
Fat composition in infant formula contributes to the severity of necrotising
enterocolitis

Chhinder P. Sodhi1,2, William B. Fulton1,2, Misty Good3, Mustafa Vurma4, Tapas Das4, Chron-Si Lai4,
Hongpeng Jia1,2, Yukihiro Yamaguchi1,2, Peng Lu1,2, Thomas Prindle Jr1,2, John A. Ozolek5 and
David J. Hackam1,2*
1Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children’s Center, Baltimore,
MD 21287, USA
2Department of Surgery, Johns Hopkins University and Johns Hopkins Children’s Center, Baltimore, MD 21287, USA
3Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis,
MO 63110, USA
4Abbott Nutrition, a Division of Abbott Laboratories, Columbus, OH 43219, USA
5Division of Pediatric Pathology and Department of Pathology, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA

(Submitted 21 February 2018 – Final revision received 22 May 2018 – Accepted 5 June 2018)

Abstract
Necrotising enterocolitis (NEC) is a devastating disease that typically affects formula-fed premature infants, suggesting that dietary components
may influence disease pathogenesis. TAG are the major fat components of infant formula, and their digestion requires pancreatic lipases,
which may be naturally deficient in premature neonates. We hypothesise that NEC develops partly from the accumulation of incompletely
digested long-chain TAG-containing unsaturated fatty acids within the intestinal epithelial cells, leading to oxidative stress and enterocyte
damage. We further hypothesise that the administration of a formula that contains reduced TAG (‘pre-digested fat’) that do not require lipase
action may reduce NEC severity. To test these hypotheses, we induced NEC in neonatal mice using three different fat formulations, namely
‘standard fat’, ‘pre-digested fat’ or ‘very low fat’, and determined that mice fed ‘standard fat’ developed severe NEC, which was significantly
reduced in mice fed ‘pre-digested fat’ or ‘very low fat’. The expression level of the critical fat-digesting enzyme carboxyl ester lipase was
significantly lower in the newborn compared with older pups, leading to impaired fat digestion. The accumulation of mal-digested fat resulted
in the significant accumulation of fat droplets within the intestinal epithelium of the distal ileum, resulting in the generation of reactive oxygen
species and intestinal inflammation. Strikingly, these changes were prevented in pups fed ‘pre-digested fat’ or ‘very low fat’ formulas. These
findings suggest that nutritional formula containing a pre-digested fat system may overcome the natural lipase deficiency of the premature gut,
and serve as a novel approach to prevent NEC.
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Necrotising enterocolitis (NEC) is the leading cause of death
from gastrointestinal disease in premature infants(1,2). Although
the pathogenesis of NEC remains incompletely understood,
its development is nearly always seen after the administra-
tion of enteral feeds, suggesting that specific components
of infant formula such as dietary fat may contribute to
NEC pathogenesis(2). In a rat model of experimental NEC,
Caplan et al.(3) showed that the administration of PUFA ara-
chidonic acid and DHA reduced the incidence of NEC(3),
whereas Lu et al.(4) showed that PUFA reduced NEC severity
partly through the reduction in expression of the lipopoly-
saccharide receptor, toll-like receptor 4 (TLR4)(4), supporting

findings from our laboratory and others that TLR4 signalling
plays a critical role in NEC pathogenesis(5–8). These findings
place the spotlight on how fat is handled in the premature
intestine, and how failure of appropriate fat digestion may
lead to NEC.

In the presence of the principal fat-digesting enzyme namely
carboxyl ester lipase, ingested TAG are normally digested
in the lumen of the duodenum and jejunum into NEFA and
2-monoacylglycerols, which are then emulsified into soluble
micelles that are taken up by intestinal epithelial cells. In the
intestinal epithelial cells, NEFA and 2-monoacylglycerols are
then converted back to TAG. The TAG then combine with
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cholesterol, protein and phospholipids to form chylomicrons
that are transported out via lymph to the rest of the body(9).
Importantly, premature infants display a relative inability to
digest and absorb TAG fat(10,11) and may have under-
developed capacities for chylomicron synthesis(12). This
potential inability of the immature intestine to adequately
digest ingested fat could lead to the accumulation of
TAG-containing unsaturated fatty acids in the ileum, where
they would be at risk of becoming oxidised. The ensuing
production of lipid peroxides could then induce oxidative
stress and inflammation and contribute to the development
of NEC.
We now seek to explore the role of fat digestion in the

premature gut in greater detail in the pathogenesis of NEC. As
described above, the critical enzyme required for fat digestion
in the lumen of the intestine is carboxylic ester lipase (CEL) –
also called bile-salt-dependent lipase (BSDL) – which is
secreted into the intestinal lumen by the exocrine pan-
creas(13). Exocrine pancreatic function is not fully developed
at birth, and as a result CEL release is insufficient to ade-
quately support fat absorption in the newborn(14,15). In a
remarkable demonstration of the nutritional synergy that
exists between infant and mother, CEL is also secreted by the
lactating mammary gland into the breast milk, and upon
ingestion of breast milk the infant has an immediately avail-
able source of CEL that can at least partially compensate for its
otherwise low endogenous production(16). The lack of CEL in
infant formula partly explains why premature infants may
encounter incomplete fat digestion when administered stan-
dard infant fat formula(17,18). One of the main components of
the resultant incompletely digested fat in the intestine of the
premature infant is NEFA, whose persistence in the lumen of
the premature gastrointestinal tract may accumulate within
cells and disrupt the cell membrane(19), leading to significant
toxicity to the enterocyte(20). Supplementation of preterm
formula with PUFA has been shown to reduce the incidence
of NEC in animal models, which has been linked to the ability
of PUFA to suppress TLR4 and platelet-activating factor
receptor gene expression; these molecules are important in
the pathogenesis of NEC in epithelial cells(4). However,
although these studies have focused on the potential role of
unsaturated fatty acids in the pathogenesis of NEC, the
potential roles – if any – of using hydrolysed or pre-digested
fat (PDF) for NEC prevention to essentially bypass the lack of
CEL in the gastrointestinal tract of the premature infant remain
incompletely understood.
On the basis of these findings, we hypothesise that incom-

plete fat digestion in the premature intestine leads to intestinal
inflammation and the development of NEC, partly owing to
the accumulation of undigested TAG-containing unsaturated
fatty acids within the epithelium of the distal ileum, leading
to the accumulation of reactive oxygen intermediates, which
induces an inflammatory response. We sought to test this
hypothesis by studying the extent of NEC development
using (a) standard infant formula, (b) PDF and (c) a very low
fat formula, the nutritional components of which are described
in Table 1.

