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This paper proposes a nonparametric test to assess whether there exist heterogeneous
quantile treatment effects (QTEs) of an intervention on the outcome of interest across
different sub-populations defined by covariates of interest. Specifically, a consistent
test statistic based on the Cramér–von Mises type criterion is developed to test if the
treatment has a constant quantile effect for all sub-populations defined by covariates
of interest. Under some regularity conditions, the asymptotic behaviors of the
proposed test statistic are investigated under both the null and alternative hypotheses.
Furthermore, a nonparametric Bootstrap procedure is suggested to approximate the
finite-sample null distribution of the proposed test; then, the asymptotic validity
of the proposed Bootstrap test is theoretically justified. Through Monte Carlo
simulations, we demonstrate the power properties of the test in finite samples.
Finally, the proposed testing approach is applied to investigate whether there exists
heterogeneity for the QTE of maternal smoking during pregnancy on infant birth
weight across different age groups of mothers.

1. INTRODUCTION

In program evaluation studies, it is important to learn about the heterogeneous
impacts of policy variables on different quantiles of the outcome distribution
of interest. Examples include, but are not limited to, evaluating the effects of
government training programs on lower quantiles of earning distributions studied
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by LaLonde (1995) and Abadie, Angrist, and Imbens (2002), the effects of
government-subsidized saving programs on lower tails of savings distributions,
and among many others. To characterize the heterogeneous effects along with
the outcome distribution, quantile treatment effect (QTE), originally suggested
by Doksum (1974) and Lehmann (1975) and defined as the difference between
the quantiles of the marginal potential distributions of the treatment and control
responses, provides a powerful tool to document such heterogeneity. In the last
few decades, QTE has gained increasing popularity in economics, political science,
and many other social, behavioral, and statistical sciences. Recent studies on QTE
include Abadie et al. (2002), Chernozhukov and Hansen (2005), Firpo (2007),
Frölich and Melly (2013), Donald and Hsu (2014), and the references therein.

The aforementioned papers mainly focus on identification and estimation of the
QTE for the overall population or the treated group under various assumptions.
It is generally believed in the program evaluation literature that the effect of
a treatment can be heterogeneous across different individuals, as in Heckman
and Robb (1985) and Heckman, Smith, and Clements (1997). In many cases,
researchers may be more interested in studying the effects of programs across
different individuals instead of the effects for the overall population or the sub-
population of treated individuals. For example, it may be of substantive interest
to investigate the heterogeneous effects of maternal smoking during pregnancy
on infant birth weight across mothers of different ages. How to characterize
the heterogeneity of treatment effects across different individuals is a challenge
in the treatment effect literature and has been extensively considered in recent
studies. For instance, to characterize the heterogeneous effects across different
sub-populations defined by some covariates of interest, Abrevaya, Hsu, and Lieli
(2015) and Lee, Okui, and Whang (2017) considered the partially conditional
average treatment effect (ATE). Unlike Abrevaya et al. (2015) and Lee et al.
(2017), to simultaneously capture heterogeneities across both distributions and
individuals, Cai et al. (2021)1 and Zhou, Guo, and Zhu (2022) proposed a partially
conditional quantile treatment effect (PCQTE) model, whereas Tang et al. (2021)
considered a parametric model.

In this paper, we investigate whether there exists heterogeneity in quantile
effects across sub-populations defined by the covariate of interest, Z, which is
a subset of covariates X, under the condition that the treatment assignment is
independent of the potential outcomes conditional on X. The study is motivated by
the empirical estimation results in Cai et al. (2021) and Tang et al. (2021), which
investigate the QTE of maternal smoking during pregnancy on infant birth weight
across different age groups of mothers. The main findings in Cai et al. (2021) are
that there is a significant negative effect of smoking on infant birth weight across
all mothers’ ages and quantiles for both whites and blacks and there is substantial
heterogeneity across different mothers’ ages for whites but not for blacks. Based on

