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COUNTABLE STATE MARKOV DECISION PROCESSES
WITH UNBOUNDED JUMP RATES AND DISCOUNTED
COST: OPTIMALITY EQUATION AND APPROXIMATIONS
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Abstract

This paper considers Markov decision processes (MDPs) with unbounded rates, as a
function of state. We are especially interested in studying structural properties of optimal
policies and the value function. A common method to derive such properties is by value
iteration applied to the uniformised MDP. However, due to the unboundedness of the
rates, uniformisation is not possible, and so value iteration cannot be applied in the way
we need. To circumvent this, one can perturb the MDP. Then we need two results for
the perturbed sequence of MDPs: 1. there exists a unique solution to the discounted
cost optimality equation for each perturbation as well as for the original MDP; 2. if the
perturbed sequence of MDPs converges in a suitable manner then the associated optimal
policies and the value function should converge as well. We can model both the MDP
and perturbed MDPs as a collection of parametrised Markov processes. Then both of
the results above are essentially implied by certain continuity properties of the process
as a function of the parameter. In this paper we deduce tight verifiable conditions that
imply the necessary continuity properties. The most important of these conditions are
drift conditions that are strongly related to nonexplosiveness.
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1. Introduction

In this paper we study convergence and continuity properties of a collection of parametrised
continuous-time Markov processes in countable state space with a discounted cost criterion.
The parameter may represent a stationary or deterministic policy in a Markov decision process
(MDP). It may also represent a perturbation of a Markov process. Or it can be a combination
of both, i.e. control in a perturbed MDP.

The motivation for this paper is our interest in MDPs with unbounded transition rates. In
order to study structural properties, the MDP has to be uniformisable. Structural properties
of optimal policies and the value function follow from the propagation of these properties
through a value iteration step. Note that often value iteration is applicable to the associated
jump MDP. However, it is not clear that the desired structural properties propagate through
the value iteration step in this case, since the expected sojourn times in the states may not be
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Markov decision processes with discounted cost 1089

equal and so they may affect the resulting immediate costs and transition probabilities in an
undesirable manner.

Hence, we wish to perturb the MDP in such a manner that it allows uniformisation and the
structural properties are preserved. Therefore, continuity in the parameter is necessary to infer
properties of the original MDP from properties of the perturbed MDPs.

The conditions we impose on the Markov processes reduce down to the existence of a
transformation of the process such that the transformed process is nonexplosive and, moreover,
has a bounded cost function. These conditions should hold uniformly in the parameter and
are expressed as drift conditions for the original Markov process as well as for the transformed
process. Nonexplosiveness of the transformation guarantees continuity of the relevant perfor-
mance measures as a function of the parameter, provided some standard continuity conditions
hold.

The typical performance measure we have in mind is the discounted value function. If
the parameter space has a product property then the parametrised process is an MDP. The
continuity of the value function implies the existence of a solution of the discounted cost
optimality equation (DCOE). We show that the solution provides a deterministic stationary
optimal policy in the class of stationary policies. We do not study history dependent policies.

As an illustration we apply our results to the server farm with unbounded rates studied in [1].
In that paper it was shown that for bounded jump perturbations of the model a switching curve
policy is optimal. However, the unbounded jump case remained open, since till recently no
theory was available to justify taking the limit of the perturbation parameter going to 0—and
the jumps becoming unbounded. In this paper we take the parameter space to be the product
of the perturbation and control parameter. The obtained continuity results allow us to take the
limit and show that a switching curve policy with the same structure is optimal.

The drift conditions that are used to show the existence of a solution of the DCOE are related
to the conditions used in [4]–[7], [10], and [12]. These papers do not study convergence results,
to the best of the authors’ knowledge the only paper where convergence of perturbed MDPs
is studied is [11]. We want to emphasise that our aim has been to give minimal conditions
for the drift criteria. In the one-parameter case our drift conditions are proven to be necessary
(cf. [17]). Furthermore, we have tried to highlight the role that the various conditions play in
the derivations. The conditions we impose are weaker than those used in the above mentioned
papers. A more detailed comparison with the other drift conditions is given later in the paper,
in Section 4 and Remark 5.2.

The paper is organised as follows. In Section 2 we introduce a so-called V -transformation
and provide a characterisation of nonexplosiveness in terms of drift conditions. In Section 3 we
develop conditions implying the continuity properties we will need. In Section 4 the two main
theorems regarding the solutions to the Poisson equation and optimality equation are stated. In
Section 5 the translation to MDPs and perturbed MDPs is made. We provide an outline of the
approach in order to obtain results for unbounded MDPs. Finally, in Section 6 we demonstrate
this approach on the webfarm model studied by [1].

2. Basic settings

We will restrict our investigations to the following class of parametrised processes.

Assumption 2.1. For each a ∈ A, X(a) is a minimal, standard, stable Markov process, with
right-continuous sample paths (with respect to the discrete topology), and with conservative
q-matrix Q(a) = (qxy(a))x,y∈S , i.e. for all x ∈ S, a ∈ A,
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(i) 0 ≤ qx(a) = −qx,x(a) < ∞;

(ii)
∑

y qxy(a) = 0.

With Pt(a) = { pt,xy(a)}xy, t ≥ 0, we denote the minimal transition function. A basic role
in the discussion of relevant continuity properties of a parametrised Markov process is played
by explosiveness properties. To this end we will first review the definition of explosiveness and
a characterisation that is useful in this context. For the rest of this section we restrict ourselves
to the one-parameter case.

We will define this properly. To this end, let X be a Markov process on S that satisfies
Assumption 2.1 (for a parameter space consisting of one element). Let τ0 = 0 and τn+1 =
inf{t > τn | Xt �= Xt−} if Xτn is nonabsorbing. Otherwise, put τk = ∞ and Xτk

= Xτn

for k > n. Let J∞ = limn→∞ τk . The Markov process X is said to be explosive if there
exists a state x ∈ S with P{J∞ < ∞ | X0 = x} > 0. Nonexplosiveness is strongly related
to the existence of a drift moment function, introduced below. First we need some notation.
Let f : S → R, then f can be viewed as a vector of dimension |S|. By Qf and Ptf we
mean the matrix multiplied by vector products with elements Qf (x) = ∑

y∈Sqxyf (y) and
Ptf (x) = ∑

y∈S pt,xyf (y), x ∈ S, respectively.

Definition 2.1. Let γ ∈ R and V : S → R+ = (0, ∞), then

• V is said to be a γ -drift function for X if QV ≤ γV , where we use componentwise
ordering;

• V is said to be a moment function, if there exists an increasing sequence {Kn}n ⊂ S of
finite sets with limn Kn = S such that infx �∈Kn V (x) → ∞ as n → ∞.

Note that since Q is conservative, V ≡ 1 is always a 0-drift function. Furthermore, from
[17, Theorem 2.1] we see that nonexplosiveness of X is equivalent to the existence of a γ -drift
moment function for some constant γ ∈ R.

