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Abstract. The first part of this work is devoted to the study of higher derivatives of pressure
functions of Hölder potentials on shift spaces with finitely many symbols. By describing
the derivatives of pressure functions via the central limit theorem for the associated random
processes, we discover some rigid relationships between derivatives of various orders. The
rigidity imposes obstructions on fitting candidate convex analytic functions by pressure
functions of Hölder potentials globally, which answers a question of Kucherenko and Quas.
In the second part of the work, we consider fitting candidate analytic germs by pressure
functions of locally constant potentials. We prove that all 1-level candidate germs can be
realised by pressures of some locally constant potentials, as long as the number of symbols
in the symbolic set is large enough. There are also some results on fitting 2-level germs by
pressures of locally constant potentials obtained in the work.
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1. Introduction
This work deals with traditional topics in thermodynamic formalism [Bow, Rue1], which
originates from theoretical physics. We focus on shift spaces with finitely many symbols
here, which model dynamics of some smooth systems such as Axiom-A diffeomorphisms
through Markov partitions. Given a symbolic set � of finitely many symbols and a con-
tinuous potential (observable) φ on the shift space �N, a core concept in thermodynamic
formalism is the pressure P(φ). People are particularly interested in the pressure function
P(tφ) with the variable t > 0 representing the inverse temperature. A sharp change in the
pressure function (or other terms) is usually termed a phase transition as t varies, see for
example [IT1, IT2, KQW, Lop1, Lop2, Sar].
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2 L. Ma and M. Pollicott

For Hölder continuous potentials, Ruelle [Rue2] proved that the pressure function
P(tφ) is analytic for t ∈ (0, ∞) (in fact, he proved that P(ψ) depends analytically on
ψ for ψ in the Hölder space Ch(X) with X being a transitive subshift space of finite type
and 0 < h ≤ 1 being the exponent [GT]). A key ingredient in his proof is the use of the
Ruelle (transfer) operator [BDL, GLP] acting on functions in the Hölder space. Moreover,
the equilibrium measure of tφ for any t > 0 and Hölder potential φ is always unique, so
there are in fact no phase transitions in this case. Let

P (n)(t) = P (n)(tφ) = dnP (tφ)

dtn

be the nth derivative of the pressure function P(tφ) with respect to t ∈ (0, ∞) for some
fixed Hölder potential φ. We also write

P (1)(t) = P ′(t), P (2)(t) = P ′′(t), P (3)(t) = P ′′′(t), . . .

intermittently in the following. We discover that there is some rigid relationship between
the derivatives of the pressure function.

THEOREM 1.1. For a Hölder potential φ on a full shift space with finitely many symbols,
let P(t) = P(tφ) be its pressure. Then there exists some positive number Mφ depending
on φ, such that√

2π3(P (2)(t))3/2|P (3)(t)| ≤ 9|P (3)(t)| + 2|P (4)(t)| + 3
√

2π3Mφ(P
(2)(t))5/2 (1.1)

for any t > 0.

The constants are chosen for convenience rather than optimality. It would be difficult to
obtain explicit optimal bounds, which is not required for our application here.

A potential φ is said to be generic (or we say it defines a non-lattice distribution, cf.
[CP, Fel, PP]) if for any normalised potential ψ , the spectral radius of the complex Ruelle
operator Lψ+itφ is less than 1 for any t �= 0. These potentials form an open dense set. In
particular, the complement is nowhere dense and closed (in both the uniform and Hölder
norms) since any function in this complementary set is necessarily cohomologous to a
function in C(�Z, 2πZ), up to a constant. For pressure functions of generic potentials, the
following bounds hold.

THEOREM 1.2. For a generic Hölder potential φ on a full shift space with finitely many
symbols, let P(t) = P(tφ) be its pressure. Then there exists some positive number Mφ

depending on φ, such that

|P (3)(t)(1 − √
2π(P (2)(t))3/2)| ≤ 3MφP

(2)(t) (1.2)

for any t > 0.

This means the second derivative of the pressure function of a generic Hölder potential
imposes some global subtle restriction on its third derivative. It would be interesting to
try to interpret the meaning of P ′′(t) = 1/ 3√2π for the pressure function at individual
parameters. Let σ : �N → �N denote the shift map. Both the proofs of Theorems 1.1 and
1.2 require use of the Ruelle operator and the central limit theorem (CLT) for the process
{f ◦ σn}n∈N, with the latter one depending on a finer CLT in the generic case. Recall that
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Rigidity of pressures of Hölder potentials 3

there are some expressions on the higher derivatives of the pressure function by Kotani
and Sunada in [KS1] for smooth systems, and we refer the readers to [KS2] for a CLT for
random walks on crystal lattices.

It is well known that P(tφ) is convex and Lipschitz for continuous φ, moreover, the
supporting lines of its graph must intersect the vertical axis in a closed bounded interval
in [0, ∞). Kucherenko and Quas have shown that any such function can be realised by the
pressure function of some continuous potential on some shift space [KQ1, Theorem 1],
whose result fits into Katok’s flexibility programme [BKR]. However, the continuous
potentials constructed in their work are not Hölder, so they ask the following question
(their original problem is set in the multidimensional case).

Problem 1.3. (Kucherenko and Quas) Can a convex, Lipschitz analytic function with its
supporting lines intersecting the vertical axis in a closed bounded interval in [0, ∞) be
realised by the pressure function of some Hölder potential on some shift space with finite
symbols?

In this work, we are dedicated to an answer to their problem. We first point out that
any convex, Lipschitz analytic function with its supporting lines intersecting the vertical
axis in a closed bounded interval in [0, ∞) can be approximated by sequences of pressure
functions of locally constant potentials (a potential φ : �Z → R is locally constant if there
exists some integer k > 0 such that for any x = · · · x−1x0x1 · · · ∈ �Z, the value φ(x)
depends only on the terms x−k , . . . , xk) on some shift space with finitely many symbols.

COROLLARY 1.4. Let F(t) be a convex Lipschitz function on (α, ∞) for some α > 0 with
Lipschitz constant L > 0, such that its supporting lines intersect the vertical axis in [γ , γ ]
with 0 ≤ γ ≤ γ < ∞. Then there exists a sequence of locally constant potentials {φn}∞n=1
on some shift space with finite symbols, such that

lim
n→∞ P(tφn) = F(t) (1.3)

for any t ∈ (α, ∞).

Proof. This is an instant corollary of the result of Kucherenko and Quas in [KQ1]. Let

� = {0, 1, . . . , 
eγ �} × {
γ �, . . . , �γ }} × {
−L�, . . . , �L},
where 
 � and �  represent the floor and ceiling function, respectively. According to [KQ1,
Theorem 1], there exists a continuous potential φF : �Z → R, such that

P(tφF ) = F(t)

on (α, ∞). Now let

φn(x)
.= φn,−(x) = inf{φF (x) : x ∈ [x−nx−n+1 · · · xn]}

for any x = · · · x−(n+1)x−n · · · xnxn+1 · · · ∈ �Z and n ∈ N, where [x−nx−n+1 · · · xn]
means the corresponding cylinder set. Here φn is a locally constant potential for any fixed
n. Now fix t ∈ (α, ∞) by properties of the pressure function (see for example [Rue1, 6.8]),

|P(tφn)− P(tφF )| ≤ |t | ‖ φn − φF ‖∞ . (1.4)

Since φF is continuous, this implies equation (1.3).
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4 L. Ma and M. Pollicott

One can see that in the above proof, the increasing sequence of pressures {P(tφn,−)}n∈N
satisfies

P(tφn,−) ↗ F(t)

as n → ∞ since {φn,−}n∈N is an increasing sequence tending to φF (see [Wal1,
Theorem 9.7(ii)]). Alternatively, one can take

φn,+(x) = sup{φF (x) : x ∈ [x−nx−n+1 · · · xn]},
which results in a decreasing sequence of locally constant potentials approximating
φF (x), or

φn,±(x) = φn,−(x)+ φn,+(x)
2

,

which also results in a sequence of locally constant potentials approximating φF (x), while
their pressure functions both approximate F(t). See Corollary 5.4 for an interpretation of
the result from another point of view.

Remark 1.5. The convergence in Corollary 1.4 is uniform for t in a bounded domain since
�Z is a compact metric space by equation (1.4).

Remark 1.6. A locally constant potential is of course Hölder, so according to Ruelle’s
result, the pressure functions {P(tφn,−)}n∈N are all analytic.

The following result confirms that some convex analytic functions cannot be fitted by
the pressure of any Hölder potential on any shift space, which gives a negative answer to
Problem 1.3.

THEOREM 1.7. For any α > 0, there exist 0 < γ < γ and a strictly convex analytic
function F(t) on (α, ∞), with its supporting lines intersecting the vertical axis in the
interval [γ , γ ], such that there does not exist any Hölder potential φ on any shift space
with finite symbols satisfying

P(tφ) = F(t)

on (α, ∞).

We note that the supporting lines taking positive intersections with the vertical axis is
due to the associated equilibrium states having positive entropy.

For an explicit example of convex analytic functions in Theorem 1.7, one can simply
take

F2,3,1(t) = 2t2 + 3t + te−t2 + e−t2

t

on (α, ∞) for any α > 0. See Proposition 4.2 for a family of such examples. Thus, one
can see that there are in fact elementary functions which cannot be fitted by pressures of
Hölder potentials on shift spaces with finite symbols.
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Rigidity of pressures of Hölder potentials 5

Remark 1.8. After this paper was completed, we became aware of an elegant paper of
Kucherenko and Quas [KQ2] which showed that there is a precise lower bound on the
‘speed’ that the pressure function of a (cohomologously non-constant) Hölder potential
approaches its asymptote. In particular, they used this analysis to give a negative answer
to Problem 1.3. We refer the reader to [KQ2] for other interesting rigidity results on the
pressure functions of Hölder potentials.

In the following, we consider fitting convex analytic functions locally instead of glob-
ally, only by pressures of locally constant potentials on shift spaces with finite symbols. Let

�n = {1, 2, . . . , n}
be the symbolic set of n symbols.