1Please note that the working paper version of this paper in English with a modification can be downloaded at
https://econpapers.repec.org/paper/kanwpaper/202005.htm.
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these estimation results, from statistical and empirical perspectives, it is interesting
to test whether or not the conditional QTEs, conditional on mothers’ ages, for both
whites and blacks, change over mothers’ ages, in other words, whether there exists
heterogeneity for the QTEs of maternal smoking on infant birth weight across
different age groups of mothers for both whites and blacks. To this end, we propose
a novel test to assess whether there exist heterogeneously distributional effects for
an intervention on an outcome of interest across different sub-populations defined
by covariates of interest. Specifically, a nonparametric test is developed for testing
the null hypothesis that the treatment has a constant QTE for all sub-populations
defined by covariates of interest. In other words, the null hypothesis is that there
is no heterogeneity in QTEs by covariates of interest. To this end, a consistent test
statistic is constructed based on the Cramér–von Mises type criterion.

Under some regularity conditions, we establish the asymptotic distribution
of the proposed test statistic under both the null and alternative hypotheses
and investigate the power of our test against a sequence of local alternatives.
However, to calculate the critical value of the proposed test statistic under the
null hypothesis, one needs to consistently estimate the conditional density of the
potential outcomes conditional on covariates of interest involved in the asymptotic
bias and asymptotic variance. This is not an easy task, as recognized in the
literature. To overcome this problem, a nonparametric Bootstrap procedure is
proposed to approximate the finite-sample null distribution of the proposed test.
Furthermore, the asymptotic validity of the proposed Bootstrap test is justified.
Through Monte Carlo simulations, we demonstrate the power properties of the
test in finite samples. As an empirical illustration, the proposed testing approach
is applied to investigating whether there exists heterogeneity for the QTE of
maternal smoking during pregnancy on infant birth weight across different age
groups of mothers. The results show that the QTEs of maternal smoking on infant
birth weight for whites change statistically significantly over mother’s age for all
quantile levels. By contrast, for blacks, the effects vary slightly with age for all
quantile levels, but the results are not statistically significant. This lends support
to the findings in Cai et al. (2021).

The present paper relates to several earlier lines of research. For example, Crump
et al. (2008) developed two nonparametric tests based on a series approach, in
which the first is to test whether a treatment has a zero average effect for all
sub-populations defined by covariates, and the second is to test whether the ATE
conditional on the covariates is identical for all sub-populations, in other words,
whether heterogeneity by covariates exists in ATE. Further, Lee and Whang (2009)
tested whether the conditional QTE is significant, conditional on the whole set of
covariates. By contrast, our focus is on testing whether the partially conditional
QTE is a constant, in which the constant needs to be estimated. More importantly,
one may be interested in studying the heterogeneous effect on some particular
covariates instead of the whole set of covariates, for example, the effect of maternal
smoking during pregnancy on infant birth weight across mothers of different ages.
Moreover, Escanciano and Goh (2014) considered a nonparametric test of the
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specification of a linear conditional quantile function over a continuum of quantile
levels; they showed that the use of an orthogonal projection on the tangent space
of nuisance parameters at each quantile index can improve power and facilitate the
simulation of critical values via the application of a simple multiplier Bootstrap
procedure. Finally, Dong, Li, and Feng (2019) introduced a new approach to assess
the lack of fit for quantile regression models. They first transformed the lack-of-
fit tests for parametric quantile regression models into checking the equality of
two conditional distributions of covariates. Then, by applying some successful
two-sample test statistics in the literature, they constructed two tests to check the
lack of fit for low- and high-dimensional quantile regression models. Finally, to
calculate the p-values or critical values, they suggested adopting the wild Bootstrap
procedure.

The remainder of this paper is organized as follows: Section 2 introduces
the proposed test statistic and presents its asymptotic properties under the null
hypothesis. A Bootstrap procedure is suggested to approximate the finite-sample
null distribution of the proposed test statistic and the asymptotic validity of
the Bootstrap test is theoretically justified. Moreover, an extension to testing
heterogeneity in conditional QTEs for a continuum of quantile levels is considered.
In Sections 3 and 4, the finite sample properties of our test are investigated through
Monte Carlo simulations; then, an empirical application is considered. Section 5
concludes the paper. Finally, the key steps for proving the theorems can be found
in the Appendix, together with some auxiliary lemmas with their detailed proofs
given in the Supplementary Material.