Methods

Chemical reagents

Reagents were obtained from the following sources: ‘Oil Red O’

kit (catalogue no. ab150678; Abcam), RNeasy® kit (catalogue no.
74106; Qiagen) and QuantiTect® Reverse Transcription (catalogue
no. 205313; Qiagen), dihydroethidium (DHE, catalogue no.
D7008; Sigma), 4',6-diamidino-2-phenylindole, dihydrochloride
(DAPI, catalogue no. D9542; Sigma) and CEL (BSDL) ELISA kit
(catalogue no. MBS098208; MyBiosource, Inc.) (forward and
reverse primers) (custom designed using NCBI Primer-BLAST
online program and ordered from Integrated DNA Technologies).

Animal study approval

All experiments involving mice described in this study were
carried out in accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health, and are approved by Johns Hop-
kins University protocol, according to The ARRIVE Guidelines
of the ‘NC3R’(21). C57BL/6J mice were purchased from the
Jackson laboratory and bred in the pathogen-free facility at
Johns Hopkins University for multiple generations to stabilise
intestinal microbiota. All mice were given ad libitum access
to water, food and housed in a temperature-controlled room
(22°C) with 12 h light–12 h dark cycles. All mice used in the
study were euthanised humanely using isoflurane anaesthesia
by inhalation (approximately 3–4% isoflurane), followed by
cervical dislocation.

Induction of necrotising enterocolitis in neonatal mice

Experimental NEC was induced in 7–8-d-old (approximately
3·0 g body weight) neonatal mouse pups as previously descri-
bed(22–24). Neonatal pups were randomly divided into control
and treatment groups and experimental models were repeated
at least three times with eight or more mice per treatment
group. Neonatal pups were gavage fed (40 μl/g) five times per d
(07.00–19.00 hours) with formula containing one of three types
of fat (described below and illustrated in Fig. 1), which was
supplemented with bacterial stock that had been cultured from
the stool of an infant with severe NEC (12·5 μl of stool slurry in
1ml of formula). The stool mixed formula (50 µl/g of mouse
body weight)(25) was administered using a 24-French angio-
catheter placed into the mouse oesophagus. Mice were
exposed to hypoxia (5% O2, 95% N2) for 10min in a chamber
(Billups-Rothenberg Inc.), twice daily (07.00 and 13.00 hours
immediately after feeding) for 4 d, and the bacterial slurry was
added to the formula on each day. Additional breast-fed control
groups, which were exposed to hypoxia only, bacteria only and
hypoxia + bacteria, and formula-fed groups, which were
exposed to formula only, formula + bacteria (no hypoxia) and
formula + hypoxia (no bacteria), were also included to evaluate
the role of the individual components of the model for the
development of intestinal inflammation. For mice in the breast-
fed/hypoxia alone group, hypoxia (5% O2, 95% N2) was given
for 10min, twice daily for 4 d (at 07.00 and 13.00 hours), and
immediately returned with dams similar to NEC-treated groups.
For the breast-fed/bacteria control group, mice were gavage-fed
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bacteria (equal amount of bacteria given to NEC-treated mice –

that is 10 μl of NEC bacterial stock slurry, diluted in 100 μl of
saline/pup) once daily for 4 d. We and others have previously
demonstrated that under administration of the standard formula,
this experimental model induces significant intestinal inflam-
mation expression of pro-inflammatory cytokines, IL-6, IL-1β
and TNF-α that closely mimics human NEC(26,27). To determine
the effect of the antioxidant on reactive oxygen species (ROS)
generation, NEC formula was supplemented with N-acet-
ylcysteine (NAC) (100mg/kg) and administered to mice in the
NEC model. Control mice were gavage-fed once daily with a
similar dose of 100mg/kg of NAC.

Nutritive formulas

Three different study formulas were used, each with varying
types and amounts of fats (manufactured by Abbott Labora-
tories) and which contained identical ingredients except for
the fat composition. Standard formula was composed of 100%
TAG-rich oils (mixture of 39% high oleic safflower oil (HOSO),
29% soya oil and 27·9% coconut oil), and these are described

in detail in Table 1. PDF formula contained approximately 50%
TAG composed of a mixture of soyabean NEFA (17·5%),
2-monoacylglycerol palmitate (20%) and phospholipid lecithin
(10·3%) along with HOSO (34·8%) and coconut oil (14·8%).
Soyabean NEFA were added into the formula in the Ca salt
form where the NEFA were first mixed with calcium hydroxide
during manufacturing. Very low fat formula was formulated
with no added TAG except DHA and ARA and lipid-soluble
vitamins to match the standard and PDF formulas. In an
attempt to close the gap in energetic content of the low-fat
formula as compared with the other formulas, lactose was used
to replace the fat energy, and energetic values were similar
between the three formulas. All three study formulas were
manufactured using the same homogenisation and thermal
treatment conditions, which are representative of commercial
ready to feed formulas. The nutrition profiles of the formulas
are shown in Table 1 and the experimental scheme for the NEC
model is shown in Fig. 1. The breast-fed (control) animals
remained with their mothers and received breast milk
ad libitum.