THEOREM 1.9. Let t∗ > 0 and (a0, a1) ∈ R
2 satisfying

a0

t∗
> a1. (1.5)

Then for any n ∈ N large enough, there exist some 0 ≤ mt∗,a0,a1,n < Mt∗,a0,a1,n < ∞
depending on t∗, a0, a1, n, such that for any a2 ∈ [mt∗,a0,a1,n, Mt∗,a0,a1,n], there exists some
sequence of reals {ci,n}ni=1, such that the locally constant potential

φ(x) = cx0,n

for x = · · · x−1x0x1 · · · ∈ [x0] on the full shift space �Z
n satisfies

P(tφ) = a0 + a1(t − t∗)+ a2

2!
(t − t∗)2 +O((t − t∗)3) (1.6)

on [t∗ − δn, t∗ + δn] for some δn > 0.

This means we can fit some germs of level 2 at t∗ by pressures of some locally
constant potentials when the number of symbols of the shift space is large enough. The
values δn, {ci,n}ni=1 all depend on t∗, a0, a1, n and a2 in fact, while we only indicate the
dependence of mt∗,a0,a1,n and Mt∗,a0,a1,n as we are particularly interested in their values in
the context of Theorem 1.9. There are some results on the values of

{mt∗,a0,a1,n, Mt∗,a0,a1,n}n∈N
subject to t∗ > 0 and (a0, a1) ∈ R

2 satisfying equation (1.5) at the end of §5.
We choose to present all our results in the one-dimensional case, although many of

these results can in fact be extended naturally to convex Lipschitz or analytic functions
F(t1, t2, . . . , tm) of m variables. Most of our results also hold on transitive subshift spaces
of finite type, with some technical adjustments in their proofs involving the transition
matrix. We lay emphasis on two-sided shift spaces with finite symbols in this work;
however, some concepts and proofs will be given directly on one-sided shift spaces as we
are to employ the Ruelle operator in due course. Since every Hölder potential on two-sided
shifts induces a cohomologous Hölder potential on one-sided shifts, these extend naturally
onto two-sided ones.
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6 L. Ma and M. Pollicott

The organisation of the work is as follows. In §2, we introduce some basics in
thermodynamic formalism and the CLT for the process generated by a potential and the
shift map on the symbolic space with finite symbols. We give an explicit bound on the tail
term in the CLT. Section 3 is devoted to the proof of Theorems 1.1 and 1.2. We formulate
some expression of the derivatives of the pressure (Corollary 3.11) linking directly to the
CLT, which allows us to unveil the relationship between derivatives of the pressure function
of various orders. Section 4 is devoted to the proof of Theorem 1.7. In §5, we consider
fitting 1- and 2-level candidate analytic germs locally by pressure functions of locally
constant potentials (Problem 5.2) on symbolic spaces with finite symbols. We conjecture
that any reasonable germ of finite level can be fitted by the pressure function of some
locally constant potential locally, as long as the number of the symbols is large enough.

2. Thermodynamic formalism and the CLT
In this section, we collect some basic notions and results in thermodynamic formalism for
later use. We start from the pressure. Let � be some symbolic set with finite symbols, and
�N be the shift space equipped with the metric

d(x, y) = 1
2l(x,y)

for distinct x = x0x1x2 . . . , y = y0y1y2 . . . ∈ �N, where

l(x, y) = min{i ∈ N : xi �= yi}.
For a continuous potential φ : �N → R on the compact metric space �N, let

Sm,φ(x) =
m−1∑
i=0

φ ◦ σ i(x)

for m ∈ N, where σ is the shift map.

Definition 2.1. The pressure P(φ) of a continuous potential φ on �N is defined to be

P(φ) = lim
m→∞

1
m

log
∑

σm(x)=x
eSm,φ(x).

One can refer to [Wal1, p. 208] for a definition for continuous potentials on general
compact metric spaces. It satisfies the well-known variational formula

P(φ) = sup
{
h(μ)+

∫
φ dμ : μ is a σ -invariant measure on �N

}
.

LetC0(�N) be the collection of all the continuous potentials on�N. Two potentialsψ , φ ∈
C0(�N) are said to be cohomologous [Wal2] in the case where there exists a continuous
map ζ : �N → R such that

ψ(x)− φ(x) = ζ(x)− ζ ◦ σ(x).
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Rigidity of pressures of Hölder potentials 7

We write ψ ∼ φ to denote the equivalence relationship between two potentials cohomolo-
gous to each other. The maps in

{ζ(x)− ζ ◦ σ(x) : ζ ∈ C0(�N)}
are called coboundaries. The importance of the cohomologous relationship is revealed in
the following result.

PROPOSITION 2.2. If ψ ∼ φ, then P(ψ) = P(φ). Moreover, ψ and φ share the same
equilibrium states.

Another important tool in thermodynamic formalism is the Ruelle operator.

Definition 2.3. For a continuous potential ψ : �N → R, define the Ruelle operator Lψ
acting on C0(�N) as

(Lψf )(x) =
∑

y:σ(y)=x
eψ(y)f (y)

for f ∈ C0(�N).

One can see easily that its compositions satisfy

(Lmψf )(x) =
∑

y:σm(y)=x
eSm,ψ(y)f (y) (2.1)

for any m ∈ N. For ψ ∈ Ch(�N), it admits a simple maximum isolated eigenvalue
λ = eP (ψ) such that

(Lψwψ)(x) = eP (ψ)wψ(x) (2.2)

for some eigenfunction wψ(x) ∈ Ch(�N), refer to [Rue1]. It then follows that

(Lmψwψ)(x) = emP(ψ)wψ(x) (2.3)

for wψ(x) ∈ Ch(�N). A potential ψ is said to be normalised if

P(ψ) = 0 and wψ = 1�N ,

where 1�N is the identity map on �N. In the case of ψ being not normalised, we call

ψ̄ = ψ + log wψ − log wψ ◦ σ − P(ψ)

the normalisation of ψ . It is easy to check that ψ̄ is a normalised potential. Moreover, ψ̄
and ψ share the same equilibrium state.

The unique equilibrium measure for a Hölder potential ψ is denoted by μψ in the
following. Now we turn to the CLT for the random process {φ ◦ σ j (x)}∞j=0 with the
equilibrium measure μψ defined by some Hölder potential ψ , while φ is also assumed
to be Hölder. It deals with the asymptotic behaviour of the distribution of Sm,φ/

√
m with

respect to μψ as m → ∞. The Ruelle operator comes in here, see [CP, Lal, Rou]. Let

Gm(y) = μψ

{
x ∈ �N :

Sm,φ(x)√
m

< y

}

https://doi.org/10.1017/etds.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.9


8 L. Ma and M. Pollicott

for y ∈ R. For a, b ∈ R and b > 0, let Na,b(y) be the normal distribution with expectation
a and standard deviation

√
b on R, that is,

dNa,b(y)

dy
= 1√

2πb
e−(y−a)2/2b

for y ∈ R. For Hölder potentials ψ , φ on a shift space, since the pressure P(ψ + tφ) is
analytic in a small neighbourhood around 0, denote by

�m = P (m)(ψ + tφ)|t=0

form ∈ N for convenience, while the readers can understand its dependence onψ , φ easily
from the contexts in the following. Let

P(ψ + tφ) =
∞∑
m=0

�m

m!
tm =

3∑
m=0

�m

m!
tm + t4κ(t),

where κ(t) = ∑∞
m=0(�m+4/(m+ 4)!)tm.

We now come to one of the key ingredients in the proofs of Theorems 1.1 and 1.2.

CENTRAL LIMIT THEOREM. Let ψ , φ be Hölder potentials on a shift space with φ being
not cohomologous to a constant. If

∫
φ dμψ = 0, we have

Gm(y) = N0,�2(y)+O(1/
√
m),

where

O(1/
√
m) ≤ 9|�3| + 2|�4|√

2π3m(�2)3/2
. (2.4)

The convergence is uniform with respect to y. In the case of φ being generic, we have

Gm(y) = N0,�2(y)+Hm(y)+ o(1/
√
m), (2.5)

where Hm(y) = (�3/6
√
m)(1 − (y2/�2))e

−(y2/2�2).

The bounds of error terms in equations (2.4) and (2.5) will be used in the proofs of
Theorems 1.1 and 1.2, respectively. In the following, we will justify equation (2.4), while
equation (2.5) follows from existing results.

This fits into special cases of the Berry–Esseen theorem [Fel]. A significant point in
the version here comparing with [CP, Theorems 2, 3] or [PP, Theorem 4.13] is the explicit
bound on the tail termO(1/

√
m) in equation (2.4). In the following, we justify this explicit

bound. To do this, let

χm(z) =
∫
eiz(Sm,φ/

√
m) dμψ

be the Fourier transformation of Gm(y). Note that the Fourier transformation of N0,�2(y)

is e−(z2�2/2).
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Rigidity of pressures of Hölder potentials 9

LEMMA 2.4. Let ψ , φ be Hölder potentials on a shift space with φ being not cohomolo-
gous to a constant. For ε > 0 small enough, we have

1
2π

∫ ε
√
m

0

1
z
|χm(z)− e−(z2�2/2)| dz ≤

√
2|�3|

12
√
πm(�2)3/2

(2.6)

for any m ∈ N large enough.

Proof. According to [PP, equation (4.6)], we have
∫ ε

√
m

0

1
z

∣∣∣∣χm(z)− e−(z2�2/2) + iz3�3

6
√
m
e−(z2�2/2)

∣∣∣∣ dz = O(1/m)

for ε > 0 small enough. So

1
2π

∫ ε
√
m

0

1
z

∣∣∣∣χm(z)− e−(z2�2/2)
∣∣∣∣ dz ≤ O(1/m)+ |�3|

12π
√
m

∫ ε
√
m

0
z2e−(z2�2/2) dz.

(2.7)

By
∫ ∞

−∞
z2e−(z2�2/2) dz =

√
2π

(�2)3/2
,

we obtain equation (2.6) from equation (2.7).