Definition 2.2. Let γ ∈ R and V be a γ -drift function for X. Define the following associated
transformation of X, denoted as XV . Extend the state space with a coffin state �, i.e. S� =
S ∪ {�}. Then define

qV
xy =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qxyV (y)

V (x)
, x �= y, x, y �= �,

qxx − γ, x = y, x, y �= �,

γ −
∑

y∈S qxyV (y)

V (x)
, x �= �, y = �,

0, x = �, y ∈ S�.

This makes QV = (qV
xy)x,y∈S� a conservative q-matrix, with � an absorbing state. Denote

by { P V
t }t again the (minimum) transition function on the enlarged state space S�.

Since we also need to take into account a cost or reward structure, the validity of the
Kolmogorov forward integral equation is an important tool in guaranteeing the existence of
solutions to DCOEs. The function f : S → R is said to satisfy the Kolmogorov forward
equation if, for all x ∈ S,

Ptf (x) = f (x) +
∫ t

0
Ps(Qf )(x) ds, t ≥ 0, (2.1)

where Ptf (x) = ∑
y pt,xyf (y).
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The following result holds.

Theorem 2.1. (cf. [16, Theorem 3.2] and [17, Theorem 2.1].) Suppose that Assumption 2.1
holds, and let V be a γ -drift function for X. The following are equivalent:

(i) V satisfies (2.1);

(ii) XV is nonexplosive;

(iii) for some constant θ there exists a θ -drift V -moment function W for X.

With W being a V -moment function we mean that W/V is a moment function. Then direct
calculations yield that W being a θ -drift V -moment function for X is equivalent to W/V being
a (θ − γ )-drift moment function for XV , where (W/V )(x) = W(x)/V (x), x ∈ S.

Under any of these three conditions, the functions bounded by V also satisfy (2.1), under
suitable integrability conditions. A discounted version is needed later on, and so we make it
precise in the theorem below. To do so, we need some further notation.

The Banach space of functions bounded by V (or V -bounded functions) on S is denoted by
�∞(S, V ). This means that f ∈ �∞(S, V ) if f : S → R and

||f ||V := sup
x∈S

|f (x)|
V (x)

< ∞.

If V is a γ -drift function then [2] implies that PtV ≤ eγ tV and [17] implies that t �→ PtV

is continuous on R+. This implies that t �→ Ptf is continuous for each f ∈ �∞(S, V ) and,
hence, integrable. Additionally, Pt is a V -bounded linear operator, mapping �∞(S, V ) into
itself, with induced norm

|| Pt ||V = sup
x

PtV (x)

V (x)
≤ eγ t . (2.2)

Note that in general the q-matrix Q is not a V -bounded linear operator.

Theorem 2.2. (cf. [16, Theorem 3.4 and Lemma 3.1].) Let Assumption 2.1 hold, and let V be
a γ -drift function for X.

(i) If XV is nonexplosive and, moreover, either f ∈ �∞(S, V ) and
∫ t

0 Ps |Qf | ds < ∞ or
f = V then for any k ∈ R, f satisfies

ekt Ptf (x) = f (x) +
∫ t

0
eks[ Ps(Qf )(x) + k Psf (x)] ds. (2.3)

(ii) Conversely, if V satisfies (2.3) for some k ∈ R, then XV is nonexplosive.

Proof. The proof of Theorem 2.2(i) follows entirely from the proofs in the referenced
theorem and lemma. The conditions in the referenced results are slightly different: f is
assumed to be a γ ′-drift function for some γ ′ ∈ R. However, this is used only in the proofs to
guarantee that

∫ t

0 Ps |Qf |(x) ds < ∞. The latter is assumed explicitly here.
For the proof of Theorem 2.2(ii), we assume that (2.3) holds for V . By virtue of [2, Lemma

5.4.2], we have

pt,xy = V (x)

V (y)
eγ tpV

t,xy, x, y ∈ S, t ≥ 0. (2.4)
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Hence, we can write (2.3) as

ekt
∑
y∈S

pt,xyV (y) = V (x) +
∫ t

0
eks

[∑
z∈S

ps,xz

∑
y∈S

qzyV (y) + k
∑
y∈S

ps,xyV (y)

]
ds.

Substituting (2.4) into the above expression, we have

e(k+γ )tV (x)
∑
y∈S

pV
t,xy = V (x)

(
1+

∫ t

0
e(k+γ )s

[∑
z∈S

pV
s,xz

∑
y∈S

(qV
zy+δzyγ )+k

∑
y∈S

pV
s,xy

]
ds

)
.

Cancelling the V (x) terms, we can express this as

e(k+γ )t
∑
y∈S

pV
t,xy = 1 +

∫ t

0
e(k+γ )s

[∑
z∈S

pV
s,xz

∑
y∈S

qV
zy +

∑
y∈S

(k + γ ) pV
s,xy

]
ds.

Now for y = �, we directly have by the Kolmogorov forward equation:

e(k+γ )t pV
t,x� =

∫ t

0
e(k+γ )s

[
pV

s,xz

∑
z∈S

qV
z� + (k + γ ) pV

s,x�

]
ds.

Combining these, we obtain

e(k+γ )t
∑
y∈S�

pV
t,xy = 1 +

∫ t

0
e(k+γ )s

[ ∑
z∈S�

pV
s,xz

∑
y∈S�

qV
zy +

∑
y∈S�

(k + γ ) pV
s,xy

]
ds

= 1 +
∫ t

0
e(k+γ )s

∑
y∈S�

(k + γ ) pV
s,xy ds

≥ 1 +
∫ t

0
e(k+γ )s

∑
y∈S�

(k + γ ) pV
t,xy ds

≥ 1 + e(k+γ )t
∑
y∈S�

pV
t,xy − 1

= e(k+γ )t
∑
y∈S�

pV
t,xy .

The second equality is due to QV being conservative. The inequality is due to the non-
increasingness of s �→ ∑

y∈S�
pV

s,xy (cf. [2, Proposition 1.1.2(i)]). Since the first and last
expressions are equal, the inequality is actually an equality. This yields that

∑
y∈S�

pV
s,xy is

constant on (0, t). Because
∑

y∈S�
pV

s,xy is continuous (cf. [2, Proposition 1.2.6]) it is also
constant on [0, t]. Hence,

∑
y∈S�

pV
s,xy = 1 for 0 ≤ s ≤ t . From [2, Proposition 1.1.2(ii)] it

follows that
∑

y∈S�
pV

s,xy = 1 for all s ≥ 0. Hence, XV is nonexplosive.

By virtue of the above theorem for the γ -drift function V , requiring the nonexplosiveness of
XV is necessary and sufficient for (2.3) to hold. Hence, (2.3) cannot hold for V under weaker
conditions.

