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Abstract

The asymptotic stability of two types of invariant solutions under a curvature flow in the whole plane is
studied. First, by extending the work of others, we prove that the stationary line with nonzero slope will
attract the graphical curves which surround it. Then a similar property is obtained for the grim reaper.
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1. Introduction

In this paper we study a curvature flow in the whole plane. Specifically, the asymptotic
stability of the stationary solution and the translating solution is studied for the Cauchy
problem

ut =
uxx

1+ u2
x
, x ∈ I, t > 0, (1.1)

with initial data
u(x, 0)= u0(x), x ∈ I, (1.2)

where I may be R or an open interval of R, and u0(x) belongs to C2+α
loc (I ) for some

α ∈ (0, 1).
Equation (1.1) is the simplest evolution equation reduced from a curvature flow

arising in applied areas such as phase transitions and image processing (see [12,
15, 17]). Denote by γ (t)⊂ R2 an interface that separates two different chemical
or physical states. One of the mathematical models that describe the motion of the
interface is characterized by the curvature flow

∂γ

∂t
=−κEν, (1.3)

where Eν is a continuous choice of outer unit normals and κ is the curvature of the
curve with respect to Eν. The flow (1.3) is usually called a shortening flow (see [7, 8]
for instance). Let the initial curve γ (0) be given by the graph (x, u0(x)) on the whole
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x-axis. Then under the flow (1.3), it is well known that the evolving curve γ (t) can
be expressed in the form of a graph (x, u(x, t)) and u(x, t) satisfies problem (1.1)–
(1.2) with I = R. For more references about the flow (1.3), one can refer to the
monograph [5].

A pioneering work on the flow (1.3) of entire graphs in higher dimensions was
contributed by Ecker and Huisken [6], who found a class of initial interfaces under
which the flow converges to an expanding self-similar solution. Then, under more
general initial conditions, Stavrou [16] obtained the same convergence result. Ishimura
improved their results in [10] in the planar setting. In fact, all of their work can be
regarded as relating to the stability of expanding self-similar solutions to the flow (1.3).

Our aim in this paper is to study the stability of other invariant solutions for the
flow (1.3), such as a stationary line, or a translating solution. In the whole plane, every
line is a stationary solution to the flow. Recently, Nara and Taniguchi [13] considered
the stability of the stationary line u(x, t)≡ 0. Their result is as follows.

PROPOSITION 1.1. Let α ∈ (0, 1). Assume that initial data u0 satisfies ‖u0‖C2+α ≤

C0 for some constant C0 > 0 and

lim
R→+∞

sup
x0∈R

1
2R

∣∣∣∣∫ x0+R

x0−R
u0(x) dx

∣∣∣∣= 0. (1.4)

Then there exists a classical global-in-time solution u(x, t) to problem (1.1)–(1.2).
Moreover, the solution u(x, t) satisfies

sup
x∈R
|u(x, t)| ≤ C1(1+ t)−1/2, t > 0, (1.5)

for a constant C1 depending only on u0.

Motivated by Nara and Taniguchi’s work [13], we wish to study the asymptotic
stability of lines y = kx with k 6= 0. Our result reads as follows.

THEOREM 1.2. Assume that u0 satisfies

‖u0 − kx‖C2+α ≤ C0, 0< α < 1, (1.6)

and

lim
R→∞

sup
x0∈R

1
2R

∣∣∣∣∫ x0+R

x0−R
(u0(x)− kx) dx

∣∣∣∣= 0, (1.7)

where k is a nonzero constant. Then there exists a classical global-in-time solution
u(x, t) to problem (1.1)–(1.2) and the solution satisfies

sup
x∈R
|u(x, t)− kx | ≤ C2(1+ t)−1/2, t > 0, (1.8)

where the constant C2 depends only on u0.