2. TESTING HETEROGENEITY FOR CONDITIONAL QTE

2.1. Test Statistic

Let us first introduce the model framework considered in this paper. To this end, let
Di be the binary treatment variable of individual i in the population, where Di = 1
if individual i receives the treatment of interest, and Di = 0 otherwise. Using the
potential outcome framework initialized by Rubin (1974), define Yi(0) and Yi(1)

as the potential outcomes of individual i if that individual is in the control group
or in the treated group, respectively. Also, assume that Di and Yi are observed,
where Yi is the realized outcome, and Yi = (1−Di) ·Yi(0)+Di ·Yi(1). In addition,
suppose that Xi, an m-dimensional vector of pre-treatment variables for individual
i, is observed too. Throughout the paper, it is assumed that

{
Yi(0),Yi(1),Xi,Di

}
,

i = 1, . . . ,n, are independent and identically distributed (i.i.d.).
Let Zi be a d-dimensional sub-vector of Xi, where 1 ≤ d ≤ m. In particular,

d is much smaller than m in many applications. To simultaneously capture
heterogeneities across both distributions and individuals, Cai et al. (2021) and
Zhou et al. (2022) considered a PCQTE model, which is defined as

�τ(z) = q1,τ (z)−q0,τ (z), (1)
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where τ ∈ (0,1) is the quantile level and for j = 0 and 1, qj,τ (z) is the τ th conditional
quantile function of Yi(j) conditional on Zi = z. It is important to note that, for each
individual in the population, only one of Yi(0) and Yi(1) is observable, so that due
to the missing variable, the PCQTE parameter �τ(z) in (1) can not be identified
without further restrictions on the data-generating distribution. To identify the
functionals in (1), it is common in the treatment effect literature to assume that
assignment to treatment is unconfounded and that the probability of assignment
is bounded away from 0 and 1. Formally, the following assumption is imposed
throughout the paper.

Assumption 1. Assume:
(i) Unconfoundedness. Conditional on pre-treatment variables Xi, the potential

outcomes are jointly independent of the treatment variable Di, namely,(
Yi(0),Yi(1)

)

|� Di | Xi,

where |� indicates statistical independence.
(ii) Overlap. For all x ∈X , where X is the support of Xi, there exists some ε > 0

so that ε < p(x) := P(Di = 1|Xi = x) < 1− ε, where p(x) is called the propensity
score function.

Part (i) of Assumption 1 is often referred to as the (strongly) ignorable treatment
assignment, conditional independence assumption or selection on observables in
the econometrics and/or statistics literature. It requires that conditional on the
observed individual characteristics Xi, the treatment assignment Di is independent
of the potential outcomes Yi(0) and Yi(1). Although it is a strong assumption, it
has been extensively employed in many fields to study the effect of treatments or
programs, see, for example, Heckman et al. (1998), Dehejia and Wahba (1999),
Hirano, Imbens and Ridder (2003), Abadie and Imbens (2006, 2016), and Firpo
(2007). Part (ii) of Assumption 1 states that, for all values of Xi in the population,
both treatment assignment levels have a positive probability of occurrence. In
practice, however, there are often concerns about possible lack of common support.
A common approach to address this problem is to drop observations with a
propensity score close to zero or one, and focus on the treatment effect in the sub-
population with a propensity score bounded away from zero and one (see Crump
et al., 2009 for more details).

Under Assumption 1, Cai et al. (2021) showed that the PCQTE function �τ(z)
is nonparametrically identified and further proposed a semiparametric estimation
procedure to estimate �τ(z). The reader is referred to Cai et al. (2021) for more
details. As discussed in the introduction, our interest is to investigate whether
there exists heterogeneity in QTEs across different sub-populations defined by
covariates of interest. To this end, the following hypothesis testing problem is
investigated:

H0 : �τ(z) = δτ for all z ∈ Z versus H1 : �τ(z) �= δτ for some z ∈ Z (2)
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for some constant δτ , where Z is the support of Zi. Under the null hypothesis, the
partially conditional quantile effect of the treatment is a constant and under the
alternative, the PCQTE varies across different sub-populations defined by Zi.