Equipped with Lemma 2.4, we can justify the explicit bound on the tail term in the CLT
in equation (2.4).

Proof of the tail term in CLT.

Proof. Without loss of generality, suppose ψ is normalised and
∫
φ dμψ = 0. It suffices

for us to justify equation (2.4) by [CP, Theorems 2, 3]. Similar to the proof of [CP,
Theorem 2], apply [Fel, Lemma 2] with the cumulative functions Gm(y) and N0,�2(y),
in our case, one gets (cf. [CP, (20)])

|Gm(y)−N0,�2(y)| ≤ 1
2π

∫ ε
√
m

0

1
z

∣∣∣∣χm(z)− e−(z2�2/2)
∣∣∣∣ dz+ 24

ε
√

2mπ3�2
. (2.8)

Now let us take
1
ε

= 2
�2

( |�3|
6

+ |�4|
24

+ δ

)

for some small δ > 0, such that it satisfies (cf. [CP, (10)])

1
ε
> max

{
2
�2

( |�3|
6

+ tκ(t)

)
,

2
�2
κ(t)

}

for any |t | < ε in equation (2.8). By equation (2.6), we have

|Gm(y)−N0,�2(y)|

≤
√

2|�3|
12

√
πm(�2)3/2

+ 24√
2mπ3�2

2
�2

( |�3|
6

+ |�4|
24

+ δ

)
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10 L. Ma and M. Pollicott

=
√

2|�3|
12

√
πm(�2)3/2

+ 8|�3|√
2π3m(�2)3/2

+ 2|�4|√
2π3m(�2)3/2

+ 48δ√
2π3m(�2)3/2

(2.9)

≤ 9|�3|√
2π3m(�2)3/2

+ 2|�4|√
2π3m(�2)3/2

+ 48δ√
2π3m(�2)3/2

.

Finally, letting δ → 0 in equation (2.9), we get equation (2.4).

We will deal with the pressure function P(ψ + tφ) for t ≥ 0 and ψ , φ ∈ Ch(�N) for
some 0 < h ≤ 1 in the following sections. By [Rue2], P(ψ + tφ) depends analytically on
t in the case that ψ , φ are Hölder. We will often assume that∫

φ dμψ = 0

in the following when dealing with the higher derivatives of P(ψ + tφ) because if∫
φ dμψ = c �= 0, we have

P(ψ + t (φ − c)) = P(ψ + tφ)− ct ,

then

dnP (ψ + t (φ − c))

dtn
= dnP (ψ + tφ)

dtn
(2.10)

for any n ≥ 2 while
∫
(φ − c) dμψ = 0. We can also assume that ψ is normalised when

dealing with the derivatives of P(ψ + tφ). If this is not the case, we can simply change ψ
to its normalisation ψ̄ while

dnP (ψ + tφ)

dtn
= dnP (ψ̄ + tφ)

dtn
(2.11)

for n ≥ 1 because

P(ψ̄ + tφ) = P(ψ + tφ)− P(ψ)

for any t ∈ R.

3. Derivatives of the pressures of Hölder potentials
In this section, we formulate some explicit expressions for the derivatives of the pressure
P(tφ) = P(t) in terms of the derivatives of the eigenfunction of Ltφ for φ ∈ Ch(�N)with
respect to t. We give basically two expressions of the derivatives, one of which allows the
introduction of the random stochastic process {φ ◦ σ j (x)}mj=0 for m ∈ N. The CLT for the
random process {φ ◦ σ j (x)}∞j=0 takes core role in our proofs of Theorems 1.1 and 1.2.

First we define some basics to deal with the higher derivatives of compositional
functions by the Faà di Bruno’s formula. For an integer j ∈ N, we say

τ = τ1τ2 · · · τq
with q ∈ N is a partition of j if the non-increasing sequence of positive integers j ≥
τ1 ≥ τ2 ≥ · · · ≥ τq ≥ 1 satisfies

∑q

i=1 τi = j . Denote the collection of all the possible
partitions of j by P(j). For example, Table 1 lists all the partitions in P(5).
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TABLE 1. Partitions of 5.

5 q = 1
4,1 q = 2
3,2 q = 2

3,1,1 q = 3
2,2,1 q = 3

2,1,1,1 q = 4
1,1,1,1,1 q = 5

TABLE 2. The coefficients Bτ5 .

B5
5 = 1

B
4,1
5 = 5

B
3,2
5 = 10

B
3,1,1
5 = 10

B
2,2,1
5 = 15

B
2,1,1,1
5 = 10

B
1,1,1,1,1
5 = 1

We sometimes simply write τ to denote the set {τ1, τ2, . . . , τq} for convenience in the
following, so #τ = q. Now for τ being a partition of j ≥ 1, let {Bτj } be the number of
different choices of dividing a set of j different elements into #τ = q sets of sizes {τi}qi=1
(with no order on the sets of partitions). SetB0

0 = 1 for convenience. For example, consider
the cases j = 5 and τ = 3, 1, 1, the number of different choices of dividing a set of 5
different elements into q = 3 sets of sizes 3, 1, 1 respectively is

C3
5 = 10 = B

3,1,1
5 .

Table 2 lists all the numbers {Bτ5 }τ∈P(5).
For a smooth map f : R → R on the real line (which suffices for our purposes in this

work) and some partition τ = τ1, τ2, . . . , τq ∈ P(j) with j ≥ 1, let

f (τ)(x) = f (τ1)(x)f (τ2)(x) · · · f (τq)(x)
be the product of the derivatives. For j = 0 and τ = 0 ∈ P(0), set f (0)(x) = 1. Then for
two smooth functions f : R → R and g : R → R, we have

dj (g ◦ f (x))
dxj

=
∑

τ∈P(j)
Bτj g

(#τ)(f (x))f (τ)(x) (3.1)

by virtue of Faà di Bruno’s formula.
Now we turn to the higher derivatives of the pressure function. We start from some

standard case, then extend the result to the general case.

THEOREM 3.1. Let ψ , φ ∈ Ch(�N) with ψ being normalised for some finite symbolic
set �. Assume

∫
φ dμψ = 0, where μψ is the equilibrium state of ψ . Let w(t , x) be

the eigenfunction of the maximum isolated eigenvalue eP (ψ+tφ) of Lψ+tφ , which depends
analytically on t in a small neighbourhood of 0. Considering the derivatives of the pressure
function P(ψ + tφ) at t = 0, we have
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12 L. Ma and M. Pollicott

P (n)(ψ + tφ)|t=0 =
n∑
j=1

C
j
n

∫
�N

(φ(x))jw(n−j)(0, x) dμψ(x)

−
n−2∑
j=2

C
j
n

∑
τ∈P(j),1/∈τ

Bτj P
(τ)(ψ + tφ)|t=0

∫
�N

w(n−j)(0, x) dμψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅
BτnP

(τ)(ψ + tφ)|t=0 (3.2)

for any n ≥ 2.

Proof. According to the above notation, note that

(Lψ+tφw(t , ·))(x) = eP (ψ+tφ)w(t , x). (3.3)

The nth derivative of (Lψ+tφw(t , ·))(x) = ∑
y:σ(y)=x eψ(y)+tφ(y)w(t , y) gives

dnLψ+tφw(t , ·)(x)
dtn

=
∑

y:σ(y)=x

n∑
j=0

C
j
n

dj e(ψ+tφ)(y)

dtj
w(n−j)(t , y)

=
∑

y:σ(y)=x

n∑
j=0

C
j
ne
(ψ+tφ)(y)(φ(y))jw(n−j)(t , y) (3.4)

=
n∑
j=0

C
j
nLψ+tφ((φ(·))jw(n−j)(t , ·)).

All derivatives are with respect to t. In the case of t = 0, this means

dnLψ+tφw(t , ·)(x)
dtn

∣∣∣∣
t=0

=
n∑
j=0

C
j
nLψ((φ(·))jw(n−j)(0, ·)). (3.5)

Note that the dual operator L∗
ψ fixes μψ , so integration of both sides of equation (3.5)

gives

∫
dnLψ+tφw(t , ·)(x)

dtn

∣∣∣∣
t=0

dμψ(x) =
n∑
j=0

C
j
n

∫
(φ(x))jw(n−j)(0, x)μψ(x). (3.6)

To get the nth derivative of P(ψ + tφ), differentiating eP (ψ+tφ)w(t , x) for n times by
equation (3.1), we get

dn(eP (ψ+tφ)w(t , x))
dtn

=
n∑
j=0

C
j
n

dj eP (ψ+tφ)

dtj
w(n−j)(t , x)
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=
n−1∑
j=0

C
j
n

dj eP (ψ+tφ)

dtj
w(n−j)(t , x)+ dneP (ψ+tφ)

dtn
w(t , x)

=
n−1∑
j=0

C
j
n

∑
τ∈P(j)

Bτj P
(τ)(ψ + tφ)eP (ψ+tφ)w(n−j)(t , x)

+
∑

τ∈P(n)
BτnP

(τ)(ψ + tφ)eP (ψ+tφ)w(t , x)

=
n−1∑
j=0

C
j
n

( ∑
τ∈P(j),1/∈τ

Bτj P
(τ)(ψ + tφ)+

∑
τ∈P(j),1∈τ

Bτj P
(τ)(ψ + tφ)

)

× eP (ψ+tφ)w(n−j)(t , x)

+
∑

τ∈P(n),n/∈τ
BτnP

(τ)(ψ + tφ)eP (ψ+tφ)w(t , x)+ P (n)(ψ + tφ)eP (ψ+tφ)w(t , x).