REMARK 1.3. As far as the uniqueness of the solution is concerned, one can refer
to the remark after Proposition 2.1. Under the assumption (1.6), the condition (1.7)
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is also necessary to guarantee that the solution converges to the line y = kx . This is
explained in Section 4.

Here, we point out that our result can be regarded as an interesting generalization
of Nara and Taniguchi’s work [13], since the initial curve (x, u0(x)) in Theorem 1.2
could fail to be graphical on the line y = kx . Because of this, the method used in [13]
cannot be applied directly to our problem. Fortunately, a decay estimate is obtained
to guarantee that the curve γ (t)= (x, u(x, t)) becomes a graph on the line y = kx
after some finite time (see Proposition 2.3). And the condition (1.4) is verified to hold
for γ (t) in the new coordinates where ‘y = kx’ is taken to be the ‘x-axis’. Thus the
desired result will follow from Proposition 1.1.

Motivated by previous work, we will also investigate the asymptotic stability of the
translating solutions to the curvature flow (1.3). A translating solution to (1.3) is a
solution which assumes the form

φ(x, t)= φ0(x)+ t, φ0(x)= log sec x, x ∈ (−π/2, π/2), (1.9)

when it is expressed as a graph over the x-axis. It is frequently called a hair-pin in
the physics literature and serves as the model for studying tachyon condensation in
open string theory. For more physical background one may refer to a recent review
paper [3], where the linearized stability of the hair-pin is analyzed. In the mathematics
literature the solution (1.9) is well known as the grim reaper; it is used to characterize
the Type II singularity in the curve shortening problem. Huisken [9] mentioned the
convergence of the flow (1.3) to a grim reaper for a special initial curve (see also [14]).

Let u0(x) be a perturbation of the grim reaper φ0(x) on the interval (−π/2, π/2).
See Figure 1. Assume that u0 satisfies

‖u0(x)− φ0(x)‖C2+α((−π/2,π/2)) < C0, α ∈ (0, 1), (1.10)

for some constant C0, that

(u0)xx has finitely many zero points with (u0)xx > 0 as x→ (±π/2)∓, (1.11)

and that ∫ π/2

−π/2
(u0 − φ0) dx = 0. (1.12)

We assert that under the above perturbation the flow will converge to a grim reaper.

THEOREM 1.4. For initial data u0(x) satisfying conditions (1.10)–(1.12), prob-
lem (1.1)–(1.2) with I = (−π/2, π/2) has a classical global-in-time solution u(x, t)
which satisfies

u(x, t)→ φ(x, t) as t→∞,

on any compact subset of (−π/2, π/2) in the C∞ sense, where φ(x, t) is defined
in (1.9).
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FIGURE 1. The grim reaper φ0(x) and its perturbation u0(x).

To show the long-time solvability of problem (1.1)–(1.2) in Theorem 1.4, an a priori
estimate is obtained first, which also yields a compactness result. Then a Lyapunov
functional is discovered to show the long-time behavior.

This paper is organized as follows. We prove Theorems 1.2 and 1.4 in Sections 2
and 3, respectively. In the last section, we will apply our results to discuss
problem (1.1)–(1.2) on the half-plane.

2. The proof of Theorem 1.2

Let us define the function

v(x, t) := u(x, t)− kx .

Then v(x, t) satisfies the equation

vt =
vxx

1+ (vx + k)2
, x ∈ R, t > 0, (2.1)

and the initial condition
v(x, 0)= u0(x)− kx . (2.2)

In order to prove Theorem 1.2, we first prove some propositions. A well-posedness
result about problem (1.1)–(1.2) with I = R is stated first.