In order to test whether the hypothesis testing problem formulated in (2) holds,
a test statistic is constructed based on the Cramér–von Mises criterion as follows.
Let

J =
∫ (

�τ(z)− δτ

)2
ω(z)dz ≥ 0,

where ω(z) is a pre-specified strictly positive and integrable weighting function,
and the integral is taken over Z . Note that J = 0 if and only if the null hypothesis
in (2) is true. It is easy to observe that in order to construct a feasible test statistic,
one should first estimate the unknown parameters �τ(z) and δτ .

To this end, we first consider using the Series Logit Estimator (SLE) to
estimate p(x) as in Hirano, Imbens, and Ridder (2003). More specifically, let κ =
(κ1, . . . ,κm)′ ∈ N

m
0 be an m-dimensional vector of nonnegative integers and define

|κ| =
m∑

i=1
κi. Let {κ(�)}∞�=1 be a sequence that includes all distinct vectors in N

m
0 and

satisfies the condition that |κ(�)| is nondecreasing in �. For x = (x1, . . . ,xm) ∈ R
m,

let xκ denote the power function
m∏

j=1
x
κj
j . We further define RL(x) = (xκ(1), . . . ,xκ(L))′

as an L-vector of power functions for L > 0. Then, the SLE for p(x) is

p̂n(x) = g
(
RL(x)′π̂L

)
with g(u) = exp(u)/(1+ exp(u)) and

π̂L = argmax
π

n∑
i=1

{
Di lng

(
RL(Xi)

′π
)+ (1−Di) ln

[
1−g

(
RL(Xi)

′π
)]}

.

Consequently, the proposed estimate for �τ(z) is

�̂τ (z) = q̂1,τ (z)− q̂0,τ (z), (3)

where, for j = 0 and 1,

q̂j,τ (z) = inf
{
y : F̂n,j(y|z) ≥ τ

}
with F̂n,j(y|z) =

n∑
i=1

Kh(Zi − z)Ŵn,j(Xi,Di)I{Yi ≤ y}/ n∑
i=1

Kh(Zi − z)Ŵn,j(Xi,Di),

Ŵn,0(Xi,Di) = (1 − Di)/[1 − p̂n(Xi)], Ŵn,1(Xi,Di) = Di/̂pn(Xi), and Kh(z) =
K(z/h)/hd. Here, K(·) is a kernel function and h is the bandwidth parameter.
Furthermore, the proposed estimator for δτ is given by

δ̂τ = 1

n

n∑
i=1

�̂τ (Zi). (4)
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Finally, a test statistic using the sample analog of J is defined by

Jn =
∫ (

�̂τ (z)− δ̂τ

)2
ω(z)dz.

It is well-known that the accuracy of the kernel estimator q̂j,τ (z) might suffer from
boundary effects. To overcome this difficulty, one could test H0 : �τ(z) = δτ over
a trimmed subset of Z . In this case, we can use a nonnegative weighting function
ω(z) that is strictly positive only for the trimmed subset of Z .

Remark 1. If Z is taken to be X in (2), then the hypothesis testing problem
in (2) collapses into testing whether the conditional QTE is a constant for all
values of the covariates. Unlike our setting, Crump et al. (2008) tested whether
the conditional ATE is a constant or zero for all values of the covariates. Note that
even if the conditional ATE is equal to a constant, the conditional QTE may not be
a constant. Consequently, our paper complements and extends Crump et al. (2008)
by testing whether there exists treatment effect heterogeneity across different sub-
populations defined by a subset of the covariates.

Remark 2. Besides the testing issues displayed in (2), one may be interested in
testing

H∗
0 : �τ(z)− δτ ≤ 0 (or ≥ 0) for all z ∈ Z .

When δτ ≡ 0 and H∗
0 holds for all τ ’s, it leads to stochastic dominance between

Y(0) and Y(1) conditional on Z = z for all z ∈ Z . Recently, Lee, Song, and
Whang (2018) developed a general method for testing inequality restrictions on
nonparametric functions using a one-sided version of Lp functionals of kernel-
type estimators, which can be extended to test H∗

0 for a given δτ . Note that testing
�τ(z) − δτ ≤ 0 and �τ(z) − δτ ≥ 0 for all z ∈ Z at the same time is equivalent
to testing (2) when δτ is known. However, δτ is unknown in our testing problem,
and needs to be estimated. In addition, when introducing the inverse probability
weighting method to correct the bias introduced by the unobserved potential
outcomes in Lee et al.’s (2018) testing method, the influence of the convergence
rate of the estimated propensity score needs to be carefully examined. Such a topic
is beyond the scope of this paper but certainly worth pursuing in future research.

