗yn = 0.

Proof. By assumption limn→∞(T − λ)yn = 0. Since | ‖Tyn‖ − |λ| | ≤ ‖(T − λ)yn‖
we obtain limn→∞ ‖Tyn‖ = |λ|. Also T is a class A(k) operator implies that

‖Tyn‖2 = (|T |2yn, yn)

≤ (
(T∗|T |2kT)

1
k+1 yn, yn

)
= (||T |kT | 2

k+1 yn, yn
)

≤ ‖||T |kT | 2
k+1 yn‖ (Cauchy-Schwarz inequality)

= ‖|T̂ |2yn‖.
That is limn→∞ ‖Tyn‖2 ≤ limn→∞ ‖|T̂ |2yn‖ and so |λ|2 ≤ limn→∞ ‖|T̂ |2yn‖.

By hypothesis limn→∞ ‖|T̂ |2yn‖ = |λ|2 and hence we obtain

lim
n→∞(||T |kT | 2

k+1 yn, yn) = |λ|2. (17)

Now by (17)

lim
n→∞

∥∥(||T |kT | 2
k+1 − |λ|2) 1

2 yn
∥∥2 = lim

n→∞(||T |kT | 2
k+1 yn, yn) − |λ|2 = 0.

It follows that

lim
n→∞(||T |kT | 2

k+1 − |λ|2)yn = 0. (18)

Also

lim
n→∞

∥∥(||T |kT | 2
k+1 − |T |2) 1

2 yn
∥∥2 = lim

n→∞
[(||T |kT | 2

k+1 yn, yn
) − (|T |2yn, yn)

] = 0,

and hence we obtain

lim
n→∞(||T |kT | 2

k+1 − |T |2)yn = 0. (19)

From (18) and (19) we get

lim
n→∞

(|T |2 − |λ|2)yn = lim
n→∞(|T |2 − ||T |kT |2/k+1)yn + lim

n→∞(||T |kT | 2
k+1 − |λ|2)yn = 0.

As a consequence,

lim
n→∞(T − λ)∗yn = 1

λ
lim

n→∞[(|T |2 − |λ|2)yn − T∗(T − λ)yn] = 0.

Hence λ ∈ σna(T). �

THEOREM 7. Let T be a class A(k) operator. Suppose λ ∈ σa(T) and {yn} is a
corresponding sequence of unit vectors sucht that (T − λ)yn → 0 and ‖|T̂ |2yn‖ − |λ|2 →
0 as n → ∞ then σ (T) = σ (T̂)

To prove Theorem 7 we need the following theorems.
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Theorem R4 [11]
1. If A is normal, then for any B ∈ L(H), σ (AB) = σ (BA).
2. Let T = U|T | be the polar decomposition of a p-hyponormal operator(p > 0).

Then for any t > 0, σ (U|T |t) = {eiθρt : eiθρ ∈ σ (T)}.
Theorem R5 [17] Let R be a subset of the complex plane C, T(t) an operator-valued
function of t ∈ [0, 1] that is continuous in the norm topology, τt,t ∈ [0, 1], a family of
bijective mappings from R onto τt(R) ⊂ C and, for any fixed z ∈ R, τt(z) is a continuous
function of t ∈ [0, 1] such that τ0 is the identity function. Suppose that

σa(T(t)) ∩ τt(R) = τt(σa(T(0)) ∩ R)

for all t ∈ [0, 1]. Then for all t ∈ [0, 1],

σr(T(t)) ∩ τt(R) = τt(σr(T(0)) ∩ R),

σ (T(t)) ∩ τt(R) = τt(σ (T(0)) ∩ R).

Let F be the set of all strictly monotone increasing continuous nonnegative functions on
R+ = [0,∞). Let F0 = {� ∈ F : �(0) = 0} and T = U|T |. For � ∈ F0,the mapping �̃

is defined by �̃(ρeiθ ) = eiθ�(ρ) and �̃(T) = U�(|T |).
Theorem R6 [6] Let T = U|T | and � ∈ F0. Then σna(�̃(T)) = �̃ (σna(T)).