(3.7)

Remember P(ψ) = 0 and w(0, x) = 1 as ψ is normalised [PP, p. 66]. Taking t = 0 in
equation (3.7), we get

dn(eP (ψ+tφ)w(t , x))
dtn

∣∣∣∣
t=0

=
n−1∑
j=0

C
j
n

( ∑
τ∈P(j),1/∈τ

Bτj P
(τ)(ψ + tφ)|t=0 +

∑
τ∈P(j),1∈τ

Bτj P
(τ)(ψ + tφ)|t=0

)

× w(n−j)(0, x)

+
∑

τ∈P(n),n/∈τ
BτnP

(τ)(ψ + tφ)|t=0 + P (n)(ψ + tφ)|t=0. (3.8)

Since
∫
φ dμψ = P ′(ψ + tφ)|t=0 = 0 and

∫
w′(0, x) dμψ = 0 [PP, p. 66], integrat-

ing both sides of equation (3.8) with respect to μψ , we get
∫
dn(eP (ψ+tφ)w(t , x))

dtn

∣∣∣∣
t=0

dμψ

=
n−1∑
j=0

C
j
n

∑
τ∈P(j),1/∈τ

Bτj P
(τ)(ψ + tφ)|t=0

∫
w(n−j)(0, x) dμψ

+
∑

τ∈P(n),{1,n}∩τ=∅
BτnP

(τ)(ψ + tφ)|t=0 + P (n)(ψ + tφ)|t=0. (3.9)

Finally, combining equations (3.6) and (3.9) together, we get equation (3.2).

Remark 3.2. The terms

−
n−2∑
j=2

C
j
n

∑
τ∈P(j),1/∈τ

Bτj P
(τ)(ψ + tφ)|t=0

∫
�N

w(n−j)(0, x) dμψ(x)
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and

−
∑

τ∈P(n),{1,n}∩τ=∅
BτnP

(τ)(ψ + tφ)|t=0

in equation (3.2) are null in the case of n ≤ 3. This also applies to the corresponding terms
later.

Remark 3.3. These expressions are inductive formulae, although one can always get
explicit expressions through substituting the lower derivatives P (τ)(ψ + tφ)|t=0 by their
non-inductive versions depending only on φ(x), {w(j)(0, x)}nj=1 and μψ(x). This also
applies to Theorem 3.7.

One can find some description of derivatives of the pressure function by covariance
of the sequence of functions {φ ◦ σ j }j∈N in [KS1, Corollary 1] for smooth φ. Without
the assumptions of ψ being normalised and

∫
φ dμψ = 0, Theorem 3.1 evolves into the

following form.

COROLLARY 3.4. Let ψ , φ ∈ Ch(�N) with some finite symbolic set �. Here, Lψ+tφ
admits a maximum isolated eigenvalue eP (ψ+tφ) close to eP (ψ) with eigenfunction w(t , x)
whose projection depends analytically on t in a small neighbourhood of 0. Considering
the derivatives of the pressure P(ψ + tφ) at t = 0, we have

P (n)(ψ + tφ)|t=0 =
n∑
j=1

C
j
n

∫
�N

(φ(x)−
∫
φ dμψ)

jw(n−j)(0, x) dμψ(x)

−
n−2∑
j=2

C
j
n

∑
τ∈P(j),1/∈τ

Bτj P
(τ)(ψ + tφ)|t=0

∫
�N

w(n−j)(0, x) dμψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅
BτnP

(τ)(ψ + tφ)|t=0 (3.10)

for any n ≥ 2.

Proof. Let

ψ̄ = ψ + log wψ(x)− log wψ ◦ σ − P(ψ),

where wψ(x) is the eigenfunction of Lψ corresponding to the eigenvalue eP (ψ). Taking
pressure in the following equation:

ψ̄ + tφ = ψ + tφ + log wψ(x)− log wψ ◦ σ − P(ψ),

then applying Proposition 2.2, we see that

P(ψ̄ + tφ) = P(ψ + tφ)− P(ψ).

This implies

dnP (ψ̄ + tφ)

dtn
= dnP (ψ + tφ)

dtn
(3.11)
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for any n ≥ 1. Now applying Theorem 3.1 to the normalised potential ψ̄ and φ − ∫
φ dμψ ,

(note that
∫
(φ − ∫

φ dμψ) dμψ = 0 and μψ = μψ̄ ), we justify the corollary by equa-
tion (3.11).

In the following, we present some concrete formulae of some special order n by virtue
of Theorem 3.1 for later use.

COROLLARY 3.5. Let ψ , φ ∈ Ch(�N) with ψ being normalised. Let μψ be the equilib-
rium state of ψ and

∫
φ dμψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ

with eigenfunction w(t , x) for small t. Then we have

P ′′′(ψ + tφ)|t=0 = 3
∫
φw′′(0, x) dμψ + 3

∫
φ2w′(0, x) dμψ +

∫
φ3 dμψ . (3.12)

Proof. This follows instantly from Theorem 3.1 with n = 3, along with some direct
computations on the Faà di Bruno’s coefficients {Bτ3 }τ∈P(3).
COROLLARY 3.6. Let ψ , φ ∈ Ch(�N) with ψ being normalised. Let μψ be the equilib-
rium state of ψ and

∫
φ dμψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ

with eigenfunction w(t , x) for small t. Then we have

P ′′′′(ψ + tφ)|t=0

= 4
∫
φw′′′(0, x) dμψ + 6

∫
φ2w′′(0, x) dμψ + 4

∫
φ3w′(0, x) dμψ +

∫
φ4 dμψ

− 6P ′′(ψ + tφ)|t=0

∫
w′′(0, x) dμψ − 3(P ′′(ψ + tφ)|t=0)

2

= 4
∫
φw′′′(0, x) dμψ + 6

∫
φ2w′′(0, x) dμψ + 4

∫
φ3w′(0, x) dμψ +

∫
φ4 dμψ

− 6
( ∫

φ2 dμψ + 2
∫
φw′(0, x) dμψ

) ∫
w′′(0, x) dμψ

− 3
( ∫

φ2 dμψ + 2
∫
φw′(0, x) dμψ

)2

. (3.13)

Proof. The first equality follows instantly from Theorem 3.1 with n = 4 along with some
direct computations on the Faà di Bruno’s coefficients {Bτ4 }τ∈P(4). The second one is
true as

P ′′(ψ + tφ)|t=0 =
∫
φ2 dμψ + 2

∫
φw′(0, x) dμψ .

The latter description depends only on φ(x), {w(j)(0, x)}3
j=1 and μψ(x).

One can also get some precise formulae for some particular n in Corollary 3.4, and
some non-inductive ones as we indicate in Remark 3.3. While equations (3.2), (3.10),
(3.12), (3.13) all give interesting descriptions of the derivatives of the pressure function
P(ψ + tφ), it seems to us difficult to discover any essential rigid restriction on them,
or relationships between them. In the following, we turn to the description of them by
the random stochastic process {φ ◦ σ j (x)}∞j=0. This is not a new idea on exploring the
regularity of the pressure function P(ψ + tφ), as one can recall it from many others’ work
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in thermodynamic formalism. Again, we first consider some standard case, then extend to
the general case.

THEOREM 3.7. Let ψ , φ ∈ Ch(�N) with ψ being normalised. Let μψ be the equilibrium
state of ψ and

∫
φ dμψ = 0. Let eP (ψ+tφ) be the maximum isolated eigenvalue of Lψ+tφ

with eigenfunction w(t , x) whose projection depends analytically on t. Considering the
derivatives of the pressure P(ψ + tφ) at t = 0, we have

P (n)(ψ + tφ)|t=0

= lim
m→∞

1
m

( n∑
j=2

C
j
n

∫
�N

(Sm,φ(x))
jw(n−j)(0, x) dμψ(x)

−
n−2∑
j=2

C
j
n

∑
τ∈P(j),1/∈τ

m#τBτj P
(τ)(ψ + tφ)|t=0

∫
�N

w(n−j)(0, x) dμψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅
m#τBτnP

(τ)(ψ + tφ)|t=0

)
(3.14)

for any n ≥ 2.

Proof. The proof follows the routine of Proof of Theorem 3.1. Considering equation (2.1),
we take n-derivatives on both sides of equation (2.3), take t = 0, then integrate both sides
with respect to μψ(x), divided by m, and we get

P (n)(ψ + tφ)|t=0

= 1
m

( n∑
j=1

C
j
n

∫
�N

(Sm,φ(x))
jw(n−j)(0, x) dμψ(x)

−
n−2∑
j=2

C
j
n

∑
τ∈P(j),1/∈τ

m#τBτj P
(τ)(ψ + tφ)|t=0

∫
�N

w(n−j)(0, x) dμψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅
m#τBτnP

(τ)(ψ + tφ)|t=0

)
(3.15)

as equation (3.2). Now sincew(n−1)(0, x) is bounded on X, the ergodic theorem guarantees

lim
m→∞

1
m

∫
�N

Sm,φ(x)w
(n−1)(0, x) dμψ(x) = 0. (3.16)

Then equation (3.14) follows from equation (3.15) as m → ∞ by equation (3.16).

Theorem 3.7 establishes some link between the derivatives of the pressure function and
the process {φ ◦ σ j (x)}∞j=0 through Sm,φ with respect to the equilibrium state μψ . We also
formulate a general version of the result.

COROLLARY 3.8. Let ψ , φ ∈ Ch(�N) with μψ be the equilibrium state of ψ . Here,
Lψ+tφ admits a maximum isolated eigenvalue eP (ψ+tφ) close to eP (ψ) with eigenfunction
w(t , x) whose projection depends analytically on t in a small neighbourhood of 0.
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Considering the derivatives of the pressure function P(ψ + tφ) at t = 0, we have

P (n)(ψ + tφ)|t=0

= lim
m→∞

1
m

( n∑
j=2

C
j
n

∫
�N

(
Sm,φ −m

∫
φ dμψ

)j
w(n−j)(0, x) dμψ(x)

−
n−2∑
j=2

C
j
n

∑
τ∈P(j),1/∈τ

m#τBτj P
(τ)(ψ + tφ)|t=0

∫
�N

w(n−j)(0, x) dμψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅
m#τBτnP

(τ)(ψ + tφ)|t=0

)
(3.17)

for any n ≥ 2.

Proof. Equipped with Theorem 3.7, the proof follows in line with the Proof of
Corollary 3.4.

The following is a classical result on the second derivative of the pressure [PP, Ch. 4].