2.2. Limiting Distribution of Test Statistic Jn

This subsection is devoted to investigating the asymptotic properties of the pro-
posed test statistic Jn. Before studying the asymptotic properties of the proposed
test statistic, the following technical assumptions are needed.

Assumption 2. Xi has a compact supportX and the density function of Xi, fX(x),
satisfies infx∈X fX(x) ≥ c for some c > 0. Furthermore, the density function of Zi,
fZ(z) is twice continuously differentiable in Z .
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Assumption 3. (i) The conditional density function fY(j)|X(y|x) is continuous and
bounded on the support of Yi(j) and Xi for j = 0 and 1. (ii) The conditional density
function fY(j)|Z(y|z) is continuous and uniformly bounded away from zero for all
z ∈Z and j = 0,1. It is twice differentiable with respect to z, and its first derivative
with respect to y is continuous and bounded on the support of Yi(j) and Zi.

Assumption 4. For j = 0 and 1, the conditional quantile function qj,τ (z)
is continuously differentiable on the support of Z with bounded second-order
derivatives.

Assumption 5. (i) The kernel function K(u) is a symmetric, continuously
differential probability density function with compact support, say, [−1,1]. (ii)
nh2d/(lnn)2 → ∞ and nhd+4/ lnn → 0 as n → 0.

Assumption 6. Suppose the kernel bandwidth is taken as h = c · n−η, where c
is a positive constant and 1/(d + 4) < η < 1/(2d). The propensity score p(x) is
continuously differentiable of order s >

[
6/(ηd)−1

]
m, and the SLE of p(x) uses

a power series with L = a ·nν for some a > 0 and ν ∈ [ m
s+m,

ηd
6

)
.

The restriction imposed on the distribution of Xi in Assumption 2 is commonly
used in the literature on treatment effect evaluation (see Hirano et al., 2003; Abadie
and Imbens, 2006, 2016; Firpo, 2007; Abrevaya et al., 2015, among others).
Assumption 3 guarantees that the conditional quantile function qj,τ (z) is unique
and well defined and the smoothness conditions imposed are easily satisfied in
practice. The smoothness conditions on the conditional quantile function qj,τ (z)
for j = 0 and 1 imposed in Assumption 4 are also easily satisfied in practice.
Assumption 5 gives conditions for the kernel and its bandwidth. It requires
nhd+4/ lnn → 0 to remove higher-order terms in the bias of the asymptotic null
distribution established in Theorem 1. Note that Assumption 5(ii) requires that
the dimension of the covariate of interest, Zi, cannot exceed 3. Although this is a
stringent condition, it is sufficient in many applications. Indeed, as pointed out by
Abrevaya et al. (2015), the case of d = 1 is the most relevant case in practice.
Finally, Assumption 6 requires the propensity score function to be sufficiently
smooth, so that the SLE of p(x) converges to the true propensity score function
at a fast enough rate. Note that the condition s >

[
6/(ηd)−1

]
m in Assumption 6

guarantees that ν ∈ [ m
s+m,

ηd
6

)
is a non-empty set.

Under the assumptions listed above, we now can state our main result on
the asymptotic properties of the proposed test statistic Jn and its proof can
be found in the Appendix. For easy presentation, first, define some notations

as follows. Let μ0,τ (z;u) = E
{[

I{Yi(0) ≤ q0,τ (u)} − τ
]2

/[1 − p(Xi)]
∣∣Zi = z

}
and μ1,τ (z;u) = E

{[
I{Yi(1) ≤ q1,τ (u)} − τ

]2
/p(Xi)

∣∣Zi = z
}

. Then, we have the

following asymptotic results.