In the next section we develop, in our opinion, satisfactory conditions implying the continuity
properties in the parameter set A that we will need.
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3. Continuity for the parametrised processes X(a)

In order to address continuity aspects, we have to assume some structure on the parameter
set.

Assumption 3.1. The set A is a locally compact topological space, in other words every point
a ∈ A has a compact neighbourhood.

In what follows we will assume that the above condition holds.

Definition 3.1. We call V : S → R+ a (A, γ )-drift function if V is a γ -drift function for X(a)

for each a ∈ A. The notions (A, γ )-drift moment function and (A, θ)-drift V -moment function
are defined accordingly. If the parameter space A consists of one element, we will drop the
reference to A in the notation.

Recall the construction of the minimal transition function. Define

f
(n)
t,xy(a) =

⎧⎪⎨
⎪⎩

δxye−qx(a)t , n = 0,

f
(0)
t,xy(a) +

∫ t

0
e−qx(a)

∑
k �=x

qxk(a)f
(n−1)
t−s,ky(a) ds, n ≥ 1.

By minimality of X(a) [2, Theorem 2.2.2], we have

f
(n)
t,xy(a) ↑ pt,xy(a), x, y ∈ S, t ≥ 0, a ∈ A.

The interpretation is that f
(n)
t,xy(a) is the probability that the process X(a) reaches y within t

time units with at most n jumps when starting from state x.

Theorem 3.1. Suppose that Assumptions 2.1 and 3.1 hold and that

(i) a �→ qxy(a) is continuous on A for x, y ∈ S;

(ii) there exists an (A, γ )-drift function V ;

(iii) (a, t) �→ Pt(a)V (x) is continuous on A × [0, ∞) for each x ∈ S.

Then (a, t) �→ pV
t,xy(a) continuous on A×[0, ∞) for each x, y ∈ S. Hence, (a, t) �→ pt,xy(a)

is continuous on A × [0, ∞) for each x, y ∈ S.

Proof. Let f V,(n)
t,xy (a) be the above probabilities for the V -transformed process XV (a). Thus,

f
V,(n)
t,xy (a) =

⎧⎪⎨
⎪⎩

δxye−qV
x (a)t , n = 0,

f
V,(0)
t,xy (a) +

∫ t

0
e−qV

x (a)
∑
k �=x

qV
xk(a)f

V,(n−1)
t−s,ky (a) ds, n ≥ 1.

We will inductively show that (a, t) �→ ∑
y∈K f

V,(n)
t,xy (a) is continuous for each n ≥ 1,

x ∈ S�, K ⊂ S�.
First we will show this statement for K = {y}. Note that (a, t) �→ f

V,(0)
t,xy (a) = e−qV

x (a)t δxy

is continuous for x, y ∈ S�.
Assume that (a, t) �→f

V,(n−1)
t,xy (a) is continuous for each x, y ∈ S�. Because f

V,(n−1)
t,xy (a) ≤

1, the generalised dominated convergence theorem [14, Proposition 11.18] implies that (a, t) �→∑
k �=x qV

xk(a)f
V,(n−1)
t,ky (a) is continuous for each x, y ∈ S�. For each (a, t) ∈ A × [0, ∞) this

expression is bounded by qV
x (a). Applying the generalised dominated convergence theorem
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once more yields that the integral
∫ t

0 e−qV
x (a)

∑
k �=x qV

xk(a)f
V,(n−1)
t−s,ky (a) ds is a continuous func-

tion of (a, t) ∈ A × [0, ∞). This gives continuity of (a, t) �→ f
V,(n)
t,xy (a) for x, y ∈ S�.

An analogous argument shows continuity of (a, t) �→ ∑
y∈K f

V,(n)
t,xy (a) for any subset K ⊂

S�, x ∈ S�. By virtue of (2.4), Theorem 3.1(iii) is equivalent to requiring continuity of
(a, t) �→ ∑

y∈S pV
t,xy(a).

Next let x, y ∈ S. We wish to show that (a, t) �→ pV
t,xy(a) is continuous at some arbitrary

point (a0, t0) ∈ A × [0, ∞). Let B0 ⊂ A × [0, ∞) be a compact neighbourhood of (a0, t0).
Hence, (a, t) �→ ∑

y∈S f
V,(n)
t,xy (a) is a nondecreasing sequence of continuous functions on a

compact set, converging to the (assumed) continuous function (a, t) �→ ∑
y∈S pV

t,xy(a). By
Dini’s theorem on uniform convergence [15, Theorem 7.13], the convergence is uniform. In
other words, for each ε > 0, there exists Nε such that

ε ≥
∣∣∣∣ ∑

y∈S

pV
t,xy(a) −

∑
y∈S

f
V,(n)
t,xy (a)

∣∣∣∣ =
∑
y∈S

( pV
t,xy(a) − f

V,(n)
t,xy (a)), (a, t) ∈ B0, n ≥ Nε.

As a consequence, f
V,(n)
t,xy (a) converges uniformly in (a, t) ∈ B0 to pV

t,xy(a) for x, y ∈ S,
t ≥ 0.

By virtue of the uniform limit theorem (cf. [9, Theorem 21.6, p. 132] and [14, Exercise 2.42])
(a, t) �→ pV

t,xy(a) is continuous in (a0, t0) for x, y ∈ S. Continuity of (a, t) �→ pt,xy(a) then
follows by (2.4).

Corollary 3.1. Suppose that Assumptions 2.1 and 3.1 hold and that X(a) is nonexplosive for
all a ∈ A. Furthermore, assume that a �→ qxy(a) is continuous for each x, y ∈ S. Then
(a, t) �→ pt,xy(a) is continuous for x, y ∈ S.

Proof. It holds that V ≡ 1 is always a 0-drift function. Furthermore, Pt(a)V (x) = 1,
x ∈ S; hence, (a, t) �→ Pt(a)V is continuous on S × [0, ∞). The result follows from the
previous theorem.

Clearly, Theorem 3.1(iii) is not easily verified for general drift functions. The next theorem
provides verifiable conditions in order for the conditions of Theorem 3.1 to hold.

Simultaneously with the preparation of this work, this question has been addressed in [12,
Proposition 2.20]. Due to the equivalence result Theorem 2.1, the result of [12] is close to ours.
The book [12] restricts the problem to a product set parameter space, and requires compactness
of the parameter space. We will provide an alternative proof. The conditions required are the
existence of a γ -drift function V and θ -drift V -moment function W , uniform in the parameter
a ∈ A.

Assumption 3.2. (i) It holds that a �→ qxy(a) is continuous on A for x, y ∈ S.

(ii) There exists an (A, γ )-drift function V .

(iii) There exists an (A, θ)-drift V -moment function W .

Theorem 3.2. Suppose that Assumptions 2.1, 3.1, and 3.2 hold. Then for each x ∈ S, (a, t) �→
Pt(a)V (x) is continuous on A × [0, ∞) and a �→ Q(a)V (x) is continuous on A.