PROPOSITION 2.1. Assume that u0 ∈ C2+α
loc (R) (0< α < 1) satisfies the condi-

tion (1.6), that is, ‖u0 − kx‖C2+α ≤ C0 for some constant C0 > 0 and k 6= 0. Then

https://doi.org/10.1017/S0004972710001942 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001942


[5] On the stability of stationary line and grim reaper in planar curvature flow 181

there exists a classical solution u(x, t) ∈ C2+α,1+α/2
loc (R× [0,∞)) to problem (1.1)–

(1.2). Moreover, we have the inequality

sup
x∈R,t>0

|ux (x, t)− k| ≤ sup
x∈R
|u0x − k| ≤ C0. (2.3)

PROOF. By considering the equivalent problem (2.1)–(2.2), we can prove this
proposition by following the proof of the well-posedness of problem (1.1)–(1.2) for
the case k = 0 in [13]. 2

REMARK 2.2. (i) The global-in-time existence of a complete properly embedded
curve under the flow (1.3) has been obtained in [4] by Chou–Zhu. Here, by
considering the Cauchy problem (1.1)–(1.2), we can get more information, such as
the estimate (2.3).

(ii) We sketch how to show the uniqueness of problem (2.1)–(2.2). By regarding the
solution to (1.1)–(1.2) as a graphical solution to problem (1.3), we can use the touch
principle (see [2, Theorem 1.3]) to deduce the inequality

sup
x∈R,t>0

|u(x, t)− kx | ≤ C0

where C0 appears in Proposition 2.1. In the class{
v ∈ C2+α,1+α/2(R× [0,∞))

∣∣∣∣ sup
x∈R,t>0

|v(x, t)| ≤ C0

}
,

only one solution could be found for problem (2.1)–(2.2).

Next we show the decay estimate for ux by a modification of the method in [13].

PROPOSITION 2.3. The solution u(x, t) of (1.1)–(1.2) satisfies

sup
x∈R
|ux (x, t)− k| ≤ C1(1+ t)−1/2, t ≥ 0, (2.4)

where C1 depends only on u0.

PROOF. Let w = ε(u − kx) with ε to be chosen. We consider a function V (x, t)
defined by

V (x, t)= w2
+

t

1+ M2w
2
x ,

where M = |k| + C0. Note that w(x, t) satisfies the equation

wt =
wxx

1+ u2
x
.

Then a direct computation yields

Vt −
Vxx

1+ u2
x
= −

2w2
x

1+ u2
x
+

w2
x

1+ M2

−
t

1+ M2

[
4w2

xxw
2
x

(1+ u2
x )

2 +
2w2

xx

1+ u2
x
+

4kw2
xxwx

(1+ u2
x )

2

]
.
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From (2.3), we can deduce that

−
2w2

x

1+ u2
x
+

w2
x

1+ M2 ≤ 0

and ∣∣∣∣ 4kw2
xxwx

(1+ u2
x )

2

∣∣∣∣≤ 4ε|k|M
w2

xx

1+ u2
x
.

So, if we choose a small ε such that 4ε|k|M ≤ 1, then

Vt −
Vxx

1+ u2
x
≤ 0, ∀(x, t) ∈ R× (0,∞).

Then by the maximum principle,

V (x, t)≤ ‖V (x, 0)‖L∞(R) = ‖w(x, 0)‖2L∞(R), t ≥ 0,

which implies that

sup
x∈R
|ux (x, t)− k| ≤ (1+ M2)1/2t−1/2, t > 0.

That is, (2.4) holds for a positive constant C1 dependent only on u0. 2

We now introduce a new variable ξ ∈ R and define the line y = kx to be the ‘ξ -
axis’. The origin in the new coordinates is just the one in the old coordinates. Based
on Propositions 2.1 and 2.3, we have the following result.