Table 1. Nutritional composition of study formulations*

Standard formula
(per litre)

PDF formula
(per litre)

Very low fat formula
(per litre)

Protein (g) 56·5 57·1 58·1
Fat (g) 71 71 3·7

High-oleic safflower oil (g) 27·66 24·75 0
Soya oil (g) 20·7 0 0
Coconut oil (g) 19·8 10·5 0
Monoacylglycerol palmitate (g) 0 14·25 0
Soyabean oil NEFA (g) 0 12·4 0
Lecithin (g) 0 7·3 0
Distilled monoacylglycerols (g) 1·5 0 0
DHA (mg) 146 135 161
ARA (mg) 312 322 355
Carotenoids (mg) 59 59 61
Remaining fat from proteins, carrier oils

from vitamins, carotenoids, DHA and ARA (g)
0·82 1·28 3·12

Carbohydrate (g) 62 63 138
Vitamins

A (palm; mg) 3·69 4·00 3·35
E (mg) 18 18 19
C (mg) 375 375 375
B1 (mg) 2·45 2·25 2·45
B2 (mg) 6·1 6·02 6·7
B6 (μg) 783 802 832
B12 (μg) 10·2 10·1 11·4

Pantothenic acid (mg) 12 12·38 12·7
Folic acid (μg) 334 297·4 328·2
Niacin (mg) 16·4 16·22 17
Biotin (μg) 118 115·4 125·9
Total choline (mg) 317 474 341
Minerals

Na (mg) 762 755 802
K (mg) 2228 2319 2539
Chloride (mg) 1175 1175 1184
Ca (mg) 2402 2371 2432
P (mg) 1269 1362 1280
Mg (mg) 154 158·1 158·2
Fe (mg) 20 20·2 21·2
Zn (mg) 13·1 12·69 13·77
Cu (mg) 1·13 1·09 1·18

PDF, pre-digested fat; ARA, arachidonic acid.
* In all cases, formula was supplemented with stool bacteria cultured from the intestine of an infant with surgical necrotising enterocolitis (12·5 μl of original

stool slurry in 1ml of formula), and the fat content as described above.
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Necrotising enterocolitis severity assessment

NEC severity was determined based upon a validated scoring
system applied to de-identified, paraformaldehyde (PFA)-fixed/
paraffin-embedded/haematoxylin and eosin (H&E)-stained
intestinal sections from both proximal and distal intestine in
consultation with a paediatric pathologist who was blinded to
the group allocation. Histological NEC severity score
was assigned as described previously(28,29): 0 (no injury),
1 (minor-submucosal, lamina propria separation), 2 (moderate
separation of submucosa(28), lamina propria and oedema in
submucosal and muscular layers) and 3 (severe separation of
submucosa, lamina propria, severe oedema and villous
sloughing or loss of villi).

Ontogeny of transcript levels of carboxyl ester lipase in
pancreas by quantitative real-time PCR

To measure the transcripts levels of CEL, also called bile-salt-
dependent lipase (BSDL), within the pancreas of breast-fed
neonatal (postnatal day, p2) to weanling (postnatal day, p15)
mice by quantitative real-time PCR (qRT-PCR), whole pancreas
was carefully dissected out under a dissection stereoscope
(Nikon; Nikon Instruments Inc.) and snap-frozen until proces-
sing for total RNA isolation and qRT-PCR assay as
described below.

Ontogeny of carboxyl ester lipase protein levels by
ELISA assay

To assess the ontogeny of CEL by ELISA, the stomach content of
neonatal mice (postnatal days 2, 5, 10 and 15) was collected
immediately after euthanasia and snap-frozen in liquid N2. CEL

in stomach contents was measured using mouse lipase CEL (i.e.
BSDL) ELISA kit, as per the manufacturer’s instructions.

Quantitative real-time PCR

Total RNA was isolated from snap-frozen whole intestine
(approximately 1 cm length) and pancreas using RNeasy® kit,
and checked for RNA purity and concentration on SpectraMax®

microplate reader (Molecular Devices). A measure of 0·5 μg of
total RNA was reverse-transcribed for complementary DNA
synthesis using the QuantiTect® Reverse Transcription kit. qRT-
PCR was then performed on a Bio-Rad CFX96 Real-Time System
(Bio-Rad Labs) using Sybr green mix (Bio-Rad Labs), forward
and reverse primers (Table 2). The mRNA expression relative to
the housekeeping gene ribosomal protein large P0 (Rplp0) was
calculated using the 2�ΔΔCt method as described(30).

‘Oil Red O’ staining for lipid droplets

To assess the presence of intracellular lipid uptake, we performed
‘Oil Red O’ staining on proximal and distal intestinal tissues har-
vested 45min after formula or breast milk feeding. To do so, fresh
intestinal tissues were fixed with 4% PFA for 4h, immersed in 30%
sucrose solution for 2d and frozen blocks were prepared in Tissue-
Tek media and cryomolds. Cryo-sections measuring 10μm were
then cut using a Cryostat (Thermo Fisher), dehydrated in PBS and
stained for lipid droplets using the ‘Oil Red O’ kit according to the
manufacturer’s instructions. Sections were briefly counter-stained
with haematoxylin (Modified Mayer’s), mounted using Gelvetol
mount media and imaged using the EVOS imaging system (Invi-
trogen). Cryo-tissue sections were also prepared without PFA
fixation for ‘Oil Red O’ staining, and no difference in staining was
observed, but tissue integrity was far superior in PFA-fixed tissues;
therefore, all data were collected from PFA-fixed cryo-sections.