Proof. Denote by P V
t (a), t ≥ 0, the transition function of XV (a). Since XV (a) is

nonexplosive by virtue of Theorem 2.1,∑
y∈S�

pV
t,xy(a) = 1 for all (a, t) ∈ A × [0, ∞), x ∈ S�.
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Moreover, Corollary 3.1 yields that (a, t) �→ pV
t,xy(a) is continuous for x, y ∈ S�. Combining

this gives the continuity of

(a, t) �→
∑
y∈S

pV
t,xy(a) (3.1)

on A × [0, ∞) for x ∈ S. Substituting (2.4) into (3.1) yields that a �→ ∑
y∈S pt,xy(a)V (y) is

continuous for each x ∈ S.
The only thing left to prove is the continuity of a �→ Q(a)V (x). To this end we use a nice

argument from [12, Proposition 2.20]. Let x ∈ S be given. Let {Kn}n ⊂ S be an increasing
sequence of finite sets with x ∈ Kn for all n, limn Kn = S, and infy �∈KnW(y)/V (y) → ∞ as
n → ∞. Then, for all a ∈ A,

∑
y �∈Kn

qxy(a)V (y) =
∑
y �∈Kn

qxy(a)W(y)
V (y)

W(y)

≤ 1

infz �∈Kn W(z)/V (z)

∑
y �∈Kn

qxy(a)W(y)

≤ 1

infz �∈Kn W(z)/V (z)
(θ + qx(a))W(x).

Let a0 ∈ A. We wish to show that a �→ ∑
y qxy(a)V (y) is continuous in a0. Let A0 be a

compact neighbourhood of a0. Then b := supa∈A0
(θ + qx(a))W(x) < ∞. For any ε > 0

there exists Nε such that

b

infz �∈Kn W(z)/V (z)
≤ ε, n ≥ Nε.

It follows that
∑

y∈Kn
qxy(a)V (y) converges to Q(a)V (x) uniformly in a ∈ A0. Since a �→∑

y∈Kn
qxy(a)V (y) is continuous by assumption, we may apply the uniform limit theorem

(cf. [9, Theorem 21.6, p. 132]) to obtain a �→ Q(a)V (x) is continuous.

Theorem 3.2 connects the continuity properties of the integral (a, t) �→ Pt(a)f (x) for f ∈
l∞(S, V ), to the continuity of the measures of compact sets and nonexplosiveness properties
of X(a). The next example illustrates that if Assumptions 3.2(i) and 3.2(ii) hold but XV (a) is
explosive for some a ∈ A, then a �→ Pt(a)V (x) need not be continuous on A. This is the
basic example from [16, Section 4].

Example 3.1. Let S = Z+. Consider the q-matrix Q given by

qxy =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p2x, y = x + 1, x �= 0,

−2x, y = x, x �= 0,

(1 − p)2x, y = x − 1, x �= 0,

0, otherwise,

where p < 1
2 and 0 is an absorbing state. This is the q-matrix of a nonexplosive Markov

process.
Let V (x) = αx for α = (1 − p)/p. Then QV = 0 ≤ 0 · V . The q-matrix QV of the

associated V -transformation, however, defines an explosive Markov process X (cf. [16]).
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We define the following parametrised collection of Markov processes. Let A = {1, 2, . . . ,

∞}. This is a compact set. Let X(0) be the Markov process with q-matrix Q(∞) = Q. For
each a ∈ A, we define the perturbation X(a) with q-matrix Q(a) given by

qxy(a) =

⎧⎪⎨
⎪⎩

qxy, x ≤ a,

−2a, y = x > a,

2a, y = x − 1, x > a.

Then Q(a)V ≤ 0 · V for every a ∈ A. Also a �→ qxy(a) is trivially continuous on A. Hence,
Assumptions 3.2(i) and 3.2(ii) are satisfied. Note that due to the boundedness of jumps, XV (a),
a < ∞, is nonexplosive.

Since XV = XV (∞) is explosive, there exists a state x ∈ S� such that

1 = lim
a→∞

∑
y

pV
t,x,y(a) >

∑
y

pV
t,x,y(∞).

By virtue of (2.4),
∑

y pt,xy(a)V (y) �→ ∑
y pt,xy(∞)V (y) as a → ∞ for t > 0. Hence,

a �→ Pt(a)V (x) is not continuous on A.

4. The Poisson equation and optimality equation for the α-discounted cost criterion

Suppose next that Assumptions 2.1 and 3.2(ii) hold, in other words there exists a γ -drift
function V . Assume that a cost cx(a) per unit time is incurred when the process X(a) resides
in state x under parameter a ∈ A. Denote by c(a) = (cx(a))x∈S the associated cost vector.

Assumption 4.1. (i) a �→ cx(a) is continuous on A;

(ii) there is a finite constant cV such that supx,a |cx(a)|/V (x) ≤ cV ;

(iii) for the discount factor α it holds that α > γ .

Define the expected α-discount total cost associated with parameter a ∈ A by

vα(a) =
∫ ∞

0
e−αt Pt (a)c(a) dt,

and the xth component by vα(x, a). Note that Assumptions 2.1, 3.2(ii), and 4.1(ii) imply that
t �→ Pt(a)V is continuous. By (2.4), PtV (x) ≤ eγ tV (x). Hence, α > γ guarantees that
vα(a) is well-defined and finite.

If we further require the nonexplosiveness of XV then it can be shown that vα(a) is the
unique solution of the Poisson equation (4.1) in �∞(S, V ).

Theorem 4.1. Let Assumption 2.1 hold.

(i) If Assumptions 3.2(ii) and 3.2(iii), and Assumptions 4.1(ii) and 4.1(iii) hold, then vα(a)

is the unique solution in �∞(S, V ) to the α-discounted equation

αf = c(a) + Q(a)f. (4.1)

(ii) If, additionally, Assumptions 3.1, 3.2(i), and 4.1(i) hold, then a �→ vα(a) is component-
wise continuous on A.
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Proof. Let a ∈ A. We first prove that vα(a) is a solution to (4.1) in the space �∞(S, V ).
Note that ||vα(a)||V ≤ cv/(α − γ ), so that vα(a) ∈ �∞(S, V ). Moreover, Q(a)|vα(a)| is well
defined and finite. We obtain

Q(a)vα(x, a) =
∑
y

qxy(a)

∫ ∞

0
e−αt

∑
z

pt,yz(a) cz(a) dt

=
∑
y

qxy(a)
∑

z

∫ ∞

0
e−αt pt,yz(a) dt cz(a)

=
∑

z

∫ ∞

0
e−αt p′

t,xz(a) dt cz(a)

=
∑

z

(
−δxz + α

∫ ∞

0
e−αt pt,xz(a) dt

)
cz(a)

= −cx(a) + αvα(x, a).