PROPOSITION 2.4. Let u(x, t) be given in Theorem 1.2. Then there exists a finite
time t0 > 0 such that the curve (x, u(x, t)) becomes a graph on the ξ -axis (y = kx):
(ξ, w(ξ, t)) for t ≥ t0. Moreover, the function w(ξ, t) solves the equation

wt =
wξξ

1+ w2
ξ

, ξ ∈ R, t > t0. (2.5)

In addition, w(ξ, t0) satisfies ‖w(ξ, t0)‖C2+α(R) ≤∞ (α is as in Proposition 2.1) and

lim
R→+∞

sup
ξ0∈R

1
2R

∣∣∣∣∫ ξ0+R

ξ0−R
w(ξ, t0) dξ

∣∣∣∣= 0. (2.6)

PROOF. The rotational invariance property of the flow (1.3) implies that (2.5) holds.
So we only need to prove (2.6). To attain this, we first show that the condition (1.7) is
satisfied by u(x, t) for any t ≥ 0, that is,

lim
R→∞

sup
x0∈R

1
2R

∣∣∣∣∫ x0+R

x0−R
(u(x, t)− kx) dx

∣∣∣∣= 0, ∀t ≥ 0. (2.7)

Note that for a graph (x, u(x, t)) on R evolving according to (1.1), we have that, on
any finite interval (a, b),

d

dt

∫ b

a
(u(x, t)− kx) dx =

∫ b

a
(arctan ux )x dx = arctan ux

∣∣∣∣b
a
. (2.8)
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If we fix any t > 0, then for any R > 0 and x0 ∈ R, (2.8) tells us that∣∣∣∣∫ x0+R

x0−R
(u0(x)− kx) dx −

∫ x0+R

x0−R
(u(x, t)− kx) dx

∣∣∣∣≤ π t,

which implies that

sup
x0∈R

1
2R

∣∣∣∣∫ x0+R

x0−R
(u(x, t)− kx) dx

∣∣∣∣≤ sup
x0∈R

1
2R

∣∣∣∣∫ x0+R

x0−R
(u0(x)− kx) dx

∣∣∣∣+ π t

2R
.

Hence, for any given ε > 0, we will have

sup
x0∈R

1
2R

∣∣∣∣∫ x0+R

x0−R
(u(x, t)− kx) dx

∣∣∣∣≤ ε
if R is sufficiently large. Thus (2.7) is proved. Note that in the new coordinates it is
not difficult to observe that

1
2R

∣∣∣∣∫ ξ0+R

ξ0−R
w(ξ, t0) dξ

∣∣∣∣≤ 1
2R

∣∣∣∣∫ p(ξ0+R)

p(ξ0−R)
u(x, t0) dx

∣∣∣∣+ C2
0 |k|

R
, (2.9)

where the function p is defined as

p(z)=
z

√
1+ k2

, ∀z ∈ R,

and C0 is the constant in (1.6). Then (2.6) follows if we take the limit R→+∞
in (2.9). 2

PROOF OF THEOREM 1.2. Proposition 2.1 gives the existence of the solution. Then
the desired convergence result follows from Propositions 1.1 and 2.4. 2

3. The proof of Theorem 1.4

In this section, we will prove Theorem 1.4. First, a global existence result is
obtained.

PROPOSITION 3.1. For initial data u0(x) satisfying condition (1.10), problem (1.1)–
(1.2) with I = (−π/2, π/2) has a classical global-in-time solution u(x, t), which
satisfies

sup
x∈(−π/2,π/2)

|u(x, t)− φ(x, t)| ≤ C0, ∀t ∈ [0,∞), (3.1)

and

‖u(x, t)− φ(x, t)‖C2+α([−a,a]) ≤ C1(a), ∀t ∈ [a,∞), ∀a ∈ (0, π/2), (3.2)

where C1(a) is a constant depending on a.