Experimental scheme(a)

(b)

Breast-fed control group
received breast milk ad libitum

–NAC

–NAC

+NAC

+NAC

Illustration of location of tissue sampling

Stomach

1
1

2
2

Proximal small
intestine (duodenum)

Mid small intestine
(jejunum)

1 = tissue for RNA isolation
2 = tissue for histology

Distal small intestine
(ileum)

Caecum

Colon

Pre-digested fat
formula (PDF)

Very low fat
formula

Standard formula Modified fat formula

formula feeding + 5% hypoxia
(all formula supplemented with NEC bacteria)

Experimental NEC group

C57BL/6 neonatal (∼ 7–8 d old) mice

Fig. 1. Experimental scheme (a) and location of tissue sampling (b) used in the current studies. NAC, N-acetylcysteine; NEC, necrotising enterocolitis.
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Immunohistochemistry and haematoxylin–eosin staining

Specific parts of proximal and distal intestinal tissues as illu-
strated in Fig. 1 were obtained for histological examination. For
the detection of ROS accumulation in mouse intestinal tissue,
we used the DHE oxidation staining method, which was based
on its oxidation to ethidium in the presence of ROS, which then
intercalates into DNA producing bright red nuclear fluorescence
(Sigma). In brief, 10-μm cryo-sections were hydrated in PBS and
stained with 5 μm DHE for 30min in the dark, the nuclei were
counter-stained with DAPI, mounted using Gelvetol media and
immediately imaged using Nikon A1 confocal microscope (Nikon).
H&E staining was performed on 4% PFA-fixed/paraffin-embedded
sections (5-μm thickness). Malondialdehyde (MDA) immuno-
fluorescence staining was performed as described(31).

Statistical analysis

Statistical analysis was performed using PRISM version 7.0
(Graph Pad). The pups were randomised to the treatment
group, and blinded analyses were performed using either
Fisher’s exact test or ANOVA with multiple comparisons, and
post hoc analyses were performed whenever statistical differ-
ences were determined in the multiple group analyses. Statis-
tical significance was accepted at P< 0·05. On the basis of the
predicted effects of both the PDF system and the very low-fat
formula, with an α error of 0·05 and a β error of 0·10, in order to
assess a 50% reduction in cytokine expression by RT-PCR, ROS
generation and ELISA expression of CEL, we calculate a sample
size of eight pups in each group, which is also the expected
survival rate based upon technical variability, between litters.

Results

Establishment of a model of necrotising enterocolitis in
newborn mice and determination of appropriate controls
for assessment of infant formula

We first sought to develop a platform for the assessment of
different fat compositions in experimental NEC in newborn
mice, and thus evaluated the relative contribution of each of the
individual components – namely the administration of infant
formula, the induction of hypoxia and the administration of the

cultured bacterial slurry from an infant with severe NEC – to the
development of intestinal inflammation. As shown in Fig. 2,
newborn mice that were exposed to breast milk and either
hypoxia or bacterial slurry did not develop NEC, as revealed by
gross examination of the intestine, intestinal histology and qRT-
PCR analysis of pro-inflammatory gene expression in the
intestinal mucosa (Fig. 2(a) and (c)). Similarly, mice that were
administered ‘standard fat’-containing formula feeds along with
either hypoxia or bacteria had no evidence of NEC (Fig. 2(b)
and (c)). By contrast, mice that were administered the combi-
nation of ‘standard fat’-containing formula feeds, hypoxia and
bacteria developed severe NEC as revealed by the presence of
air within the wall of the bowel (Fig. 2(b) iv), histologic evi-
dence of mucosal disruption (Fig. 2(b) viii) and the induction of
pro-inflammatory genes in the distal ileum (Fig. 2(c)). These
findings reveal that the induction of NEC requires a combina-
tion of formula feeding, bacterial supplementation and expo-
sure to hypoxia together. Subsequent studies were thus
designed in which NEC was induced using these three vari-
ables, and in which only the fat component of the formula was
varied, in comparison with control mice that were left with their
mothers and were breast-fed. This approach allowed us to
determine the effect of fat type on the development of NEC, as
examined below.

The administration of formula containing ‘pre-digested’ fat
attenuates the severity of necrotising enterocolitis in mice

We next administered formulas containing varying fat compo-
sitions to newborn mice and assessed the effects on NEC
severity. All formulas contained approximately 71 g of the var-
ious types of fat, except the ‘very low fat’ formula, which
contained 3·7 g of fat; formulas contained approximately 56·5–
58·1 g of protein per litre (Table 1), which approximates that
seen in rodent milk(32). The ‘standard’ formula contained 100%
TAG in the form of high oleic safflower, soyabean and coconut
oils, as shown in Table 1. As shown in Fig. 3, and using an
evaluation scheme that was consistent with our prior stu-
dies(5,26,33), the administration of this ‘standard fat formula’ to
newborn mouse pups resulted in progressive weight loss (red
curve in Fig. 3(A)) in comparison with breast-fed mice (blue
curve in Fig. 3(A)), and the development of severe mucosal

Table 2. Primer sequences

Genes Forward sequence Reverse sequence Amplicon size (bp)

Akr1b7 GGTGGTGATCCCCAAGTCTG GCCCTCCAGTTCCTGTTGAA 120
CEL (BSDL) ACGATAACCAGCGCTTCCAT TCATCCTCAGGGGGAGTGAG 125
Gpx2 TCAATGGGCAGAACGAGCAT CGCACGGGACTCCATATGAT 118
IL-1β AGTGTGGATCCCAAGCAATACCCA TGTCCTGACCACTGTTGTTTCCCA 175
Keap1 CTCAACCGCTTGCTGTATGC TTCAACTGGTCCTGCCCATC 194
MPO GACAGTGTCAGAGATGAAGCTACT TTGATGCTTTCTCTCCGCTCC 189
Nox2 GACACGCATGCCTTTGAGTG TGCACAGCAAAGTGATTGGC 143
Nqo1 GGTAGCGGCTCCATGTACTC CCAGACGGTTTCCAGACGTT 198
Nrf2 AGCACTCCGTGGAGTCTTCCATTT TGTGCTTTAGGGCCGTTCTGTTTG 115
TNF-α TTCCGAATTCACTGGAGCCTCGAA TGCACCTCAGGGAAGAATCTGGAA 144
Rplp0 GGCGACCTGGAAGTCCAACT CCATCAGCACCACAGCCTTC 143