The interchange of summation and integration in the second equality is justified by Fubini’s
theorem; in the third equality, by the additional fact that Q(a) has at most one negative element
per row. The fourth equality is due to partial integration. As a consequence, vα(a) is a solution
of (4.1) in �∞(S, V ).

Suppose that f ∈ �∞(S, V ) is another solution. Then α(vα(a) − f ) = Q(a)(vα(a) − f ),
and so vα(a) − f ∈ �∞(S, V ) is an eigenvector of Q(a) to eigenvalue α > 0. Direct
calculations show that g : S� → R, given by g = (vα(a) − f )/V on S and g(�) = 0, is
a bounded eigenvector of QV (a) to eigenvalue α − γ > 0. Nonexplosiveness of a Markov
process can be characterised by the nonexistence of a bounded (nonzero) eigenvector of the
corresponding q-matrix to positive eigenvalues (cf. [13, Theorem 7] and [17, Theorem 2.1]).
By Assumption 3.2, XV (a) is nonexplosive. Hence, a nonzero eigenvector cannot exist and so
we conclude that f = vα(a).

We finally turn to proving the componentwise continuity of vα(a). By virtue of Theo-
rem 3.2, a �→ Pt(a)V is componentwise continuous. Equation (2.2) yields that Pt(a)V ≤
eγ tV . Hence, the dominated convergence theorem implies that a �→ ∫ ∞

0 e−αt Pt (a)V dt

is componentwise continuous. Another application of the dominated convergence theorem
implies that a �→ vα(a) = ∫ ∞

0 e−αt Pt (a)c(a) dt is componentwise continuous.

We will next consider the special case that the collection {Q(a)}a∈A and {c(a)}a∈A have the
product property (cf. [8]) in the following sense.

Assumption 4.2. There exist compact metric sets Ax , x ∈ S, such that the following conditions
hold:

(i) A = ∏
x∈S Ax, and A is equipped with the product topology;

(ii) {Q(a)}a∈A and {c(a)}a∈A have the product property. In other words, for any a, a′ ∈ A,
x ∈ S such that ax = a′

x , it holds that (Q(a))x · = (Q(a′))x ·, and cx(a) = cx(a
′). Here

(Q(a))x · stands for the x-row of Q(a).

Note that A is compact and metrisable, and the product topology is the topology of compo-
nentwise convergence. Hence, A is sequentially compact.

Under Assumption 4.2, the xth row and xth component of Q(a) and c(a) depend on the
value ax only. Therefore, with a slight abuse of notation, we may write qxy(ax) and cx(ax).
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Then infa∈A(c(a) + Q(a)f ) is well defined and may also be written as infax∈Ax {cx(ax) +∑
y qxy(ax)f (y)} for all x ∈ S. As an application, the set A may represent the collection of

stationary policies in an MDP, or the set of deterministic policies.
We say that parameter a∗ is optimal in A if vα(a∗) ≤ vα(a) for all a ∈ A. In this case we

have the following result.

Theorem 4.2. Suppose that Assumption 2.1 holds.

(i) Suppose that Assumptions 3.2(ii), 4.1(ii), 4.1(iii), and 4.2 hold. Moreover, suppose that
there exists a function m such that m(x) ≥ supa qx(a). Then the equation

αf (x) = inf
ax∈Ax

{
cx(ax) +

∑
y

qxy(ax)f (y)

}
, x ∈ S, (4.2)

has a solution vα in �∞(S, V ).

(ii) If, moreover, Assumptions 3.2(i), 3.2(iii), and 4.1(i) hold, this solution is unique in
�∞(S, V ) and the infimum is a minimum. For any a∗ = (a∗

x)x ∈ A for which a∗
x

achieves the minimum in (4.2), x ∈ S, we have vα(a∗) = vα and a∗ is optimal in A.

Proof of Theorem 4.2(i). We use the same line of reasoning as in the proof of [12, The-
orem 3.7]. Suppose that Assumptions 3.2(ii), 4.1(ii), and 4.2 hold. Let m : S → R+ be
such that m(x) ≥ supax∈Ax

qx(ax) for x ∈ S. Then define pxy(ax) = qxy(ax)/m(x) + δxy

for x, y ∈ S, ax ∈ Ax , which is a probability measure for each state action pair (x, ax).
Furthermore, define the operator T for f ∈ �∞(S, V ) by

(Tf )(x) = inf
ax∈Ax

{
cx(ax)

α + m(x)
+ m(x)

α + m(x)

∑
y∈S

pxy(ax)f (y)

}
, x ∈ S.

Define the sequence {fn}n in �∞(S, V ) by f0(x) = (cV /(α − γ ))V (x), and fn = Tfn−1 for
n ≥ 1. First, nonnegativity of the coefficients in the second term between brackets implies that
T is monotone (i.e. f ≥ g implies that Tf ≥ T g). Secondly, direct calculations show that
f0 ≥ f1. This implies that {fn}n is a monotone decreasing sequence. Furthermore, it is easy
to show that

||fn||V ≤ cV

α − γ
.

Thus, {fn}n has a pointwise limit f ∗ ∈ �∞(S, V ) with f ∗ ≤ fn for all n. Hence, Tf ∗ ≤
Tfn = fn+1 for all n and, thus, Tf ∗ ≤ limn→∞ fn = f ∗.

Next we prove that f ∗ ≤ Tf ∗. First note that

f ∗ ≤ fn+1 = Tfn, n = 1, . . . . (4.3)

For notational convenience, denote

(Tax f )(x) = cx(ax)

α + m(x)
+ m(x)

α + m(x)

∑
y∈S

pxy(ax)f (y), x ∈ S,

so that Tf (x) = infax Tax f (x). By monotone convergence Tax fn(x) ↓ Tax f
∗(x), n → ∞,

ax ∈ Ax . Let ε > 0, x ∈ S, and ax ∈ Ax . Then there exists Nε,x,ax such that

Tax fn(x) ≤ Tax f
∗(x) + ε, n ≥ Nε,x,ax . (4.4)
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Combining (4.4) with (4.3) yields

f ∗(x) ≤ Tax f
∗(x) + ε, ax ∈ Ax.

Taking the infimum on both sides, we obtain

f ∗(x) ≤ Tf ∗(x) + ε.

Since ε > 0 and x ∈ S were arbitrary, we obtain the desired inequality f ∗ ≤ Tf ∗. We conclude
that Tf ∗ = f ∗.

By direct calculations it is seen that this last equality is equivalent to (4.2); thus, we have
proven that there is a solution and we call this vα .

Proof of Theorem 4.2(ii). Suppose now that Assumptions 3.2(i), 3.2(iii), and 4.1(i) hold as
well. By Theorem 4.1, a �→ c(a) + Q(a)vα is componentwise continuous on A. Since A is
compact, this implies that the infimum is attained. So there is an a∗ ∈ A such that

αvα(x) = inf
ax∈Ax

{
cx(ax) +

∑
y

qxy(ax)v
α(y)

}

= min
ax∈Ax

{
cx(ax) +

∑
y

qxy(ax)v
α(y)

}

= cx(a
∗
x) +

∑
y

qxy(a
∗
x)vα(y).