PROOF. Two grim reapers φ0 ± C0 can be adopted as barriers for the solution
u(x, t). Indeed, condition (1.10) means that φ0 ± C0 are separated from u0(x) at
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the beginning; see Figure 1. Then the touch principle in [2] tells us that as long as
the solution exists, it will be separated from two evolving grim reapers φ0 ± C0 + t
forever and hence gives the a priori estimate (3.1). Write w = u − φ. Then w satisfies
the equation

wt =
wxx

1+ (wx + φx )2
+

φxx

1+ (wx + φx )2
− 1, (3.3)

where (x, t) ∈ (−π/2, π/2)× (0, T ). Let a ∈ (0, π/2) and T > a. Since (3.1) tells
us that the solution w(x, t) has a priori estimate ‖w(x, t)‖L∞(I×(0,T )) ≤ C0, by
employing [11, Theorems 11.18 and 12.2]we can obtain the interior gradient estimate,

‖wx‖L∞(I ′×(0,T )) ≤ C2(a), (3.4)

and the interior Hölder estimate, ‖wx‖Cδ,δ/2(I ′′×[a/2,T )) ≤ C3(a)with 0< δ < 1, where
I ′ and I ′′ are two open intervals satisfying [−a, a] ⊂⊂ I ′′ ⊂⊂ I ′ ⊂⊂ I . Then
standard regularity theory yields a priori estimate (3.2), which implies that the
curvature of the curve (x, u(x, t)) with (x, t) ∈ [−a, a] × [a, T ) has a bound only
dependent on a. This permits us to use an argument as in [4, Section 1] to show the
global existence of the flow. 2

In what follows, we will show that the a priori estimate (3.2) implies a compactness
result. To this end, we introduce a Lyapunov functional,

J ( f )=
∫ π/2

−π/2
f 2 dx,

where f ∈ L∞(I ).

PROPOSITION 3.2. Assume that initial data u0(x) satisfies the conditions (1.10)–
(1.12). Then, for any sequence {ti }∞i=1 tending to∞, there exists a subsequence {tik }

such that (u − φ)(x, tik )→ 0 in C2([−a, a]) for any a ∈ (0, π/2).

PROOF. Write w = u − φ. The estimate (3.2) ensures that for any sequence {ti }∞i=1
tending to ∞ we can find a subsequence {tik } such that w(x, tik )→ v(x) in
C2([−a, a]) for some function v(x). We first claim that∫ a

−a
v2

x dx = 0. (3.5)

To attain this goal, we consider the functional J (w). A direct computation yields

d

dt
J (w)= 2

∫ π/2

−π/2
(u − φ)(arctan ux − arctan φx )x dx .

To go further, we differentiate Equation (1.1) with respect to the variable x to obtain a
parabolic equation for the unknown uxx and apply the zero number theory [1] to this
equation. It can be seen that uxx will not change its sign near x =±π/2 after a long
time. Thus, for large t ,

ux (x, t)→±∞ as x→±π/2, (3.6)
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due to the estimate (3.1). Then integration by parts yields

d

dt
J (w) = −2

∫ π/2

−π/2
(u − φ)x (arctan ux − arctan φx ) dx

= −2
∫ π/2

−π/2

(ux − φx )
2

1+ ξ2(x, t)
dx

≤ 0,

where ξ(x, t) is between ux (x, t) and φx (x, t). So∫ T

0

∫ π/2

−π/2

(ux − φx )
2

1+ ξ2(x, t)
dx dt ≤

1
2

J (u − φ)(·, 0)=
πc2

0

2
, ∀T > 0.

Note that the estimate (3.4) implies that

sup
x∈[−a,a]

|ξ(x, t)| ≤ C, ∀t > 0, ∀a ∈ (0, π/2).

Henceforth, C always denotes a constant dependent on a. Therefore in fact∫ T

0

∫ a

−a
(ux − φx )

2 dx dt ≤ C, ∀T > 0,

which implies that ∫
∞

0

∫ a

−a
(ux − φx )

2 dx dt <∞. (3.7)

To show that (3.5) holds, it is sufficient to show that∫
−a

a
(ux − φx )

2 dx→ 0 as t→∞.

If not, there exist a constant C > 0 and a sequence {τ j }
∞

j=1 tending to∞ such that∫
−a

a
(ux − φx )

2(x, τ j ) dx ≥ C.