Akr1b7, aldo-keto reductase family 1, member B7; CEL, carboxyl ester lipase; BSDL, bile-salt-dependent lipase; Gpx2, glutathione peroxidase 2; Keap1,
kelch-like ECH-associated protein 1; MPO, myeloperoxidase; Nox2, NADPH oxidase; Nqo1, NAD(P)H quinone dehydrogenase 1; Nrf2, nuclear factor
erythroid 2-related factor; Rplp0, ribosomal protein large P0.
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injury and marked morphological change to the small intestine,
characterised by oedema, air within the bowel wall (pneuma-
tosis intestinalis) and patchy intestinal necrosis (Fig. 3(C) and
(G)) consistent with the findings in Fig. 2. These morphologic
changes were accompanied by an increase in pro-inflammatory

cytokines IL-1β and TNF-α (Fig. 3(I)), and an increase in the
NEC severity score (Fig. 3(K)). Breast-milk-fed control mice
showed normal gross morphology (Fig. 3(B)), intact archi-
tecture of the intestinal epithelium (Fig. 3(F)) and low expres-
sion of pro-inflammatory cytokines (Fig. 3(G)). On the basis

Breast-fed mice +/– hypoxia +/– bacteria

Formula-fed mice +/– hypoxia +/– bacteria

Proinflammatory cytokines – breast-fed and formula-fed groups

–hypoxia

6 i

i

v vi vii viii

viiiviiviv

i ii iii iv

ii iii iv

ii
10*** ***

00
+hypoxia +hypoxia +hypoxia +hypoxia +hypoxia +hypoxia +hypoxia +hypoxia–hypoxia –hypoxia –hypoxia –hypoxia –hypoxia –hypoxia –hypoxia

–bacteria –bacteria –bacteria –bacteria –bacteria –bacteria –bacteria –bacteria+bacteria

Breast fed

IL
-1

� 
qR

T-
P

C
R

T
N

F
-�

 q
R

T-
P

C
R

Breast fedFormula fed Formula fed

+bacteria +bacteria +bacteria +bacteria +bacteria +bacteria +bacteria

Breast fed
(–) hypoxia, (–) bacteria

(a)

(b)

(c)

Formula fed
(–) hypoxia, (–) bacteria

Formula fed
(+) hypoxia (–) bacteria

Formula fed
(–) hypoxia (+) bacteria

Formula fed
(+) hypoxia, (+) bacteria

Breast fed
(+) hypoxia (–) bacteria

Breast fed
(–) hypoxia (+) bacteria

Breast fed
(+) hypoxia, (+) bacteria

Fig. 2. Establishment of a model of necrotising enterocolitis in newborn mice and determination of appropriate controls for assessment of infant formula. (a,b) Results
from representative distal ileal samples of mice subjected to breast-feeding and formula feeding are shown. (a) Gross morphology (a; i–iv), haematoxylin–eosin (H&E)-
stained histology (a; v–viii) of breast-fed groups. (b) Gross morphology (b; i–iv), H&E-stained histology (b; v–viii) of formula-fed groups. (c) Levels of pro-inflammatory
cytokines, IL-1β (c; i) and TNF-α (c; ii). qRT-PCR, quantitative real-time PCR. *** P<0·0001.
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of these findings, we next hypothesised that the removal of
long-chain TAG from the formula would reduce NEC severity.
To test this specifically, we administered a formula that was
deficient in long-chain TAG oil, which we termed ‘very low
fat’ formula, which resulted in less weight loss (pink curve in
Fig. 3(A)), less mucosal and gross morphological injury (Fig. 3
(E) and (I)), reduced pro-inflammatory cytokine expression
(Fig. 3(J)) and reduced NEC severity scores (Fig. 3(K)), as
compared with mice in the ‘standard fat’ formula group. To
further assess the role of fat in NEC development, we next
administered formula with reduced TAG-containing fat in a
‘PDF’ composition, which was not dependent upon the action
of lipases within the lumen of the intestine for digestion.
Specifically, ‘PDF’-containing formula (i.e. ‘PDF formula’)
contains approximately 50% long-chain TAG and a mixture

of soyabean oil NEFA, monoacylglycerol palmitate and soya
lecithin compared with 100% long-chain TAG fats that are
present in the ‘standard fat’ formula. As shown in Fig. 3, the
administration of ‘PDF’ (which contains DHA and ARA at
concentrations similar to those of standard formula) resulted in
marked preservation of infant weight (green curve in Fig. 3(A)),
and significantly reduced gross morphological injury (Fig. 3
(D)), histological injury (Fig. 3(H)), pro-inflammatory cyto-
kine expression (Fig. 3(J)) and NEC severity (Fig. 3(K)).
Importantly, there was no difference observed in body weight
loss, gross morphology of the intestine, histological exam-
ination of the terminal ileum, expression of pro-inflammatory
cytokines and NEC severity scores between the ‘PDF’ and
‘very low fat’ formula groups. Taken together, the above
findings suggest that the type of fat used in formula may
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contribute to NEC pathogenesis, leading us to next determine
the potential mechanisms involved.