Then vα = vα(a∗) by Theorem 4.1. Next we will show that vα = vα(a∗) ≤ vα(a) for any
a ∈ A, in other words a∗ is optimal in A. To this end, let â ∈ A. Enumerate S = {s1, s2, . . .}.
Define an ∈ A by

an
x =

{
âx, x ∈ {s1, . . . , sn},
a∗
x , x ∈ {sn+1, . . .}.

Then an → â, n → ∞, in the product topology and, in particular,

αvα ≤ c(an) + Q(an)vα.

Define
dn = c(an) + Q(an)vα − αvα,

then dn has at most n nonzero components and so dn ∈ �∞(S, V ). It follows that |Q(an)vα| ∈
�∞(S, V ). Hence, t �→ Pt(a

n)(Q(an)vα) is finite and continuous, and

α Pt (a
n)vα ≤ Pt(a

n)c(an) + Pt(a
n)(Q(an)vα).

Multiplying both sides by e−αt , integrating over (0, T ), and rearranging terms, we obtain, for
any T > 0,∫ T

0
e−αt [α Pt (a

n)vα − Pt(a
n)(Q(an)vα)] dt ≤

∫ T

0
e−αt Pt (a

n)c(an) dt.

By virtue of Theorem 2.2, (2.3) is applicable with k = −α, thus yielding

vα − e−αT PT (an)vα ≤
∫ T

0
e−αt Pt (a

n)c(an) dt, T > 0.
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Note that || PT (an)vα||V ≤ eγ T ||vα||V ≤ eγ T cV /(α − γ ). Taking the limit T → ∞, we obtain
the desired result that vα ≤ vα(an). Since a �→ vα(a) is componentwise continuous, we can
finally take the limit n → ∞ and obtain vα ≤ vα(â). Uniqueness now follows immediately.

Remark 4.1. The question arises whether an optimal policy in A is optimal in the class of
Markov policies, as defined in [12], or even in more general classes of policies. Note that
a Markov policy generates a nonhomogeneous Markov process. Following the proof that a
solution to the α-discount optimality equation dominates the expected α-discounted cost under
a Markov policy in [12, Lemma 3.5 ], one needs the result of Theorem 2.2 to hold for a
nonhomogeneous Markov process. To the best of the authors’ knowledge such a result has not
yet been formally proved.

Discussion on related conditions in the literature. In [4], [7], and [12] the parametrised
process X(a) as well as XV (a) are supposed to be nonexplosive for all a ∈ A. We require
only XV (a) to be nonexplosive uniformly in A. This relaxation might be useful if the cost
function goes to 0 ‘fast enough’as the state grows large. See the example below, it is a variation
on Example 3.1. In [10], X(a) is not required to be nonexplosive either; however, the extra
condition that qx(a)V (x) ≤ W(x) for x ∈ S, a ∈ A, is required there. In [17] a detailed
discussion on the relation between the various drift conditions used in this context is presented.

Example 4.1. Let S = Z+. Define the following q-matrices Q(a) by

qxy(a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ax2x, y = x + 1, x �= 0,

−2x, y = x, x �= 0,

(1 − ax)2x, y = x − 1, x �= 0,

0 otherwise,

for any ax ∈ Ax = [p0, p1] with 1
2 < p0 ≤ p1 ≤ 1. Hence, A = ∏

x∈S Ax is a compact
product set. Note that, clearly, a �→ qxy(a) is continuous on A. Note also that since ax ≥
p0 > 1

2 for all ax , this is an explosive Markov process for every a ∈ A.
Next define the reward structure r(a) (note that nowhere in the theory above is it essential

whether to maximise or minimise). We let the reward rate consist of two parts: a fixed reward
rate B for staying in the finite set {x ≤ U}, and a bonus depending on the current state for
taking actions that move the system to a higher state with larger probability. Therefore, put
rx(a) = bx(a) + cx(a) with bx(a) = B1{x≤U} and cx(a) = Cax(1 − ε)x , where 1 is the
indicator function.

We will make a transformation that makes the transformed process nonexplosive. Take
V (x) = βx with max((1 − p0)/p0, 1− ε) ≤ β < 1. Note that since β < 1, V is not a moment
function. Then for all a ∈ A, x ∈ S,

Q(a)V (x) = (axβ
x+1 − βx + (1 − ax)β

x−1)2x

= (axβ
2 − β + (1 − ax))β

x−12x

=
(

ax

(
β − 1 − ax

ax

)
(β − 1)

)
βx−12x

≤ 0 · V,

where the inequality holds because (1 − ax)/ax < β ≤ 1. Hence, V is a (A, 0)-drift function.
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Moreover, r(a) is uniformly V -bounded, since

sup
x∈Z+,a∈A

|bx(a)|
V (x)

= max
x≤U

Bβ−x = Bβ−U

and

sup
x∈Z+,a∈A

|cx(a)|
V (x)

= max
x∈Z+

Cp1

(
1 − ε

β

)x

= Cp1.

Next take W ≡ 1, then Q(a)W = 0 ≤ 0 · W and limx→∞ W(x)/V (x) = limx→∞ β−x = ∞.
Hence, W is a (A, 0)-drift V -moment function. Then Theorem 3.2 yields that the transformed
process XV (a) is nonexplosive for all a ∈ A.

Now all assumptions of Theorem 4.2 hold; hence, (4.2) (with the infimum replaced by a
supremum) has a unique solution vα ∈ �∞(S, V ) for any α > 0 and there is a parameter a∗ ∈ A

that achieves this supremum.

5. MDPs and perturbations

In this section we show how Theorem 4.2 can be applied to MDPs. In order to do so, we take
the parameter set A := D = ∏

x Dx , where D is the set of all deterministic (stationary) policies,
and Dx = {set of actions available in state x}, x ∈ S. Then A = D has the product property
described in Assumption 4.2. We use the notation δ ∈ D for a deterministic (stationary) policy
and by δ(x) ∈ Dx the corresponding action prescribed in state x by δ. If we assume that Dx

is compact, metric for each x ∈ S then D is a compact, metric space as well. Consequently,
an MDP with compact action space and deterministic policies D can be identified with a
parametrised collection of Markov processes satisfying Assumption 4.2.

Remark 5.1. IfAssumptions 2.1, 3.2, 4.1, and 4.2 hold for A = D , it is a standard construction
to show that these assumptions apply as well for the parameter set equal to the set S of
stationary, randomised policies. For an example of this construction, see [3]. Hence, the
assertion of Theorem 4.2 then also applies for this larger parameter set. Furthermore, it is a
simple consequence that if A = S in (4.2) then there exists a minimiser δ∗ ∈ D for which
vα(δ∗) = vα . As a consequence, we may (and we will) restrict our analysis to D .

