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Envelope Approach to Degenerate
Complex Monge–Ampère Equations on
Compact Kähler Manifolds

Slimane Benelkourchi

Abstract. We use the classical Perron envelopemethod to show a general existence theorem to de-
generate complex Monge–Ampère type equations on compact Kähler manifolds.

1 Introduction

Let (X ,ω) be a compact Kähler manifold of complex dimension n. Recall that a
(1, 1)-cohomology class is big if it contains a Kähler current that is a positive closed
current that dominates a Kähler form. Fix α ∈ H1,1(X ,R) a big class. Assume that α
admits a smooth closed real (1, 1)-form representative θ which is semi-positive. An
θ-plurisubharmonic function (θ-psh for short) is an upper semi-continuous function
φ on X such that θ + dd cφ is nonnegative in the sense of currents. We let PSH(X , θ)
denote the set of all such functions. In this note we consider equations of complex
Monge–Ampère type

(1.1) (θ + dd cφ)n = F(φ, ⋅ )dµ,

where µ denotes a non-negative Radonmeasure, F∶R×X → [0,+∞) is ameasurable
function, and the (unknown) function φ is θ-psh.

It iswell known thatwe cannotmake sense to the le�-hand side of (1.1). But accord-
ing to [4] (see also [8,9,15]),we can deûne the non pluripolar product (θ + dd cφ)n as
the limit of 1(φ>− j)(θ+dd c(max(φ,− j))n . Itwas shown in [9] that its trivial extension
is nonnegative closed current and

∫
X
(θ + dd cu)n ≤ ∫

X
θn .

Denote by E(X , θ) the set of all θ-pshwith full non-pluripolar Monge–Ampèremea-
sure i.e., θ-psh functions for which the last inequality becomes equality.
Equation (1.1) has been extensively studied by various authors; see, for example,

[1,2, 5,9, 14, 17–21] and reference therein. In this note, we prove the following result.
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Main_eorem Assume that F∶R×X → [0,+∞) is ameasurable function such that
the following hold:
(i) for all x ∈ X the function t ↦ F(t, x) is continuous and nondecreasing;
(ii) F(t, ⋅ ) ∈ L1(X , dµ) for all t ∈ R;
(iii) for all x ∈ X, limt→+∞ F(t, x) = +∞ and limt→−∞ F(t, x) = 0.
_en there exists a unique (up to additive constant) θ-psh function ϕ ∈ E(X , θ) solution
to the equation

(θ + dd cϕ)n = F(ϕ, ⋅ )dµ.

Note that a similar result was proved recently in [5] by using ûxed point theory.
Our main objective here is to give an alternative proof by using the classical Perron
upper envelope. _erefore, the solution ϕ is given by the following upper envelope of
all sub-solutions

ϕ = sup{u;u ∈ E(X , θ) and (θ + dd cu)n ≥ F(u, ⋅ )µ} .

2 Proof

We start the proof with a global version of Demailly’s inequality.

Lemma 2.1 Let u, v ∈ E(X , θ). _en
(θ + dd c max(u, v))n ≥ 1{u≥v}(θ + dd cu)n + 1{u<v}(θ + dd cv)n .

For the convenience of the reader,we include a proof using the same idea as in [12]
in the local context.

Proof It is enough to show the inequality on the set {u ≥ v}. Let K ⊂ {u ≥ v} be
compact.
First, we assume that u and v are bounded and non-positive. By the quasicontuin-

ity (see [16, Corollary 3.8]), we have for any ε > 0 there exists an open subset G ⊂ X
such that CapX(G) < ε and u and v are continuous X ∖ G . Here CapX(U) denotes
the capacity of the open set U given by

CapX(U) = sup{∫
U
(θ + dd cφ)n , φ ∈ E(X , θ) and − 1 ≤ φ ≤ 0} .

Let u j , v j ∈ E(X , θ) be two nonincreasing sequences of continuous functions con-
verging towards u and v, respectively. _en for every δ > 0 there exists an open
neighbourhoodU of K such that u j + δ ≥ v j on U ∖G for j larger than some j0 . _en

∫
K
(θ + dd cu)n ≤ lim inf

j→∞ ∫
U
(θ + dd cu j)n

≤ (sup
X

∣ u ∣ +1)nε + lim inf
j→∞ ∫

U∖G
(θ + dd cu j)n

≤ (sup
X

∣ u ∣ +1)nε + lim inf
j→∞ ∫

U∖G
(θ + dd c max(u j + δ, v j))

n
.