Proof. Let T = U|T | be the polar decomposition of T . We shall prove that if
T is class A(k), then σ (U|T |k+1) = {ρk+1eiθ : ρeiθ ∈ σ (T)}. Let T(t) = U|T |k+t and
τt(ρeiθ ) = eiθρk+t. Since |T(t)| = |T |k+t and |T(t)∗| = |T∗|k+t we have the following
implications.

T belongs to class A(k),⇔ (|T∗||T |2k|T∗|) 1
k+1 ≥ |T∗|2

⇔ (|T(t)∗| 1
k+t |T(t)| 2k

k+t |T(t)∗| 1
k+t )

1
k+1 ≥ |T(t)∗| 2

k+t

⇔ T(t) belongs to class A
(

k
k + t

,
1

k + t

)
⇒ T(t) belongs to class A(k).

By Theorem 6 and Theorem R6 we have,

σa(T(t) \ {0}) = σna(T(t) \ {0})
= τt(σna(T) \ {0})
= τt(σa(T) \ {0})
= τt(σa(T)) \ {0}

Moreover, if 0 ∈ σa(T(t)) then there exists a sequence {yn} of unit vectors such that
U|T |k+tyn → 0 as n → ∞. Hence, ‖|T |kyn‖2 = (U|T |k+tyn, U|T |k−tyn) → 0, so that,
limn→∞ |T |kyn = 0. It follows that limn→∞ Tyn = 0 and hence 0 ∈ σa(T).

On the other hand, if 0 ∈ σa(T) then we have 0 ∈ σa(T(t)) since,

‖U|T |k+tyn‖ = ‖U|T ||T |k+t−1yn‖ ≤ ‖|T |k+t−1‖‖Tyn‖ → 0 as n → ∞.

Hence we obtain, σa(T(t)) = τt(σa(T)) for all t ∈ [0, 1] and by Theorem R5, we have
σ (T(t)) = τt(σ (T)) for all t ∈ [0, 1]. Putting t = 1, we get

σ (U|T |k+1) = {ρk+1eiθ : ρeiθ ∈ σ (T)}. (20)
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By (1) of Theorem R4 and (20) we have,

σ (WU||T |kT |) = σ (|T |kU|T |) = σ (U|T |k+1)

= {ρk+1eiθ : ρeiθ ∈ σ (T)}.

By Theorem 1, T̂ = WU||T |kT | 1
k+1 is hyponomal. Hence by Theorem R4 we get,

σ (T̂) = σ
(
WU||T |kT | 1

k+1
) = {

(ρk+1)
1

k+1 eiθ : ρk+1eiθ ∈ σ (U|T |k+1)
}

= {
ρeiθ : eiθρk+1 ∈ σ (U|T |k+1)

}
= σ (T). �

In the following corollaries we assume that T satisfies the following Limit
Condition.

Limit Condition. For each λ ∈ σa(T) and a corresponding sequence {yn} of unit
vectors, T̂ satisfies the condition that limn→∞ ‖|T̂ |2yn‖ = |λ|2, where T is a class A(k)
operator and T̂ is its hyponormal operator transform.

COROLLARY 8. Let T be a class A(k) operator such that the Limit Condition is
satisfied. Then ‖T‖ = ‖T̂‖ = r(T) where r(T) denotes the spectral radius of T.

Proof.

‖T̂‖ = sup{‖T̂y‖ : ‖y‖ = 1}
= sup

{
(|T̂ |2y, y)

1
2 : ‖y‖ = 1

}
= sup

{
(||T |kT | 2

k+1 y, y)
1
2 : ‖y‖ = 1

}
≥ sup{‖Ty‖ : ‖y‖ = 1}
= ‖T‖.