Pancreatic carboxylic ester lipase is reduced at the time
of necrotising enterocolitis development in mice

The content of lipases in the lumenof the intestine can be assessed
by measurement of both pancreatic and gastric lipases. To deter-
minewhether lipases are reduced in the intestineof newbornmice
at the time of NEC development, we assessed the expression of
carboxyl ester lipase within the pancreas of neonatal to weaned
breast-fedmicebyqRT-PCR,andalsomeasured the amountofCEL
(also called BSD-lipase) in the gastric contents of mice at varying
postnatal ages from days 2 through 15 by ELISA(15). As shown in
Fig. 4(a), the pancreatic expression of CEL was naturally low
immediately after birth and increased significantly over time.
These findings were supported by the observation shown in
Fig. 4(b) that the concentrationofCEL is also significantly greater in
the gastric contents of mice as they mature towards postnatal day
15 as compared with early newborn mice. Not surprisingly, the
composition of fat within the administered formula had no effect
on the expression of individual lipases (measured at the end of the
experimental NEC model), as mice that were fed ‘standard fat’
formulas were found to have similar expression of CEL as com-
paredwithmice thatwere fed either ‘PDF’ or ‘very low fat’ formula
(Fig. 4(c)). We therefore next sought to investigate the potential
effects of impaired lipase content of the newborn mouse intestine
on the accumulation of fat within the proximal and distal intestinal
epithelium.

Administration of formula containing ‘pre-digested fat’
results in reduced accumulation of lipid and reactive
oxygen species generation in the intestinal mucosa as
compared with standard infant formula

Having shown reduced expression of lipases within the pan-
creas and stomach of the developing mice, and given the
potential cytotoxic effects that non-digested fats may exert on
the ileal mucosa(15), we next sought to evaluate the effects – if
any – on the accumulation of fat within the intestinal epithelium
of mice subjected to models of NEC using formulas containing
various amounts of fat as in Table 1. As shown in Fig. 4, there
was a significant accumulation of lipid droplets in the duodenal
epithelium of mice that received breast milk (Fig. 4(d)), as well
as the three infant formulas tested, as determined by ‘Oil Red O’

staining (Fig. 4(e–g)). By contrast, examination of the distal
ileum – where NEC-induced injury most commonly develops –
revealed that the administration of ‘standard fat’-containing
formula (Fig. 4(i)) to newborn mice resulted in significantly
increased lipid accumulation in the intestinal epithelium, as
compared with breast-fed control mice (Fig. 4(h)) and with
mice that were administered a ‘PDF’ formula (Fig. 4(j)) or a ‘very
low fat’ formula (Fig. 4(k)). To assess the potential link between
intracellular fat accumulation and ROS-induced mucosal injury,
we next sought to measure ROS accumulation in both the
proximal and distal intestine by staining the intestinal tissue
with the ROS-sensitive fluorescent dye DHE(27). Examination of
the duodenum of mice that were either breast-fed or that were

fed ‘standard fat’- or ‘PDF’-containing formula revealed the
accumulation of intracellular ‘Oil Red O’-stained fat droplets
(Fig. 4(d–g)) – yet very little nuclear DHE staining (Fig. 5(a)
and (d)). By contrast, the administration of ‘standard fat’-con-
taining formula resulted in the marked accumulation of ROS as
manifested by increased DHE staining (Fig. 5(f)) corresponding
to the accumulation of intracellular ‘Oil Red O’-stained fat
droplets (Fig. 4(i)) in the distal intestine (ileum), suggesting a
link between lipid accumulation and ROS generation in the
distal intestine, where NEC disease normally develops. Inter-
estingly, in the distal intestine (ileum), the administration of
either a ‘PDF’- or a ‘very low fat’-containing formula resulted in
significantly less accumulation of intracellular ‘Oil Red
O’-stained fat droplets (Fig. 4(j) and (k)) and ROS accumulation
(Fig. 5(g) and (h)) as compared with the ‘standard formula’
group (Fig. 4(i) and 5(f)). On the basis of these findings, we
next sought to evaluate the degree of lipid peroxidation of
polyunsaturated lipids by ROS, and then sought to determine
whether an ROS inhibitor could reduce the incidence of
experimental NEC in mice.

The administration of formula containing ‘pre-digested fat’
leads to a reduction in the accumulation of reactive oxygen
species-degraded polyunsaturated lipids in the distal small
intestine of mice with necrotising enterocolitis

Given that ROS accumulation can lead to the degradation of
polyunsaturated lipids to form reactive electrophile species
including MDA(34), which can cause tissue injury(35), we next
measured the extent of MDA accumulation within the intestinal
epithelium of newborn mice after exposure to either breast milk
or infant formulas containing different types of fat, as described
in the ‘Methods’ section and Table 1. As shown in Fig. 6(a)
and (e), breast-fed mice showed low levels of MDA in the
duodenum and ileum, consistent with the fact that this diet
induces minimal ROS accumulation inside the cells, as descri-
bed above in Fig. 5(a) and (e). By contrast, examination of the
distal small intestine (ileum) of mice that were administered
‘standard fat’ formula revealed marked accumulation of MDA in
the ileum (Fig. 6(f)), consistent with the accumulation of ROS
that was detected by DHE staining (Fig. 5(f)), and the histolo-
gical development of NEC (Fig. 3(c), (g) and (j–k)). Strikingly,
the administration of formula containing ‘PDF’ showed a
markedly reduced degree of MDA accumulation in the distal
bowel (Fig. 6(g)), similar to that observed in either breast-fed
control (Fig. 6(e)) or ‘very low fat’ formula-fed mice (Fig. 6(h)).
Taken together, these findings illustrate that the degree of ROS
generation and lipid peroxidation can be influenced partly by
the composition of fat (i.e. intact TAG v. hydrolysed TAG)
provided to the newborn gut.