Perturbation of MDPs. In this paragraph we will discuss how Theorems 4.1 and 4.2 can
be applied to analyse MDPs by adding a perturbation. The application we have in mind
is the analysis of the structural properties of an MDP with unbounded transition rates (i.e.
supx∈S,δ∈D qx(δ) = ∞) and, thus, the uniformisation technique is not applicable. In particular,
we are interested in the structure of optimal strategies and of the value function. To this end
we perturb the MDP to obtain bounded rates so that it can be studied using the discrete-time
equivalent MDP. This perturbation is indexed by an extra parameter N , typically N ∈ N , where
N := {1, 2, . . . , ∞}, a compact set. Thus, we obtain a collection of extended parametrised
processes, {X(N, δ)}(N,δ)∈N ×D . For fixed N the parametrised process {X(N, δ)}δ∈D is an
MDP and for N = ∞ this coincides with the original MDP. The theorems in the previous section
provide the framework that guarantees continuity in the perturbation parameter. This induces
convergence of the results for the perturbed models to the original model if the perturbation
vanishes, i.e. the parameter goes to ∞.

Theorem 5.1. Consider an MDP, in other words a parametrised collection of processes
{X(δ)}δ∈D with cost function c(δ)δ∈D . Furthermore, consider an extended parametrised
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collection of processes {X(N, δ)}(N,δ)∈N ×D with cost function c(N, δ)(N,δ)∈N ×D such that
X(∞, δ) = X(δ) and c(∞, δ) = c(δ).

Suppose that Assumptions 2.1, 3.1, 3.2, and 4.1 hold for {X(N, δ)}(N,δ)∈N ×D . Suppose
that, additionally, Assumption 4.2 holds for {X(N, δ)}δ∈D for all N ∈ N . Let vα

N be the value
function for the MDP {X(N, δ)}δ∈D and δ∗

N an optimal policy, N ∈ N . Then the following
hold:

(i) limN→∞ vα
N = vα;

(ii) any limit point of (δ∗
N)N∈N is optimal for {X(δ)}δ∈D .

Proof. The assertions of Theorem 4.2 hold for {X(N, δ)}δ∈D for fixed N ∈ N . This yields
the existence of a pair (vα

N , δ∗
N) satisfying (4.2), so that vα

N = vα(N, δ∗
N) for fixed N ∈ N .

The sequence {vα
N }N<∞ is a bounded sequence in �∞(S, V ). Consider any limit point of

this sequence, say it is achieved along the subsequence {vα
Nk

}k=1,.... By sequential compactness
of N × D , we have that (δ∗

Nk
)k has a convergent subsequence that we denote by (δ∗

Nk
)Nk∈N ,

again with limit δ∗ say.
Since the assertions of Theorem 4.1 hold for {X(N, δ)}(N,δ)∈N ×D , this implies that (N, δ) �→

vα(N, δ) is continuous on N × D . In particular, we have

lim
k→∞ vα

Nk
= lim

k→∞ vα(Nk, δ
∗
Nk

) = vα(∞, δ∗) = vα∞(δ∗).

Continuity of the map (N, δ) �→ vα(N, δ), the fact that vα(Nk, δ
∗
Nk

) solves the optimality
equation for the Nk-perturbation by Theorem 4.2, and the continuity result of Theorem 3.2
together imply that vα(δ∗) solves the optimality equation for the ∞-perturbation, in other
words for the original MDP. Hence, vα(δ∗) = vα and δ∗ is optimal. This holds for any limit
point of {vα

N }N . Since the solution of the optimality equation is unique, any limit point is equal
to vα and corresponding limit points of {δN }N are optimal. This proves (i). For the proof of
(ii), we consider a limit point of the sequence of policies {δN }N (for any sequence of optimal
policies for the N -perturbation, N = 1, 2, . . .). Then choose a subsequence along which {vα

N }N
converges and we apply the same argument as in the above.

The approach of extended parametrisation. 1. Start with a parametrised process {X(δ)}δ∈D ,
the original MDP. Our interest is in the structural properties of vα and δ∗. The assumptions of
Theorem 4.2 must hold for this parametrised process.

2. Add a perturbation, parametrised by N ∈ N . In this way we obtain an extended parametrised
process {X(N, δ)}(N,δ)∈N ×D . The extended parametrised process does not need to satisfy the
product property of Assumption 4.2. However, all other assumptions from Theorem 4.2 are
assumed to be satisfied for the extended parametrised process.

3. Fixing N ∈ N , we obtain the parametrised processes {X(N, δ)}δ∈D , satisfying the product
property of Assumption 4.2, and so all assumptions of Theorem 4.2 hold. Hence, there exists
a unique solution vα

N satisfying (4.2) and any maximiser δ∗
N is optimal, N ∈ N .

4. If the parametrised processes are uniformisable for N < ∞, we can determine structural
properties of (vα

N , δ∗
N) for all N < ∞ by e.g. value iteration.

5. Now Theorem 5.1 implies that limN→∞ vα
N = vα and that any limit point of (δ∗

N)N is
optimal for the original model. As a conclusion, both the optimal policy and the minimum
expected α-discounted cost of the original model can be approximated by the corresponding
quantities for the perturbed model for large perturbation parameters.
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Remark 5.2. Theorem 5.1 is strongly related to [11, Theorem 3.1]. The paper gives conditions
for convergence of finite state MDPs to infinite state processes. However, the drift conditions
imposed are more restrictive (cf. [16, Example 5.4]). In particular, the authors impose three
extra conditions on the rate matrix. First, that V is a moment function. Secondly, that

sup
δ

qx(N, δ) ≤ V (x) for all N ∈ N .

Thirdly, they require a particular V -moment function W , namely W = V 2.

The last part of the paper is an illustration of the application of the approach to a server farm
model.

6. Optimal control of a server farm

Consider the server farm model studied by [1]. This model has an infinite server pool,
implying that the transition rates are not bounded. To derive structural properties of the optimal
policy, the authors bound the departure rate. After uniformisation, analysis of the equivalent
discrete-time chain shows that a specific switching curve is optimal for the bounded rate model.
However, this paper does not give any results on the original unbounded model.

We will demonstrate here that the same structural results apply for the unbounded model by
using the approach of extended parametrisation.

The mathematical setup is as follows. There is a Poisson stream of arrivals with rate λ. Each
customer requires an exponential service time with parameter μ. There is an infinite server
pool, where servers can be in three states. They can be either active (on), turned off (off), or in
standby modus (idle). After service completion the controller has two options, either turn the
server off, or leave the server idle. A server in the idle state costs c per unit time, due to energy
consumption. Upon customer arrival, there are two possibilities.

(i) There is an available idle server. Then a customer is assigned one of these, and the server
changes from idle to on.

(ii) There are no idle servers. Then an off-server is turned on, and instantaneous startup costs
K have to be paid.