Now let ε → 0 and j → +∞ to get

∫
K
(θ + dd cu)n ≤ ∫

L
(θ + dd c max(u + δ, v)) n

,
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where L ⊃ U is compact. _erefore,

∫
K
(θ + dd cu)n ≤ ∫

K
(θ + dd c max(u + δ, v)) n

,

and the inequality follows if we let δ → 0.
Now, if u and v are not bounded, we consider the sequences u j ∶= max(u,− j) and

v j ∶= max(v ,− j). Let K ⊂ X be compact. _en we have

∫
K
(θ + dd c max(u, v))n

= lim
j→∞∫K∩{max(u ,v)>− j}

(θ + dd c max(u, v ,− j))n

≥ lim inf
j→∞ ∫

K∩{u j≥v j}∩{max(u ,v)>− j}
(θ + dd cu j)n

+ lim inf
j→∞ ∫

K∩{u j<v j}∩{max(u ,v)>− j}
(θ + dd cv j)n

= lim inf
j→∞

(∫
K∩{u j≥v j}∩{u>− j}

(θ + dd cu j)n + ∫
K∩{u j<v j}∩{v>− j}

(θ + dd cv j)n)

≥ lim
j→∞

(∫
K∩{u≥v}∩{u>− j}

(θ + dd cu j)n + ∫
K∩{u<v}∩{v>− j}

(θ + dd cv j)n)

= ∫
K∩{u≥v}

(θ + dd cu)n + ∫
K∩{u<v}

(θ + dd cv)n .

Proof of theMain _eorem Consider the set

H ∶= {φ ∈ E(X , θ); (θ + dd cφ)n ≥ F(φ, ⋅ )µ}

of all sub-solutions of theMonge–Ampère equation (1.1).

Claim 1. H is not empty.
Indeed, by condition (ii) in the theorem, there exists a real t0 ∈ R such that

∫
X
F(t0 , x)dµ(x) = ∫

X
θn .

_en, by [7] (see also [9]) there exists a function u0 ∈ E(X , θ) such that maxX u0 = 0
and

(θ + dd cu0)n = F(t0 , ⋅ )dµ.

Hence,

(θ + dd c(u0 + t0))
n = (θ + dd cu0)n = F(t0 , ⋅ )dµ ≥ F(u0 + t0 , ⋅ )dµ.

_erefore, φ0 ∶= u0 + t0 ∈H.
Let H0 denote {φ ∈H;φ ≥ φ0}.

Claim 2. H0 is stable under taking themaximum.
Indeed, let φ1 , φ2 ∈H0 . It is clear thatmax(φ1 , φ2) ≥ φ0 . Since E(X , θ) is stable by

taking themaximum, thenmax(φ1 , φ2) ∈ E(X , θ). On the other hand, by Lemma 2.1,
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we have

(θ + dd c max(φ1 , φ2))n ≥ 1(φ1≥φ2)(θ + dd cφ1)n + 1(φ1<φ2)(θ + dd cφ2)n

≥ 1(φ1≥φ2)F(φ1 , ⋅ )dµ + 1(φ1<φ2)F(φ2 , ⋅ )dµ
≥ F(max(φ1 , φ2), ⋅ )dµ,

which implies that max(φ1 , φ2) ∈H0 .

Claim 3. H0 is compact in L1(X).
First, we prove that the functions ofH0 are uniformly bounded from above on X.

Let
m ∶= sup

φ∈H0

sup
x∈X

φ(x).

_en
m = lim

j→∞
sup
x∈X

φ j(x),

where φ j is a sequence in H0.
SinceH0 is stable under taking the maximum, we can assume that (φ j) j is non-

decreasing. _e sequence (φ j − supX φ j) is relatively compact in L1(X). Let φ̃ be a
cluster point of (φ j−supX φ j). _en φ̃ ∈ PSH(X , θ). A�er extracting a subsequence,
we can assume that (φ j − supX φ j) converges to φ̃ point-wise on X ∖ A, where A is a
pluripolar subset of X . By Fatou’s lemma, we have

Vol(α) = ∫
X
(θ + dd cφ j)n = lim

j→+∞∫X
(θ + dd cφ j)n

≥ lim inf
j→+∞ ∫X

F(φ j , ⋅ )dµ

≥ ∫
X
lim inf
j→+∞

F(φ j − sup
X

φ j + sup
X

φ j , ⋅ )dµ

≥ ∫
X
F(φ̃ +m, ⋅ )dµ,

which proves that m <∞.
To complete the proof of the claim, it is enough to prove thatH0 is closed. Let φ j ∈