COROLLARY 3.9. Let ψ , φ ∈ Ch(�N) with ψ being normalised. Let μψ be the equilib-
rium state of ψ and

∫
φ dμψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ

with eigenfunction w(t , x) for small t. Then we have

P ′′(ψ + tφ)|t=0 = lim
m→∞

1
m

∫
S2
m,φ dμψ . (3.18)

Remark 3.10. Here, P ′′(ψ + tφ)|t=0 is called variance of the random process {φ ◦
σ j (x)}∞j=0, whose name can be interpreted from the CLT. See [Rue1, PP].

Now we give some precise descriptions of the third and fourth derivatives of P(ψ + tφ)

by virtue of Theorem 3.7.

COROLLARY 3.11. Let ψ , φ ∈ Ch(�N) with ψ being normalised. Let μψ be the equilib-
rium state of ψ and

∫
φ dμψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ

with eigenfunction w(t , x) for small t. Then we have

P ′′′(ψ + tφ)|t=0 = lim
m→∞

3
m

∫
S2
m,φw

′(0, x) dμψ + lim
m→∞

1
m

∫
S3
m,φ dμψ . (3.19)

Proof. This follows instantly from Theorem 3.7 with n = 3.

COROLLARY 3.12. Let ψ , φ ∈ Ch(�N) with ψ being normalised. Let μψ be the equilib-
rium state of ψ and

∫
φ dμψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ

with eigenfunction w(t , x) for small t. Then we have

P (4)(ψ + tφ)|t=0

= lim
m→∞

(
6
m

∫
S2
m,φw

′′(0, x) dμψ + 4
m

∫
S3
m,φw

′(0, x) dμψ + 1
m

∫
S4
m,φ dμψ

− 6P ′′(ψ + tφ)|t=0

∫
w′′(0, x) dμψ − 3m(P ′′(ψ + tφ)|t=0)

2
)
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= lim
m→∞

(
6
m

∫
S2
m,φw

′′(0, x) dμψ + 4
m

∫
S3
m,φw

′(0, x) dμψ + 1
m

∫
S4
m,φ dμψ

− 6
m

∫
S2
m,φ dμψ

∫
w′′(0, x) dμψ − 3

m

( ∫
S2
m,φ dμψ

)2)
. (3.20)

Proof. The first equality follows instantly from Theorem 3.7 with n = 4, while the second
one is true by equation (3.18). The last description depends only on φ(x), {w(j)(0, x)}2

j=1
and μψ(x).

Through the above formulae, we see the importance of the asymptotic distribution of the
random variable Sm,φ with respect to μψ , which is described by the CLT for the process
{φ ◦ σ j (x)}∞j=0. Equipped with all the above results, now we are in a position to prove the
rigidity results on the third derivatives of P(ψ + tφ) using Corollary 3.11. We first show
Theorem 1.2.

Proof of Theorem 1.2. From now on, we fix t∗ ∈ (0, ∞). Let ψ = t∗φ. Simply by making
a change of variable, we can see that

P (n)(t∗) = P (n)(tφ)|t=t∗ = P (n)(ψ + tφ)|t=0

for any n ≥ 0. So equation (1.2) is equivalent to

|P ′′′(ψ + tφ)|t=0(1 − √
2π(P ′′(ψ + tφ)|t=0)

3/2)| ≤ 3MφP
′′(ψ + tφ)|t=0. (3.21)

We can assume ψ is normalised as otherwise we can change it to its normalisation by
equation (2.11). Moreover, it suffices for us to prove it under the assumption

∫
φ dμψ = 0

by virtue of equation (2.10). If P ′′(ψ + tφ)|t=0 = 0, then φ is cohomologous to a constant
according to [PP, Proposition 4.12]. This forces P ′′′(ψ + tφ)|t=0 = 0, so equation (3.21)
is satisfied in this case. In the following, we assume P ′′(ψ + tφ)|t=0 > 0. We resort to
Corollary 3.11 to justify equation (3.21) under the above assumptions. We first estimate the
term 1/m

∫
S3
m,φ dμψ in equation (3.19). Since we are assuming the potential is generic,

we can apply the CLT with equation (2.5):

1
m

∫
S3
m,φ dμψ

= √
m

∫ (
Sm,φ√
m

)3

dμψ

= √
m

∫
y3 dGm(y)

= √
m

∫
y3 dN0,P ′′(ψ+tφ)|t=0(y)+ √

m

∫
y3 dHm(y)+ √

m · o(1/√m)

= √
m · 0 +

∫
y3 d

(
P ′′′(ψ + tφ)|t=0

6

(
1 − y2

P ′′(ψ + tφ)|t=0

)
e−y2/2P ′′(ψ+tφ)|t=0

)

+ √
m · o(1/√m)

= P ′′′(ψ + tφ)|t=0
√

2π(P ′′(ψ + tφ)|t=0)
3/2 + √

m · o(1/√m).
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By taking m → ∞, we get

lim
m→∞

1
m

∫
S3
m,φ dμψ = P ′′′(ψ + tφ)|t=0

√
2π(P ′′(ψ + tφ)|t=0)

3/2. (3.22)

By equation (3.19), we have

P ′′′(ψ + tφ)|t=0(1 − √
2π(P ′′(ψ + tφ)|t=0)

3/2) = lim
m→∞

3
m

∫
S2
m,φw

′(0, x) dμψ .

(3.23)

Since w′(0, x) depends continuously on x ∈ X, there exists some Mφ depending on φ,
such that

|w′(0, x)| ≤ Mφ . (3.24)

Now taking absolute values on both sides of equation (3.23), we justify equation (3.21) by
equations (3.24) and (3.18).

The proof of Theorem 1.1 on the pressure functions of non-generic Hölder potentials
follows a similar way.

Proof of Theorem 1.1. Fixing t∗ ∈ (0, ∞), we can simply assume ψ = t∗φ is normalised
and

∫
φ dμψ = 0. In the case where P ′′(ψ + tφ)|t=0 = 0, so φ is cohomologous to a con-

stant, equation (1.1) holds obviously. In the following, we assume φ is not cohomologous
to a constant, so P ′′(ψ + tφ)|t=0 > 0. We again resort to Corollary 3.11 to justify equation
(1.1) under these assumptions. Now for the term 1/m

∫
S3
m,φ dμψ in equation (3.19), by

virtue of the CLT with equation (2.4),

1
m

∫
S3
m,φ dμψ

= √
m

∫ (
Sm,φ√
m

)3

dμψ

= √
m

∫
y3 dGm(y)

≤ √
m

∫
y3 dN0,P ′′(ψ+tφ)|t=0(y)+ √

m
9|P ′′′(ψ + tφ)|t=0| + 2|P (4)(ψ + tφ)|t=0|√

2π3m(P ′′(ψ + tφ)|t=0)3/2

= √
m · 0 + 9|P ′′′(ψ + tφ)|t=0| + 2|P (4)(ψ + tφ)|t=0|√

2π3(P ′′(ψ + tφ)|t=0)3/2

= 9|P ′′′(ψ + tφ)|t=0| + 2|P (4)(ψ + tφ)|t=0|√
2π3(P ′′(ψ + tφ)|t=0)3/2

(3.25)

for m large enough. By taking m → ∞ in equation (3.25), we get

lim
m→∞

1
m

∫
S3
m,φ dμψ ≤ 9|P ′′′(ψ + tφ)|t=0| + 2|P (4)(ψ + tφ)|t=0|√

2π3(P ′′(ψ + tφ)|t=0)3/2
. (3.26)
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Taking modulus on both sides of equation (3.26), we get

|P ′′′(ψ + tφ)|t=0|
≤

∣∣∣∣ lim
m→∞

1
m

∫
S3
m,φ dμψ

∣∣∣∣ +
∣∣∣∣ lim
m→∞

3
m

∫
S2
m,φw

′(0, x) dμψ

∣∣∣∣
≤ 9|P ′′′(ψ + tφ)|t=0| + 2|P (4)(ψ + tφ)|t=0|√

2π3(P ′′(ψ + tφ)|t=0)3/2
+ 3Mφ

∣∣∣∣ lim
m→∞

3
m

∫
S2
m,φ dμψ

∣∣∣∣
= 9|P ′′′(ψ + tφ)|t=0| + 2|P (4)(ψ + tφ)|t=0|√

2π3(P ′′(ψ + tφ)|t=0)3/2
+ 3MφP

′′(ψ + tφ)|t=0 (3.27)

for some |w′(0, x)| ≤ Mφ , which results in equation (1.1).

One can predict from Corollary 3.12, Theorem 3.7, and the proof of Theorems 1.1, 1.2
that some more rigid relationships between higher derivatives of the pressure function
{P (n)(tφ)}n∈N are possible. These rigidity relationships impose restrictions on fitting
convex analytic functions whose supporting lines intersect the vertical axis in some
bounded set in [0, ∞) by pressures of Hölder potentials.

4. Global fitting of convex analytic functions via pressures of Hölder potentials
This section is dedicated to the proof of Theorem 1.7. We start from the following result
on some global behaviour of the pressure functions of generic Hölder potentials.

THEOREM 4.1. Let α > 0. If there exists a strictly convex analytic function F(t) on
(α, ∞), with its supporting lines intersecting the vertical axis in [γ , γ ] ⊂ [0, ∞), such
that

sup
t∈(α,∞)

{∣∣∣∣F
′′′(t)
F ′′(t)

− √
2πF ′′(t)

∣∣∣∣
}

= ∞, (4.1)

then there does not exist a shift space with finite symbols with a generic Hölder potential
φ satisfying

P(tφ) = F(t)

on (α, ∞).

Proof. This follows directly from Theorem 1.2 in fact. Suppose on the contrary that there
exist some shift space X with finite symbols and some generic Hölder potential φ ∈ Ch(X)
satisfying P(tφ) = F(t) on (α, ∞), then according to Theorem 1.2, we have

sup
t∈(α,∞)

{∣∣∣∣F
′′′(t)
F ′′(t)

− √
2πF ′′(t)

∣∣∣∣
}

≤ 3Mφ

for some finite Mφ > 0. This contradicts equation (4.1).