Since T̂ is hyponormal, ‖T̂‖ = r(T̂). Hence we have,

‖T‖ ≤ ‖T̂‖
= r(T̂)

= sup{|λ| : λ ∈ σ (T̂}
= sup{|λ| : λ ∈ σ (T)}
= r(T).

Since every class A(k) operator is normaloid, ‖T‖ = r(T). So ‖T‖ = r(T) = r(T̂) =
‖T̂‖ �

COROLLARY 9. Let T be a class A(k) operator with a single limit point in its spectrum
such that the Limit Condition is satisfied, then the residual spectrum of T is empty.

Proof. By Theorem 7 σ (T) = σ (T̂). Hence σ (T̂) has a single limit point. Since T̂ is
hyponormal with a single limit point in its spectrum it is normal [16]. For a hyponormal
operator the residual spectrum is empty. Since σp(T) = σp(T̂) the residual spectrum of
T is also empty. �
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COROLLARY 10. A generalised nilpotent class A(k) operator satisfying the Limit
Condition is necessarily zero.

Proof. Since T̂ is hyponormal, σ (T̂) contains a scalar µ such that |µ| = ‖T̂‖ [4].
For every positive integer n, it follows that [10, Theorem 33.1],

‖T‖n = ‖T̂‖n = ‖µ‖n = ‖µn‖ ≤ ‖Tn‖ ≤ ‖T‖n.

Hence ‖T‖n = ‖Tn‖. By hypothesis, limn→∞ ‖Tn‖ 1
n = 0. It follows that ‖T‖ = 0. Hence

T = 0. �
An operator T ∈ L(H) is said to satisfy Single-Valued Extension Property (SVEP)

if for any open subset V in C, the function T − λ : 	(V, H) → 	(V, H) defined by
pointwise multiplication, is one-to-one. Here 	(V, H) denotes the Fréchet space of
H-valued analytical functions on V with respect to the uniform topology. An operator
T ∈ L(H) is said to satisfy the property (β) if for every open subset G of C and every
sequence fn : G → H of H-valued analytic functions such that (T − λ)fn(λ) converges
uniformly to 0 in norm on compact subsets of G, fn(λ) converges uniformly to 0 in
norm on compact subsets of G. This was first introduced by Bishop [5].

To prove that a class A(k) operator T has property (β) we need the following
Theorem which is a modified form of [14, Lemma 2.5].
Theorem R7 [14]. Let D be an open subset of C and fn : D → H(n = 1, 2, . . .) vector
valued analytic functions such that |µ|fn(µ) → 0 uniformly on every compact subset of
D. Then fn(µ) → 0 again uniformly on every compact subset of D.

Proof of Theorem R7.

Let us fix an arbitrary λ ∈ D. It suffices to show that there exists a constant r > 0
such that {|µ − λ| ≤ r} ⊂ D and fn(µ) → 0 uniformly on {|µ − λ| ≤ r}. If λ �= 0, then
we need merely to take r such that 0 /∈ {|µ − λ| ≤ r} ⊂ D. We consider the case in which
λ = 0. Take any constant r > 0 such that {|µ| ≤ r} ⊂ D. Then for each n = 1, 2, . . . , we
can find an ωn with |ωn| = r such that ‖fn(µ)‖ ≤ ‖fn(ωn)‖ on {|µ| ≤ r} by the maximum
principle. Thus

‖fn(µ)‖ = 1
|ωn| |ωn|‖fn(µ)‖ ≤ 1

r
‖ωnfn(ωn)‖ → 0

uniformly on {|µ| ≤ r}. �

THEOREM 11. A class A(k) operator T has property (β) if limn→∞ |T |kfn(µ) and
limn→∞ |T̂ |kfn(µ) both exist and limn→∞[‖|T̂ |2fn(µ)‖ − ‖|µ|2fn(µ)‖] = 0.