H0 be a sequence converging towards a function φ ∈ PSH(X , θ)._e limit function is
given by φ = (lim sup j→∞ φ j)∗ = lim j→∞(supk≥ j φk)∗ . Hence, φ ≥ φ0 and therefore
φ ∈ E(X , θ). Now observe that the sequence (supk≥ j φk)∗ decreases towards φ and
for any j ∈ N, the sequence (maxl≥k≥ j φk)l∈N increases towards (supk≥ j φk)∗. _us,
the continuity of the complex Monge–Ampère operator along monotonic sequences
and Lemma 2.1 yield

(θ + dd cφ)n = lim
j→+∞

(θ + dd c(sup
k≥ j

φk)∗)n

= lim
j→+∞

lim
l→+∞

(θ + dd c max
l≥k≥ j

φk)n

≥ lim
j→+∞

lim
l→+∞

F(max
l≥k≥ j

φk , ⋅ )dµ

≥ F(φ, ⋅ )dµ.
_erefore, φ ∈H0 .
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Now consider the following upper envelope

ϕ(x) ∶= sup{v(x); v ∈H0}, ∀x ∈ X .

Notice that in order to get a θ-psh function ϕ we should a priori replace ϕ by its
upper semi-continuous regularization ϕ∗(z) ∶= lim supζ→z ϕ(ζ), but since ϕ∗ ∈ H0,
ϕ∗ contributes to the envelope and therefore ϕ = ϕ∗ .

Claim 4. ϕ is the solution to Monge–Ampère equation (1.1).
Indeed, by Choquet’s lemma there exists a sequence ϕ j ∈H0 such that

ϕ = ( lim sup
j→+∞

ϕ j)
∗
.

SinceH0 is stable under taking themaximum, we can assume that the sequence ϕ j ∈
H0 is nondecreasing.

Let B1 be a local chart such that θ = dd cρ, where ρ is smooth in B1 . Fix B ⋐ B1 to
be a small ball. For j ≥ 1, the sequence hk

j ∶= max(ϕ j ,−k) ∈ E(X , θ) and decreases to
ϕ j . Now the function f kj ∶= ρ + ϕk

j is bounded psh on B. Denote the set

G(B) = {u ∈ E(B); lim sup
z→∂B

u(z) ≤ f̃ kj and (dd cu)n ≥ 1BF(u − ρ, ⋅ )dµ} ,

where f̃ kj denotes the smallest maximal function above f kj (cf. [10] for the general
deûnition), but in our context, it can be deûned by

f̃ kj (z) ∶= sup{v(z); lim sup
z→∂B

v(z) ≤ f kj on ∂B, v ∈ PSH(B)} , ∀z ∈ B,

where E(B) denotes the largest subset of PSH(B)where the (local) complexMonge–
Ampère is well deûned (cf. [11] for more details).
Consider the function

Hk
j (z) = sup{u(z); u ∈ G(B)} , ∀z ∈ B.

It follows from [6] that (dd cHk
j )n is well deûned as a nonnegativemeasure and

(dd cHk
j )n = 1BF(Hk

j − ρ, ⋅ )dµ.

Let ψk
j be the function given by Hk

j − ρ on B and extended on the complementary
of B by hk

j . _en ψk
j is a global θ-psh and decreasing with respect to k. Denote ψ j ∶=

limk→+∞ ψk
j . _is is a θ-psh function on X and equal to ϕ j on X ∖ B. On B we have

(θ + dd cψ j)n = lim
k→+∞

(dd cHk
j )n = 1B lim

k→+∞
F(Hk

j − ρ, ⋅ )dµ.

Henceψ j ∈H andψ j+1 ≥ ψ j ≥ φ j ._en ϕ = lim j→∞ ψ j ._e continuity of the complex
Monge–Ampèreoperator alongmonotonic sequences imply that ϕ is a solution of (1.1)
on B and therefore on X, since B was arbitrary chosen.

Uniqueness follows in a classical way from the comparison principle [3] and its
generalizations [9, 13]. Indeed, assume that there exist two solutions φ1 and φ2 in
E(X , θ) such that

(θ + dd cφ i)n = F(φ i , ⋅ )dµ, i = 1, 2.
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_en

∫
(φ1<φ2)

F(φ1 , ⋅ )dµ ≤ ∫
(φ1<φ2)

F(φ2 , ⋅ )dµ = ∫
(φ1<φ2)

(θ + dd cφ2)n

≤ ∫
(φ1<φ2)

(θ + dd cφ1)n = ∫
(φ1<φ2)

F(φ1 , ⋅ )dµ.

_erefore,
F(φ1 , ⋅ )dµ = F(φ2 , ⋅ )dµ on (φ1 < φ2).

In the same way, we get the equality on (φ1 > φ2) and then on X . Hence,

(θ + dd cφ1)n = (θ + dd cφ2)n .

It follows from [13,_eorem 1.2] that φ1 − φ2 is constant which completes the proof.
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