Be careful that we cannot exclude the possibility that one can locally fit some convex
analytic function through the pressure of some generic Hölder potential on some shift
space with finite symbols by Theorem 1.2. This is because for any strictly convex analytic
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function F(t) on (α, ∞) and α ≤ α ≤ α, we always have

sup
α≤t≤α

{∣∣∣∣F
′′′(t)
F ′′(t)

− √
2πF ′′(t)

∣∣∣∣
}
< ∞.

So one cannot exclude the possibility that there exists some generic Hölder potential φ on
some shift space satisfying

P(tφ) = F(t)

on [α, α] through Theorem 1.2. See §5 for more results on the problem of local fitting of
some convex analytic functions through the pressures of Hölder potentials.

Now for α > 0, let

Fα = {F(t) :F(t) is a strictly convex analytic function on (α, ∞) satisfying equation (4.1),
its supporting lines intersect the vertical axis in a bounded interval in [0, ∞)}.

We will show that Fα �= ∅ for any α > 0 in the following.

PROPOSITION 4.2. For any α > 0, we have

F̃α =
{
Fa,b,c(t) = at2 + bt + te−ct2 + e−ct2

t

∣∣∣∣
(α,∞)

}
a,b>0,c>1/2

√
2

⊂ Fα .

Proof. The restricted functions on (α, ∞) are of course analytic. By considering the
second derivative of a function Fa,b,c(t) ∈ F̃α , we have

F ′′
a,b,c(t) = 4c2t2e−ct2 + 4c2te−ct2 − 2ce−ct2 + 2ct−1e−ct2 + 2t−3e−ct2

for t ∈ (0, ∞). Now since

4c2t + 2ct−1 ≥ 2
√

8c3 > 2c,

considering c > 1/2
√

2, we can see that F ′′
a,b,c(t) > 0 on (0, ∞). This shows that for any

α > 0, Fa,b,c(t) ∈ F̃α is a convex function. Considering the third derivative of a function
Fa,b,c(t) ∈ F̃α , we have

F ′′′
a,b,c(t) = −8c3t3e−ct2 − 8c3t2e−ct2 + 12c2te−ct2 − 6ct−2e−ct2 − 6t−4e−ct2

for t ∈ (0, ∞). Then we have

lim
t→∞

(
F ′′′
a,b,c(t)

F ′′
a,b,c(t)

−
√

2πF ′′
a,b,c(t)

)
= lim
t→∞

−8c3t3e−ct2

4c2t2e−ct2
= −∞.

This means that Fa,b,c(t) ∈ F̃α satisfies equation (4.1). To see that the supporting lines of
a function Fa,b,c(t) ∈ F̃α intersect the vertical axis in a bounded domain in [0, ∞), write
the function as

Fa,b,c(t) = at + b + e−ct2 + t−1e−ct2 .

Its graph on (0, ∞) is a strictly convex smooth curve with asymptotes y = at + b and
t = 0.
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FIGURE 1. Graph of F2,3,1(t).

In Figure 1, we provide the readers with the graph of the function

F2,3,1(t) = 2t2 + 3t + te−t2 + e−t2

t

on (0, ∞).
This means that any function in the family F̃α cannot be fitted by any generic Hölder

potential on any shift space globally, by Theorem 4.1. In the following, we exclude the
possibility that they can be fitted by non-generic Hölder potentials on shift spaces with
finite symbols. One can show that [PP, Ch. 4] if φ is non-generic, then there exists a
continuous function u : X → R, cφ ∈ R, and a locally constant potential φ̃ : X → R, such
that

φ(x) = u ◦ σ(x)− u(x)+ cφ + φ̃(x). (4.2)

PROPOSITION 4.3. For any α > 0 and any Fa,b,c(t) ∈ F̃α with a, b > 0, c > (1/2
√

2),
there does not exist a shift space with finite symbols with a non-generic Hölder potential φ
satisfying

P(tφ) = F(t)

on (α, ∞).

Proof. Note that for a non-generic Hölder potential φ on a shift space with finite symbols,
according to equation (4.2), we have

P(tφ) = tcφ + P(tφ̃),

where φ̃ is some locally constant potential. By the explicit formula (see for example [Wal1,
p. 214]) for the pressure functions of locally constant potentials on shift spaces with finite
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symbols, we see that any Fa,b,c(t) cannot be fitted by pressure of any non-generic Hölder
potential φ globally.

Equipped with all the above results, Theorem 1.7 follows instantly from Propositions
4.2 and 4.3.

5. Local fitting of prescribed germs via pressures of locally constant potentials
In this section, we deal with the local fitting of analytic functions by the pressures of
Hölder potentials, especially the pressures of piecewise constant ones. First, we borrow
some notion originating from analytic continuation.

Definition 5.1. A germ of level ι(ι ∈ N ∪ {∞}) at t∗ is the formal power series

g(t) = a0 + a1(t − t∗)+ a2

2!
(t − t∗)2 + a3

3!
(t − t∗)3 + · · · + aι

ι!
(t − t∗)ι

for some (a0, a1, . . . , aι) ∈ R
ι+1.

The convergent radius (the superior of values δ ≥ 0 on [t∗ − δ, t∗ + δ] such that the
germ converges) of the power series is called the radius of the germ. Any finite-level germ
admits infinite radius while an infinite-level germ may admit some finite radius. We are
only interested in germs of radius δ > 0. The following problem will be our concern in
this section.

Problem 5.2. For a germ

g(t) = a0 + a1(t − t∗)+ a2

2!
(t − t∗)2 + · · · + aι

ι!
(t − t∗)ι

of level ι (ι ∈ N ∪ {∞}) at t∗ with some strictly positive radius, does there exist some
Hölder potential φ on some shift space with finite symbols and some δ > 0, such that

P(tφ) = g(t)+O((t − t∗)ι+1)

on [t∗ − δ, t∗ + δ]?

We assume O((t − t∗)∞) = 0 in Problem 5.2. The question can still be understood in
Katok’s flexibility program in the class of symbolic dynamical systems, or even in some
smooth systems. Obvious conditions to guarantee a positive answer to the problem are
equation (1.5) and

a2 > 0 (5.1)

in the case ι ≥ 2. The condition in equation (5.1) guarantees convexity of the germ (in some
neighbourhood of t∗), while equation (1.5) guarantees the supporting lines of the germ
intersect the vertical axis in a bounded set in [0, ∞) (also in some neighbourhood of t∗).
We are especially interested in its answer when the Hölder potential in Problem 5.2 is
required to be a locally constant one. We have seen the importance of the family of locally
constant potentials in approximating convex analytic functions in Corollary 1.4. In fact,
Corollary 1.4 has some interesting interpretation in approximation theory [Tim, Ch. I]
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when we consider the explicit expressions of the pressures of locally constant potentials
on the shift space. For n ∈ N, recall that

�n = {1, 2, . . . , n}.
LEMMA 5.3. For an integer k ≥ 0, consider some locally constant potential

φ(x) = cx−kx−k+1···x0···xk−1xk

for x = · · · x−1x0x1 · · · ∈ [x−k · · · xk] on the shift space �Z
n , we have

P(tφ) = log
∑

(x−k ,...,xk)∈�2k+1
n

e
tcx−k ···xk

for any t ∈ (−∞, ∞).

Proof. This follows from [Wal1, Theorem 9.6] by some direct calculations through
Definition 2.1 of the pressure.

Now combining Corollary 1.4 and Lemma 5.3, we have the following result.

COROLLARY 5.4. Let F(t) be a convex Lipschitz function on (α, ∞) for some α > 0, such
that its supporting lines intersect the vertical axis in [γ , γ ] with 0 ≤ γ ≤ γ < ∞. Then
there exists some K ∈ N and some sequences of constants

{cn,j }Knj=1,

such that

lim
n→∞ log

Kn∑
j=1

etcn,j = F(t) (5.2)

for any t ∈ (α, ∞).

Proof. Take K = #� for the symbolic set in the proof of Corollary 1.4, then the locally
constant potential φn(x) = φn,−(x) admits Kn constant values on corresponding level-n
cylinder sets. Denote these values by {cn,j }Knj=1 for n ∈ N. According to Lemma 5.3,

P(tφn,−) = log
Kn∑
j=1

etcn,j

for any n ≥ 1. This gives equation (5.2) by virtue of equation (1.3).

Corollary 5.4 indicates that logarithm of the finite sums of the exponential maps in the
family {etc}c∈R are dense in the space of certain convex Lipschitz maps on (α, ∞). The
above approximation is uniform with respect to t in a bounded set. This makes the family
{etc}c∈R (family of locally constant potentials) important in detecting the properties of
certain convex Lipschitz maps (among continuous or Hölder potentials).

From now on, we turn our attention to Problem 5.2, but with restriction to locally
constant potentials. We focus on locally constant potentials defined on the level-0 cylinder
sets, whose theory is equivalent to those defined on the deeper cylinder sets, where the
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symbols are replaced by words (recoding). On the shift space�Z
n with n ≥ 2, consider the

locally constant potential

φ(x) = zx0

for x = · · · x−1x0x1 · · · ∈ [x0], where {zi}1≤i≤n are all constants. Let

Q0(t , z1, z2, . . . , zn) =
n∑
i=1

etzi ,

so

P(tφ) = log Q0(t , z1, . . . , zn)

by Lemma 5.3. Let

Q1(t , z1, z2, . . . , zn) =
n∑
i=1

zie
tzi

and

Q2(t , z1, z2, . . . , zn) =
∑

1≤i<j≤n
(zi − zj )

2et(zi+zj ).

Through some elementary calculations, one can check that

P ′(tφ) = dP (tφ)

dt
= Q1(t , z1, . . . , zn)
Q0(t , z1, . . . , zn)

,

while

P ′′(tφ) = d2P(tφ)

dt2
= Q2(t , z1, . . . , zn)
Q2

0(t , z1, . . . , zn)
. (5.3)

Let

R2(t , z1, z2, . . . , zn) =
n∑
i=1

z2
i e
tzi ,

one can check that

Q2(t , z1, . . . , zn) = Q0(t , z1, . . . , zn)R2(t , z1, . . . , zn)−Q2
1(t , z1, . . . , zn).