Proof. Let D be an open neighborhood of λ ∈ C and fn(n = 1, 2, . . .) vector-valued
analytic functions on D such that (T − µ)fn(µ) → 0 uniformly on every compact subset
of D.

We may assume that supn ‖fn(µ)‖ < +∞ on every compact subset of D. In fact,
let Mn be a positive number such that ‖fn(µ)‖ ≤ Mn. Then by replacing fn(µ) with

fn(µ)
Mn + 1 , we have supn ‖fn(µ)‖ ≤ 1 and (T − µ)fn(µ) → 0 uniformly on every compact
subset of D. By hypothesis, (T − µ)fn(µ) → 0 uniformly on every compact subset of
D. Since |‖Tfn(µ)‖ − ‖µfn(µ)‖| ≤ ‖(T − µ)fn(µ)‖ we obtain

lim
n→∞(‖Tfn(µ)‖ − ‖µfn(µ)‖) = 0. (21)
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Since T belongs to class A(k),

‖Tfn(µ)‖2 − ‖µfn(µ)‖2 = (|T |2fn(µ), fn(µ)) − (|µ|2fn(µ), fn(µ))

≤ (
(T∗|T |2kT)

1
k+1 fn(µ), fn(µ)

) − (|µ|2fn(µ), fn(µ))

= (||T |kT | 2
k+1 fn(µ), fn(µ)

) − (|µ|2fn(µ), fn(µ))

= (|T̂ |2fn(µ), fn(µ)) − (|µ|2fn(µ), fn(µ))

≤ [‖|T̂ |2fn(µ)‖ − ‖|µ|2fn(µ)‖]‖fn(µ)‖ → 0,

by assumption. Hence

lim
n→∞[(|T̂ |2fn(µ), fn(µ)) − (|µ|2fn(µ), fn(µ))] = 0. (22)

Also

‖(|T̂ |2 − |µ|2)fn(µ)‖2 = ‖|T̂ |2fn(µ)‖ − 2|µ|2(|T̂ |2fn(µ), fn(µ)) + |µ|4‖fn(µ)‖2

= ‖|T̂ |2fn(µ)‖ − ‖|µ|2fn(µ)‖2

− 2|µ|2((|T̂ |2 − |µ|2)fn(µ), fn(µ)) → 0,

uniformly as n → ∞. That is,

lim
n→∞

(|T̂ |2 − |µ|2) fn(µ) = 0, (23)

lim
n→∞

(|T̂ | − |µ|) fn(µ) = 0. (24)

By hypothesis limn→∞ |T̂ |kfn(µ) exists and hence

lim
n→∞(|T̂ |k − |µ|k)fn(µ) = 0.

By (21) and (22)∥∥(|T̂ |2 − |T |2)
1
2 fn(µ)

∥∥2 = (|T̂ |2fn(µ), fn(µ)) − (|T |2fn(µ), fn(µ)) → 0.

Hence (|T̂ |2 − |T |2)fn(µ) → 0 uniformly. By (23) limn→∞(|T |2 − |µ|2)fn(µ) = 0;
limn→∞(|T | − |µ|)fn(µ) = 0. Hence limn→∞(|T |k − |µ|k)fn(µ) = 0.

Since T̂ |T̂ |k = |T |kT, we have

(T̂ − µ)|T̂ |kfn(µ) = (|T |kTfn(µ) − µ|T̂ |kfn(µ))

= |T |k(T − µ)fn(µ) + µ(|T |k − |µ|k)fn(µ)

+µ(|µ|k − |T̂ |k)fn(µ) → 0,

uniformly. According to Putinar [15], every hyponormal operator has property (β)
and hence T̂ has property (β). Hence, |T̂ |kfn(µ) → 0 uniformly and |T̂ |fn(µ) → 0
uniformly as n → ∞. By (24) we have |µ|fn(µ) → 0 uniformly and by Theorem R7

we obtain fn(µ) → 0 uniformly. Thus T has property (β) and hence the Single Valued
Extension Property. �
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