The goal is to minimise the total expected discounted cost over all stationary policies.
We will model this as follows. Let i be the number of idle servers and j the number of busy

servers. The state space S is given by

S = {(i, j) | i, j ∈ Z+}.

Possible actions at service completion are either to turn the server off (0) or leave the server
idle (1). The action space is

D(i,j) = {0, 1} for (i, j) ∈ S.

Hence, the set stationary deterministic policies is D = {0, 1}S . Then the rate matrix Q(δ) is
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Table 1: If it is optimal to turn the server off (respectively leave the server idle) in state (i, j) then it is
also optimal in the following states.

leave idle turn off structural property of vα
N

(i) ↓: (i, j − 1) ↑: (i, j + 1) SuperM(1, 2)

(ii) ↖: (i − 1, j + 1) ↘: (i + 1, j − 1) SuperCx(1)

given by

q(i,j),(i′,j ′)(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

jμ, (i′, j ′) = (i, j − 1), δ(i, j) = 0,

or (i′, j ′) = (i + 1, j − 1), δ(i, j) = 1,

λ, (i′, j ′) = (i − 1, j + 1), i > 0,

or (i′, j ′) = (i, j + 1), i = 0,

−(jμ + λ), (i′, j ′) = (i, j).

The associated cost function c(δ) is given by

c(i,j)(δ) = ci + λK1{i=0}, (i, j) ∈ S.

Note that we have remodelled the instantaneous costs as a cost rate. This can be done without
loss of generality.

As pointed out in the above, the rates q(i,j)(δ) = jμ + λ are not uniformly bounded. To
analyse this system, [1] assumes that the service rates are a concave, nondecreasing, bounded
function μ(j) of the number of busy servers j and thereby they make it uniformisable.

We will use this to define a suitable perturbation of the model, i.e. a uniformisable MDP,
with the service rates a concave, nondecreasing, and bounded function of the number of busy
servers. In other words, denoting our original MDP by {X(δ)}δ∈D , we define a collection of
perturbed MDPs {X(N, δ}N∈N ,δ,∈D with N = {1, . . . , ∞}. Let the rate matrix Q(N, δ) be
given by

q(i,j),(i′,j ′)(N, δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min{j, N}μ, (i′, j ′) = (i, j − 1), δ(i, j) = 0,

or (i′, j ′) = (i + 1, j − 1), δ(i, j) = 1,

λ, (i′, j ′) = (i − 1, j + 1), i > 0,

or (i′, j ′) = (i, j + 1), i = 0,

−(min{j, N}μ + λ), (i′, j ′) = (i, j).

The cost function remains unchanged.
Note that X(∞, δ) coincides with the original unbounded model. On the other hand, for

each N < ∞, the N -perturbation is uniformisable and satisfies the service rate conditions of
[1]. Hence, the structural properties of the value function vα

N can be derived by value iteration.
By virtue of the results in [1], it follows that the optimal policy for the N -perturbation, N < ∞,
has the switching curve structure shown in Table 1.

With the approach of ‘extended parametrisation’, we are able to extend this result to the
original unbounded model. The only thing remaining is to check that the assumptions of
Theorem 5.1 hold. If the conditions hold, by virtue of the theorem we may conclude that a
switching curve policy with the structure given in Table 1 is optimal for the original unbounded
MDP. This yields the following result.
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Theorem 6.1. For the webfarm model {X(δ)}δ there exists a deterministic policy with the
threshold structure described in Table 1, that is α-discount optimal within the class S of
stationary policies.

Proof. Note that the assumptions are of such nature that if they are satisfied by the extended
parametrised process they are also satisfied by the parametrised process. As has been pointed
out, we have to verify the assumptions of Theorems 4.1 and 4.2. We will do so in a systematic
way.

• It is clear that Assumption 2.1 holds for both the parametrised as the extended parametri-
sed process, since there are no instantaneous jumps and the rate matrix is conservative.

• For Assumption 3.2, there are three properties to check.

(i) Continuity of δ �→ q(i,j),(i′,j ′)(N, δ) for fixed N ∈ N is clear. Also, we have
limN→∞ q(i,j),(i′,j ′)(N, δ) = q(i,j),(i′,j ′)(∞, δ) (for large N these values are
equal for any fixed pair of states). As a consequence, it follows that (N, δ) �→
q(i,j),(i′,j ′)(N, δ) is continuous on N × D .

(ii) Let 0 < γ < α. Take V (i, j) = exp{ε(i + j)} with ε = 1
2 log(γ /λ + 1) > 0.

Then V clearly is a moment function. Moreover, it is a (N ×D, γ )-drift function,
since

∑
(i′,j ′)

q(i,j),(i′,j ′)(N, δ)V (i, j)

= eε(i+j)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min{j, N}μ(e−ε − 1) + λ(eε − 1), δ(i, j) = 0, i = 0,

λ(eε − 1), δ(i, j) = 1, i = 0,

min{j, N}μ(e−ε − 1), δ(i, j) = 0, i > 0,

0, δ(i, j) = 1, i > 0,

≤ λ(eε − 1)eε(i+j)

≤ λ(e2ε − 1)eε(i+j)

= γ eε(i+j)

= γV (i, j).

So V is a (N × D, γ )-drift function for X(N, δ).

(iii) Take W(i, j) = exp{2ε(i + j)}, then W/V = V is a moment function. Hence,
W is a V -moment function, in particular, W is a (N × D, γ )-drift V -moment
function, since

∑
(i′,j ′)

q(i,j),(i′,j ′)(N, δ)W(i, j) ≤ λ(e2ε − 1)e2ε(i+j) = γ e2ε(i+j) = γW(i, j).

• Consider Assumption 4.1.

(i) (N, δ) �→ c(i,j)(N, δ) is clearly continuous on N × D for any (i, j) ∈ S.
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(ii) Take cV = c/λε + λK . Then for any (i, j), (N, δ),

|c(i,j)(n, δ)|
V (i, j)

= ci/(λ + jμ) + λK1{i=0}
exp[ε(i + j)]

≤ (c/λ)i + λK

1 + εi

≤ c

λε
+ λK

= cV .

Hence, the supremum over all (i, j), (N, δ) is also bounded by cV .

• Condition (i) of Assumption 4.2 holds for both the parametrised process and the extended
parametrised process.

(i) The parameter set is a product space D = ∏
(i,j)∈S D(i,j) with D(i,j) a finite set;

hence, compact and metric for each state (i, j) ∈ S. The set N is compact; hence,
N × D is compact.

Condition (ii) of Assumption 4.2 only holds for the parametrised process {X(N, δ)}δ ,
N ∈ N , and not for the extended parametrised process.

(ii) {Q(δ)}δ∈D and {c(δ)}δ∈D both have the product property. In other words, the
transition rates and the cost rates in state (i, j) depend only on the action in state
(i, j).
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