In the following, we will often fix t = t∗ > 0, so we will frequently write

Q0(t∗, z1, z2, . . . , zn) = Q0(z1, z2, . . . , zn)

with t∗ omitted for convenience. Similar notation apply to other terms above. Let

Q0(z1, . . . , zn) =
n∑
i=1

et∗zi = ea0 , (5.4)

Q1(z1, . . . , zn) =
n∑
i=1

zie
t∗zi = a1e

a0 (5.5)
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be two equations with unknowns {z1, z2, . . . , zn} for fixed t∗ > 0, (a0, a1) ∈ R
2 and some

n ≥ 2. Let

�n5.4 = {(z1, z2, . . . , zn) ∈ R
n : z1, z2, . . . , zn satisfy equation (5.4)}

and

�n5.5 = {(z1, z2, . . . , zn) ∈ R
n : z1, z2, . . . , zn satisfy equation (5.5)}.

They are both n− 1 dimensional smooth hypersurfaces. We first present readers with
the following result on fitting an analytic function

a0 + a1(t − t∗)+O((t − t∗)2)

with t∗, a0, a1 subject to equation (1.5) around some fixed t∗ > 0 by pressures of locally
constant potentials on general shift spaces.

THEOREM 5.5. Let t∗ > 0, (a0, a1) ∈ R
2, n ≥ 2 satisfying equation (1.5) and

a0 − log n
t∗

< a1. (5.6)

Then there exists some δn > 0 and some sequence {ri,n}ni=1 ⊂ R, such that the locally
constant potential

φ(x) = rx0

for x = · · · x−1x0x1 · · · ∈ [x0] on the full shift space �Z
n satisfies

P(tφ) = a0 + a1(t − t∗)+O((t − t∗)2)

on [t∗ − δn, t∗ + δn].

Proof. In fact, it suffices for us to show that the system of equations
{

equation (5.4),
equation (5.5),

with unknowns {z1, z2, . . . , zn} admits a solution under conditions of the theorem.
Without loss of generality, we assume

z1 ≤ z2 ≤ · · · ≤ zn. (5.7)

Under this assumption, it is easy to see that

a0 − log n
t∗

≤ zn <
a0

t∗
.

Now we estimate the values of Q1(z1, . . . , zn) with zn approaching the terminals. When
zn approaches the right terminal from below, we have
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lim
(z1,z2,...,zn)∈�n5.4, zn↗a0/t∗

Q1(z1, . . . , zn) = a0

t∗
ea0 > a1e

a0

by virtue of equation (1.5). When zn approaches the left terminal from above, we have

lim
(z1,z2,...,zn)∈�n5.4, zn↘a0/t∗

Q1(z1, . . . , zn) = a0 − log n
t∗

ea0 < a1e
a0

by virtue of equation (5.6). Since �n5.4 is a smooth hypersurface, by the mean value
theorem, there exists some (r1,n, r2,n, . . . , rn,n) ∈ �n5.4 satisfying equations (5.4) and (5.5)
simultaneously. At last, for x = · · · x−1x0x1 · · · ∈ [x0] on the full shift space �Z

n , let

φ(x) = rx0,n

be the locally constant potential. As P(tφ) is analytic, there exists some δn > 0 such
that

P(tφ) = a0 + a1(t − t∗)+O((t − t∗)2)

for t ∈ [t∗ − δn, t∗ + δn].

Remark 5.6. The core step in the proof of Theorem 5.5 is in fact finding the extremes
of the function Q1(z1, . . . , zn) subject to equations (5.4), (1.5) and (5.6). One can detect
the points of extremes by the Karush–Kuhn–Tucker (KKT) conditions [Kar, KT], which
generalises the method of Lagrange multipliers by allowing inequality constraints.

Care must be taken that the {ri,n}ni=1 all depend on n. Theorem 5.5 induces the following
interesting flexibility result on fitting certain analytic functions locally by pressures of
locally constant potentials on general shift spaces.

COROLLARY 5.7. Let t∗ > 0 and (a0, a1) ∈ R
2 satisfy equation (1.5). Then there exists

some N ∈ N, such that for any n ≥ N , there exist some δn > 0 and some sequence
{ri,n}ni=1 ⊂ R, such that the locally constant potential

φ(x) = rx0,n

for x = · · · x−1x0x1 · · · ∈ [x0] on the full shift space �Z
n satisfies

P(tφ) = a0 + a1(t − t∗)+O((t − t∗)2)

on [t∗ − δn, t∗ + δn].

Proof. Under conditions of the corollary, for the given values t∗, a0, a1 satisfying equation
(1.5), choose N ∈ N large enough such that

a0 − log N
t∗

< a1.

This means that for any n > N , the condition in equation (5.6) is satisfied for t∗, a0, a1, n.
Then the conclusion follows from Theorem 5.5.
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Note that on some particular symbolic spaces, Theorems 5.5 and 5.7 may be trivial. For
example, for given (t∗, a0, a1) ∈ R

3 without any constraints, by choosing β = ea0−t∗a1 ,
consider the constant potential

φ(x) = a1

on the β-shift space with symbols {0, 1, . . . , 
β�}. It is easy to see that

P(tφ) = a0 − t∗a1 + a1t = a0 + a1(t − t∗)

on (−∞, ∞). However, our results guarantee conclusions on general shift spaces beyond
these specific ones.

From now on, we go towards the proof of Theorem 1.9. For fixed t∗ > 0, (a0, a1) ∈ R
2

and n ≥ 3, let

�n5.4,5.5 = �n5.4 ∩ �n5.5

= {(z1, z2, . . . , zn) ∈ R
n : z1, z2, . . . , zn satisfy equations (5.4) and (5.5)}.

We describe some topological properties of the set �n5.4,5.5 in the following result.

LEMMA 5.8. For fixed t∗ > 0, (a0, a1) ∈ R
2 subject to equation (1.5) and n ≥ 3, in the

case �n5.4,5.5 �= ∅ and a1 �= (a0 − log n/t∗), it is a compact (n− 2)-dimension smooth
manifold.

Proof. The Jacobian of the functions Q0(z1, . . . , zn)− ea0 and Q1(z1, . . . , zn)− a1e
a0

with respect to z1, z2, . . . , zn is

J =
(

t∗et∗z1 t∗et∗z2 · · · t∗et∗zn
et∗z1 + t∗z1e

t∗z1 et∗z2 + t∗z2e
t∗z2 · · · et∗zn + t∗znet∗zn

)
.

Its rank is strictly less than 2 if and only if

z1 = z2 = · · · = zn.

Since a1 �= (a0 − log n/t∗), this is excluded from points in �5.4,5.5. By the implicit
function theorem [Lan, Theorem 5.9], if �n5.4,5.5 is not empty, it is an (n− 2)-dimension
smooth manifold locally. The gradient of the function Q0(z1, . . . , zn)− ea0 is

�(Q0(z1, . . . , zn)− ea0) = (t∗et∗z1 , t∗et∗z2 , . . . , t∗et∗zn),

whose individual components will always be strictly positive. The gradient of the function
Q1(z1, . . . , zn)− a1e

a0 is

�(Q1(z1, . . . , zn)− a1e
a0) = (et∗z1 + t∗z1e

t∗z1 , et∗z2 + t∗z2e
t∗z2 , . . . , et∗zn + t∗znet∗zn),

with the ith individual component vanishing if and only if zi = −(1/t∗) for 1 ≤ i ≤ n. So
�n5.4 and �n5.5 cannot be tangent to each other. Moreover, note that

et∗zi + t∗ziet∗zi > 0
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FIGURE 2. �3
5.4,1,2,1 (lighter) and �3

5.5,1,2,1 (darker).

if zi > −(1/t∗), while

et∗zi + t∗ziet∗zi < 0

if zi < −(1/t∗) for any 1 ≤ i ≤ n. These force the intersection of zeros of the two
functions Q0(z1, . . . , zn)− ea0 and Q1(z1, . . . , zn)− a1e

a0 to be connected if the
intersection is not empty. This implies �5.4,5.5 is a manifold globally in the case of being
non-empty. Here, �n5.4,5.5 is compact since it is a bounded set.

Let

�3
5.4,1,2,1 = {(z1, z2, z3) ∈ R

3 : z1, z2, z3 satisfy ez1 + ez2 + ez3 = e2}
and

�3
5.5,1,2,1 = {(z1, z2, z3) ∈ R

3 : z1, z2, z3 satisfy z1e
z1 + z2e

z2 + z3e
z3 = e2}

be the corresponding surfaces with t∗ = 1, a0 = 2, a1 = 1. Figure 2 depicts parts of the
two 2-dimension surfaces, whose intersection will be a 1-dimension smooth curve.

Equipped with all the above results, now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. First, for the given t∗ > 0 and (a0, a1) ∈ R
2 satisfying equation

(1.5), if n is large enough, �n5.4,5.5 is not empty according to Corollary 5.7. So �n5.4,5.5 is
a compact (n− 2)-dimension smooth manifold for n large enough. We recall here the R2

and Q2 defined after Corollary 5.4. In the following, we always assume n is large enough.
Now let

mt∗,a0,a1,n = min
{
R2(t∗, z1, z2, . . . , zn)

ea0
− a2

1 : (z1, z2, . . . , zn) ∈ �n5.4,5.5

}
,
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while

Mt∗,a0,a1,n = max
{
R2(t∗, z1, z2, . . . , zn)

ea0
− a2

1 : (z1, z2, . . . , zn) ∈ �n5.4,5.5

}
. (5.8)

For any mt∗,a0,a1,n ≤ a2 ≤ Mt∗,a0,a1,n, since �n5.4,5.5 is a smooth manifold, there exist
{ci,n}ni=1 ⊂ R, such that (c1,n, c2,n, . . . , cn,n) satisfies equations (5.4), (5.5) and

a2 = Q2(t∗, c1,n, . . . , cn,n)

Q2
0(t∗, c1,n, . . . , cn,n)

= R2(t∗, c1,n, . . . , cn,n)

ea0
− a2

1 (5.9)

simultaneously. Now let

φ(x) = cx0,n

for x = · · · x−1x0x1 · · · ∈ [x0] on the full shift space�Z
n . It is a locally constant potential.