Observing that (3.2) implies that there is an estimate for the norm of (u − φ)t in
C1([−a, a]) independent of t ≥ a, we can find a ρ0 (independent of τ j ) such that∫

−a

a
(ux − φx )

2(x, t) dx ≥
C

2
on [τ j , τ j + ρ0].

It follows that ∫ τ j+ρ0

τ j

∫ a

−a
(ux − φx )

2 dx dt ≥
Cρ0

2
. (3.8)
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On the other hand, from (3.7) we know that

lim
j→∞

∫
∞

τ j

∫ a

−a
(ux − φx )

2 dx dt = 0,

which contradicts (3.8). Thus (3.5) holds.
Next, we show that v(x)≡ 0. In the above argument, take a = π/2− εk with

{εk}
∞

k=1 tending to 0 and decreasing with respect to k. It is not difficult to produce a
sequence {t j } along whichw(x, t j ) converges to v(x), pointwise for x ∈ (−π/2, π/2);
and in C2([−a, a]) for any a ∈ (0, π/2) as t j →∞. Another useful observation is that
w(x, t) satisfies ∫ π/2

−π/2
w dx = 0, ∀t > 0. (3.9)

This is because

d

dt

∫ π/2

−π/2
w dx = (arctan ux − arctan φx )

∣∣∣∣π/2
−π/2
= 0,

where the last equality is due to (3.6). By the dominated convergence theorem, we
take the limit in (3.9) along the sequence {t j } and know that v(x) satisfies∫ π/2

−π/2
v(x) dx = 0.

Thus it must be the case that v(x)≡ 0 in view of (3.5). 2

PROOF OF THEOREM 1.4. Again write w = u − φ. Proposition 3.2 shows that for
any time sequence approaching infinity, there exists a subsequence {t j } such that

w(x, t j )→ 0 in C2([−a, a]), ∀a ∈ (0, π/2) as t j →∞.

In fact, standard regularity results on the quasi-linear parabolic equation such as (3.3)
imply that all spatial derivatives of w(·, t) have a uniform bound independent of
large t on the interval [−a, a] for any a ∈ (0, π/2). So the convergence result in
Proposition 3.2 in fact happens in C∞([−a, a]) for any a ∈ (0, π/2). The proof is
complete. 2

4. Discussion

First, we remark that in Proposition 1.1, under the assumption ‖u0‖C2+α ≤ C , the
condition (1.4) is also necessary for the solution u to converge to 0. This is illustrated
by an example presented in [13]. In fact, a slight modification of that example will
illustrate that condition (1.7) is also necessary for the convergence of the solution in
Theorem 1.2. Moreover, we point out that Theorem 1.2 not only extends Nara and
Taniguchi’s work to a more general case, but also gives a sufficient condition for a line
to attract a family of complete, noncompact embedded curves surrounding it.
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Furthermore, Theorem 1.2 can be employed to investigate the curvature flow on the
half-plane. Let us consider the problem

ut =
uxx

1+ u2
x

if x > 0, t > 0,

u(0, t)= b if t > 0,
u(x, 0)= u0(x) if x > 0,

(4.1)

where u0(x) satisfies u0(0)= b with b ∈ R. We assume that

‖u0 − kx − b‖C2+α(R+) ≤ C0 (4.2)

and

lim
R→∞

sup
x0∈R+

1
2R

∣∣∣∣∫ x0+R

max{x0−R,0}
(u0(x)− kx − b) dx

∣∣∣∣= 0, (4.3)

with k ∈ R. Under the assumptions (4.2)–(4.3), problem (4.1) has a classical solution
converging to y = kx + b (x ≥ 0) as time approaches ∞. This can be observed by
applying Theorem 1.2 to the function v(x, t) defined as follows:

v(x, t)= u(x, t)− b, x ≥ 0, t ≥ 0;

v(x, t)=−u(−x, t)− b, x < 0, t ≥ 0.
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