The administration of N-acetylcysteine with standard infant
formula prevents the accumulation of reactive oxygen
species and the oxidation of lipids, and reduces the severity
of necrotising enterocolitis in newborn mice

Having shown that the fat composition of various infant for-
mulas can influence the degree of accumulation of ROS gene-
ration and severity of NEC, we next sought to investigate
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whether the use of an ROS quencher could reverse these effects.
To do so, we administered NAC to mice that were then induced to
develop NEC in the presence of formulas containing various fat
compositions. As shown in Fig. 7, the combined oral administra-
tion of NAC to the standard fat-containing NEC formula sig-
nificantly reduced NEC severity as demonstrated by reduced pro-
inflammatory cytokine expression (Fig. 7(a)), as well as
preservation of histology of the terminal ileum and NEC severity
scores (Fig. 7(b) and (c)). The levels of ROS generation as
determined by DHE staining were significantly reduced in the
terminal ileum of mice exposed to NEC using NEC formula that
was supplemented with NAC (Fig. 7(d–g)). Furthermore, the
addition of NAC led to a marked reduction in ROS-mediated lipid
peroxidation in the terminal ileum, as revealed by reduced MDA
staining (Fig. 7(h–k)). We therefore sought to evaluate the
mechanisms by which lipid oxidation occurred in the distal
intestine, and to determine whether the expression of components
of the anti-ROS machinery could play a role in NEC development.

The expression of the anti-reactive oxygen species
machinery in the newborn intestine contributes to the
pattern of necrotising enterocolitis development in the
distal bowel after fat administration

In the final series of studies, we sought to explore the potential
mechanisms by which the proximal intestine of mice is pro-
tected from NEC-induced injury despite the accumulation of fat
in duodenal enterocytes (Fig. 4(e–g)). As shown in Fig. 8(a), the
expression levels of the pro-inflammatory cytokines IL-1β and
TNF-α were significantly elevated in the ileum but not in
the duodenum, consistent with the development of NEC in the
more distal regions of the bowel. We thus next studied the
expression of genes within the nuclear factor erythroid 2-related
factor (Nrf2)/ROS pathway as illustrated in Fig. 8(b). As shown
in Fig. 8(c–f), the expression of the anti-ROS enzymatic
machinery in the proximal (duodenum) v. distal (ileum) bowel
correlated with the observed distribution of NEC after the

Proximal intestine (duodenum)

Distal intestine (ileum)

Ctrl
Breast fed Standard fat Pre-digested fat Very low fat

Experimental formula (NEC)

Ctrl

(a) (b) (c) (d)

(e) (f) (g) (h)

Breast fed Standard fat Pre-digested fat Very low fat
Experimental formula (NEC)

Fig. 5. The effect of fat composition on the accumulation of reactive oxygen species in ileal enterocytes of mice induced to develop necrotising enterocolitis (NEC).
(a–h) Immunofluorescence images of dihydroethidium (DHE) (red fluorescence) and 4',6-diamidino-2-phenylindole, dihydrochloride (DAPI) (nuclei, blue) staining from
control and NEC mice. (a–d) Proximal (duodenum) and (e–h) distal (ileum), 10μm: cryo-sections (Ctrl, control–breast-fed or experimental NEC treatments with hypoxia
and formula feeding). Scale bar= 10 μm.
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accumulation of fat. Specifically, the expression levels of the
ROS donor NADPH oxidase 2 and the H2O2 donor superoxide
dismutase 2 were significantly increased in the ileum of NEC
mice and decreased in the duodenum (Fig. 8(c)), whereas the
ROS sensors and cytoprotective transcription factors Kelch-like
ECH-associated protein 1 and Nrf2 were expressed at very low
levels in the ileum as compared with the duodenum, suggesting
the presence of an antioxidant environment under physio-
logical conditions of the duodenum. The gene expression
data of Nrf2 were verified by immunostaining for Nrf2 in the
duodenum (Fig. 8(g)i–ii) and ileum (Fig. 8(g)iii–iv), revealing
low levels in the ileum. Furthermore, the mRNA levels of Nrf2-
dependent anti-oxidative enzymes NAD(P)H quinone dehy-
drogenase 1, thioredoxin reductase 1 and toxic peroxide
detoxification enzymes intestinal glutathione peroxidase 2,
aldo-keto reductase family 1, member B7, were significantly
lower in the ileum compared with the duodenum and further
reduced in the ileum of NEC mice (Fig. 8(e) and (f)). These data

suggest that the proximal intestine exists in an antioxidant
environment, which contributes to reduced inflammation after
the administration of lipid, as compared with the pro-inflam-
matory, pro-oxidant environment in the distal intestine, which
predisposes to intestinal injury and NEC.

Discussion

This study provides evidence that the composition of fat in
infant formula has a significant effect on the severity of NEC,
and further that the administration of a novel formula contain-
ing ‘PDF’, composed of soyabean oil NEFA, monoacylglycerol
palmitate and soya lecithin, can reduce NEC severity. In seeking
to understand the mechanisms involved, we focused on the
observation that in the premature gastrointestinal tract the
expression of lipases is relatively low, resulting in the delivery
of undigested lipid constituents to the distal ileum, where their
intracellular accumulation can lead to the generation of ROS,

Proximal intestine (duodenum)

Distal intestine (ileum)

Ctrl

Ctrl

Breast fed
(a) (b) (c) (d)

(e) (f) (g) (h)
Breast fed

Standard fat

Standard fat

Experimental formula (NEC)

Experimental formula (NEC)