According to equations (5.3) and (5.9), we have

P ′′(t∗φ) = Q2(t∗, c1,n, . . . , cn,n)

Q2
0(t∗, c1,n, . . . , cn,n)

= a2. (5.10)

Since (c1,n, c2,n, . . . , cn,n) satisfies equations (5.4) and (5.5), we have

P(t∗φ) = Q2(t∗, c1,n, . . . , cn,n)

Q2
0(t∗, c1,n, . . . , cn,n)

= a0, (5.11)

while

P ′(t∗φ) = Q2(t∗, c1,n, . . . , cn,n)

Q2
0(t∗, c1,n, . . . , cn,n)

= a1. (5.12)

Note that P(tφ) is analytic with respect to t on (α, ∞) for any α > 0, so there exists some
δn > 0, such that equation (1.6) holds on [t∗ − δn, t∗ + δn], by equations (5.10), (5.11) and
(5.12).

In the following, we illustrate some dependent relationship between

{mt∗,a0,a1,n, Mt∗,a0,a1,n}n∈N
and some particular t∗, a0, a1, n satisfying equation (1.5). There should be some universal
relationship between them, while we hope the following observations will provide some
hints. The first one is that it is possible for mt∗,a0,a1,n = 0 for some t∗, a0, a1, n.

PROPOSITION 5.9. Let t∗ > 0 and (a0, a1) ∈ R
2 satisfy equation (1.5). Then

mt∗,a0,a1,n = 0 for n ≥ 2 if and only if

a1 = a0 − log n
t∗

. (5.13)

Proof. Note that mt∗,a0,a1,n = 0 is equivalent to say that there exists some locally constant
potential φ on �Z

n such that P ′′(t∗φ) = 0 according to Theorem 1.9. By [PP, Proposition
4.12], this happens if and only if φ is a constant potential on �Z

n . In this case, we have

φ(x) = a0 − log n
t∗

for any x ∈ �Z
n , which implies equation (5.13).
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FIGURE 3. Graph of ς(z) = zez.

This result does not tell things about the sequence

{mt∗,a0,a1,n} n∈N large enough

for given t∗, a0, a1, since equation (5.13) will never be true for any n large enough for fixed
t∗, a0, a1. The following result describes a limiting behaviour of the sequence

{Mt∗,a0,a1,n} n∈N large enough

for t∗ = 1, a0 = 2, a1 = 1.

PROPOSITION 5.10. Let t∗ = 1, a0 = 2, a1 = 1, in symbols of Theorem 1.9, we have

lim
n→∞ M1,2,1,n = ∞. (5.14)

To justify Proposition 5.10, we first illustrate some basic properties about the function
zet∗z for t∗ > 0.

LEMMA 5.11. For t∗ > 0, zet∗z is strictly decreasing on (−∞, −(1/t∗)), strictly increas-
ing on (−(1/t∗), ∞), while it attains its minimum −(1/t∗)e−1 at z = −(1/t∗). It admits
one and only one inflection in (−∞, −(1/t∗)).

Proof. One can check these conclusions by some direct computations on the first and
second derivatives of the function zet∗z.

In Figure 3, we depict the graph of ς(z) = zez.

Proof of Proposition 5.10. Since we are considering the limit behaviour of M1,2,1,n,
we always assume n is large enough throughout the proof. Now consider the following
two equations:

(n− 1)eza + ezb = e2 (5.15)
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and

(n− 1)zaeza + zbe
zb = e2 (5.16)

with unknowns za , zb. Let

�5.15 = {(za , zb) ∈ R
2 : za , zb satisfy equation (5.15)}

and

�5.16 = {(za , zb) ∈ R
2 : za , zb satisfy equation (5.16)}.

We describe the graphs of �5.15 and �5.16 separately in the following. Here, �5.15 is a
one-dimensional smooth curve with two asymptotes za = 2 − log(n− 1) and zb = 2. It is
strictly decreasing when we consider the curve as the graph of the function

zb = log(e2 − (n− 1)eza )

for za ∈ (−∞, 2 − log(n− 1)). Here, �5.16 is also a one-dimensional smooth curve with
two asymptotes za = ς−1(e2/(n− 1)) and zb = ς−1(e2). When we consider the �5.16 as
the graph of the function

zb = η(za)

as the implicit function induced by equation (5.16), it is strictly increasing for za ∈
(−∞, −1), strictly decreasing for za ∈ (−1, ς−1(e2/n− 1)), with its maximum ς−1(e2 +
(n− 1)e−1) attained at za = −1. Let ς−1

l (−(e2/(n− 1))) be the smaller one of the two
intersections of zb = 2 and �5.16, then �5.15 and �5.16 must intersect at some unique point
ca,n ∈ (−∞, ς−1

l (−(e2/(n− 1)))). Obviously,

lim
n→∞ ca,n = −∞

since limn→∞ ς−1
l (−(e2/(n− 1))) = −∞. Now we analyse the order of ca,n with respect

to n as n → ∞. Let

za,n = − log n− log log n+ log 1 − 1.

One can check that

lim
n→∞,zb→2

((n− 1)eza,n + ezb ) = e2,

while

lim
n→∞,zb→2

((n− 1)za,ne
za,n + zbe

zb ) = e2.

These imply that

ca,n = − log n− log log n+ o(log log n).
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FIGURE 4. �5.15 and �5.16.

Note that (ca,n, ca,n, . . . , ca,n, η(ca,n)) ∈ �n5.4,5.5 for t∗ = 1, a0 = 2, a1 = 1. Now

R2(ca,n, ca,n, . . . , ca,n, η(ca,n))

= (n− 1)c2
a,ne

ca,n + (η(ca,n))
2eη(ca,n)

= (n− 1)(− log n− log log n+ o(log log n))2e− log n−log log n+o(log log n) + 4e2 + o(1)

= log n+ o(log n),

from which it is easy to see that

lim
n→∞ R2(ca,n, ca,n, . . . , ca,n, η(ca,n)) = ∞.

This forces

lim
n→∞ M1,2,1,n = ∞,

by equation (5.8).

We provide the readers with the curves �5.15 and �5.16 in Figure 4. Obviously, some
more general conclusions are available if one considers variations of the parameters
t∗, a0, a1 in Proposition 5.10. In the proof of Proposition 5.10, we analysed the asymptotic
behaviour of ca,n as n → ∞. To illustrate this, we provide the readers with some solutions
{ca,n}n∈N and {η(ca,n)}n∈N in Table 3, from which one can see the order of decay and
increase of the sequences with respect to n clearly.
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TABLE 3. {ca,n}n∈N and{η(ca,n)}n∈N.

n ca,n η(ca,n)

10 −1.8599539391797653780996686364493 1.7634042477581860636342812520981
102 −4.6278529940301947157458180305676 1.8580906928560505140960875180438
103 −7.2278923365046354303919671475052 1.8965708210067454817129699066334
104 −9.7529279223041958189401940128674 1.9180710389285259082138396366755
105 −12.23426184122178540565187685582 1.9319494203818796717151866525306
106 −14.686689485112383196253350885528 1.941701042038176132682488585943
107 −17.118475509130338419321449219176 1.9489507180131363431129601417792
108 −19.534737736752111249670741176574 1.9545628133690736391913141129777
109 −21.938877884281897893422087428599 1.9590417833080193886068703580662
1010 −24.333277592346602338263750350022 1.9627027620469153955488959845337
1011 −26.719672172461371813735932628894 1.9657531814729595378854181456218
1012 −29.099366670257435261982274861811 1.9683353707111573738492465130807
1013 −31.473368167571030624456199153849 1.970550350496947761285545176838
1014 −33.842470627269595326611535858951 1.9724718685216929582206115029034
1015 −36.20731141238751139407393422892 1.9741550583546827046855344007126
1016 −38.568410155198951836337896822881 1.97564198636943790477268372057
1017 −40.926196222869058989174011616314 1.9769653208730088904749619599928
1018 −43.28102858421294787781225809291 1.9781508271703613365389080750692
1019 −45.633210475623427729647938869856 1.9792191056459012534062976747755
1020 −47.983000423353389741328990557576 1.9801868284846851379610473178804
1021 −50.330620660008332271820694306839 1.9810676363715292020369862557429
1022 −52.676263643082855194671803053742 1.9818727996772032079642260800619
1023 −55.020097168291592849066888176454 1.9826117134133018944596936081392
1024 −57.362268427077060922578379063246 1.9832922728467949817312209115653
1025 −59.702907260160132201351723856461 1.9839211621102961084222105523408
1026 −62.042128791447074538616865826092 1.9845040784885601043186175801529
1027 −64.380035579030470553978577616248 1.9850459085371711281404342988732
1028 −66.716719386002755126963619613768 1.9855508677057357884921072471682
1029 −69.052262649137714881922574449762 1.9860226120088820356292880321385
1030 −71.386739705385277326962820249044 1.9864643280735340181774784668139
1031 −73.7202178226698188293210417966 1.9868788063025456510398996161088
1032 −76.052758071376257724956806229201 1.9872685007417625212636588061233
1033 −78.384416065240707497606345034329 1.9876355783911370649894789906831
1034 −80.715242594490126828808238297291 1.9879819600725889180558042388717
1035 −83.045284169538297201269228695051 1.9883093544968926933418986392956
1036 −85.374583490011093204926910773042 1.9886192868162322855194994642595
1037 −87.703179851099500408441885242821 1.9889131226778662869710690898493
1038 −90.031109497045012553979249690171 1.9891920885858755212588911444123
1039 −92.358405929815521230622254914238 1.9894572892164831961499157326311
1040 −94.685100179630439886817678169988 1.9897097222064583485549741614556
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