Pre-digested fat

Pre-digested fat

Very low fat

Very low fat

Fig. 6. The effect of fat composition on the accumulation of oxidised lipids in ileal enterocytes of mice induced to develop necrotising enterocolitis (NEC). (a–h)
Immunofluorescence images of malondialdehyde (MDA, green) and 4',6-diamidino-2-phenylindole, dihydrochloride (DAPI) stained (nuclei, blue) from control and NEC
mice proximal (duodenum (a–d)) and distal (ileum (e–h)) small intestine (10 μm, cryo-sections) (Ctrl, control–breast-fed or experimental NEC treatments with hypoxia
and formula feeding). Scale bar= 10 μm.
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oxidative stress and the inflammation that characterises NEC.
The oral administration of the broad-acting antioxidant NAC
reversed the accumulation of ROS and limited the degree of
NEC and NEC-induced injury in mice, providing support for the
role of ROS in NEC. We further determined that the proximal
bowel has a greater expression of antioxidant genes as com-
pared with the distal bowel, which may partly explain the
greater susceptibility of the distal bowel to NEC as compared
with the proximal bowel, while also explaining how the intra-
cellular accumulation of lipid may have variable effects in dif-
ferent parts of the bowel. Taken together, these findings shed
light on how the rational development of infant formulas
through the provision of a ‘PDF’ substrate may offer pre-
ventative strategy for infants at risk for the development of NEC.
The modified formula containing a novel ‘PDF’ system that

was used in the present study merits additional discussion.
NEFA included in the ‘PDF’ are normal metabolic breakdown
products of TAG after lipase action in the gastrointestinal tract.
These NEFA are packaged into micelles that are absorbed
readily by diffusion in the proximal intestine into epithelial cells
where they are then converted back into TAG with mono-
acylglycerol and subsequently transported out to the rest of the
body as chylomicrons via the lymphatics. The Ca salt of NEFA
present in the ‘PDF’ formula could mimic metabolites of the
normal digestive process and be readily absorbed in the prox-
imal intestine. The ‘PDF’ formula is different from a typical
medium-chain TAG (MCT)-rich infant formula, as the fat con-
tent used is a mixture of soyabean NEFA (17·5%), mono-
acylglycerol palmitate (20%) and phospholipid lecithin (10·3%)
to bring the fatty acid profile closer to that of human milk.
Soyabean NEFA are produced from naturally occurring soya-
bean oil (fatty acid in TAG form), which is highly processed by
hydrolysis and distillation in order to separate glycerol from
NEFA to achieve their final composition. In contrast, ‘standard
fat’-containing formula contains non-hydrolysed oils (soyabean
oil, HOSO and coconut oil) in 100% TAG form. This oil com-
position thus requires endogenous lipase activity for successful
digestion and absorption, without which the accumulation of
undigested TAG containing especially unsaturated fatty acids,
for example, linoleic and α-linolenic, leads to the accumulation
of ROS and cellular injury. It is noteworthy that in the current
model of experimental NEC mice displayed significantly
reduced pancreatic lipase activity as compared with breast-fed
controls, perhaps as a result of hypoxia during the highly vul-
nerable window of the 1st week or so of life. This lack of lipase
partly explains the reduced ability of these mice to undergo fat
digestion, leading to NEC. Importantly, these cytotoxic effects
could be reversed by the addition of the PDF formula, thus
linking the presence of undigested fat with NEC development.
With respect to understanding further how breast milk pro-

tects against NEC, it should be mentioned that the fat-digestive
enzyme carboxyl ester lipase (CEL, also called bile-salt-
dependent lipase, BSDL) is not only released by the pancreas,
but is also present at very high levels in the breast milk of
several species including mouse and human(17,18,36,37), where it
plays a critical key role in digestion and absorption of milk fat,
which itself exists as a TAG form. Several investigators have
demonstrated that in preterm infants the pancreas is unable to

secrete sufficient lipases for TAG fat digestion owing to enzyme
insufficiency(13,38,39), and indeed the data in Fig. 4(a) indicating the
ontogeny of CEL secretion are consistent with this concept.
Although mice that were induced to develop NEC were unable to
digest the TAG fat completely when fed ‘standard formula’, the
breast-fed pups were able to digest the milk fat (100% TAG fat),
likely owing to the presence of the fat-digestive enzymes that are
present in the breast milk, accounting in part for why undigested
fat did not accumulate in the lumen of breast-fed mice. Casper
et al.(16) have demonstrated that by supplementing recombinant
human CEL in formula they facilitated fat digestion and absorption
in preterm infants. The presence of lipases(36) in the breast milk
supports the rationale for the PDF approach, which bypasses the
requirement for CEL for fat digestion and absorption.

The current study adds to a growing body of work regarding
the role of fat composition of infant formula on the maintenance
of infant health. Caplan et al.(3) have shown in experimental
systems that the administration of a combination of long-chain
PUFA, specifically ARA and DHA, can reduce intestinal inflam-
mation and attenuate the degree of experimental NEC in a neo-
natal rat model, whereas DHA alone was unable to show any
beneficial effect in terms of reducing NEC or TLR4 expression(40).
In these studies, the authors used formula supplemented with
34mg/100ml ARA and 23mg/100ml DHA. Although in the pre-
sent study the formulas (standard, PDF) contain approximately the
same amount of both ARA (approximately 32mg/100ml) and
DHA (approximately 15mg/100ml) (Table 1), these two formulas
showed different outcomes indicating that fat digestion and
absorption in the current study may play an important role in NEC
development. There are additional studies over the past several
decades that have confirmed the various health benefits of PUFA,
whose effects include improved absorption, enhanced membrane
integrity, anti-inflammatory effects and salutary effects on cell
function(3,41,42).

We readily acknowledge that the present study has several
limitations that may prevent its translation to the human
population. First, we have shown data from a mouse model,
which although shares many similarities with the human NEC,
is limited by the short life span of the mouse compared to the
human, and the fact that the mouse model cannot be sub-
jected to surgical intervention or ostomy creation for further
translatability of the current findings. Further, we acknowl-
edge that there may be additional subtle differences in the
various formulas that we have tested here, although the major
differences lie in the type of fat components. Finally, we
recognise that one of the key and perhaps underappreciated
effects of the fat component in the diet on the premature
infant will be on the microbiome, which itself can have major
effects on the propensity for NEC development. Additional
studies will be required to determine in greater detail the
degree to which the PDF formula can affect the microbiome,
and the effects to which changes in the microbiome can lead
to NEC.
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