Theorem 1. Suppose that Assumptions 1–6 are satisfied. Then, under the null
hypothesis H0 in (2), one has
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nhd/2(Jn −μJ
) D−→ N (0,σ 2

J ),

where

μJ = ν0(K)

nhd

∫ {
μ1,τ (z;z)

f 2
Y(1)|Z(q1,τ (z)|z) + μ0,τ (z;z)

f 2
Y(0)|Z(q0,τ (z)|z)

}
ω(z)

fZ(z)
dz

with ν0(K) = ∫
K2(u)du and

σ 2
J = 2

∫ (∫
K(t)K(t + s)dt

)2
ds
∫ {

μ1,τ (u;u)

f 2
Y(1)|Z(q1,τ (u)|u)

+ μ0,τ (u;u)

f 2
Y(0)|Z(q0,τ (u)|u)

}2
ω2(u)

f 2
Z (u)

du,

and under the alternative hypothesis H1,

nhd/2
(
Jn −μJ

) p−→ +∞. (5)

Following Theorem 1, an asymptotic significance level α0 test is to reject H0

if nhd/2
(
Jn − μJ

)
/σJ > Cα0 , where Cα0 is the α0 upper-quantile of the standard

normal distribution. Clearly, (5) implies that the proposed test is consistent. To the
best of our knowledge, the above asymptotic result for testing nonparametric QTE
is new in the literature.

Remark 3. The testing setting in (2) can be generalized to the following testing
problem:

H0 : �τ(z) = �τ,0(z,θτ ) versus H1 : �τ(z) �= �τ,0(z,θτ ), (6)

where �τ,0(z,θτ ) is a known function with unknown parameter θτ . The purpose of
the test in (6) is to see whether �τ(z) has a particular parametric form, say, a linear
function as in Tang et al. (2021). We can extend the proposed test statistic Jn to this
case by replacing δ̂τ with �τ,0(z,θ̂n,τ ), where θ̂n,τ is an estimator of θτ . It is easy
to show that Jn has the same asymptotic null distribution if supz∈Z |�τ(z,θ̂n,τ )−
�τ,0(z,θτ )| = op

(
n−1/2h−d/4

)
.

In addition to testing the null hypothesis against fixed alternatives, it is of interest
to consider testing power for local departures from the null. Suppose that δτ is
estimated using (4). We focus on a set of Pitman alternatives represented by

H1n : �τ(z) = δτ +ρn · ζ(z), (7)

where ρn = n−1/2h−d/4 → 0 as n → ∞ and the function ζ(z) satisfies∫
ζ(z)fZ(z)dz = 0 and 0 <

∫
ζ 2(z)ω(z)dz < ∞.

Note that the requirement
∫

ζ(z)fZ(z)dz = 0, or equivalently,
∫

�τ(z)fZ(z)dz = δτ ,
for the local alternatives depends on the estimator δ̂τ used in the test statistic Jn.
We require δ̂τ to converge to δτ with a rate faster than ρn under the local alternative
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H1n. When δ̂τ = 1
n

∑n
i=1 �̂τ (Zi), we have

δ̂τ − δτ = 1

n

n∑
i=1

�̂τ (Zi)−
∫

�τ(z)fZ(z)dz

=
[

1

n

n∑
i=1

�̂τ (Zi)− 1

n

n∑
i=1

�τ(Zi)

]
+
[

1

n

n∑
i=1

�τ(Zi)−
∫

�τ(z)fZ(z)dz

]

=
[

1

n

n∑
i=1

�̂τ (Zi)− 1

n

n∑
i=1

�τ(Zi)

]
+Op(1/

√
n)

under H1n, which is shown to be op(ρn) in the proof of Theorem 1. The following
theorem shows that our test can distinguish alternatives H1n that get closer to H0

at rate n−1/2h−d/4 while maintaining a constant power level.

Theorem 2. Under Assumptions 1–6, suppose that the local alternative (7)
converges to the null in the sense that ρn = n−1/2h−d/4. Then,

nhd/2

σJ

(
Jn −μJ

) D−→ N
(
σ−1

J

∫
ζ 2(z)ω(z)dz,1

)
.

Clearly, it follows from Theorem 2 that under the local alternative (7),

P
(

nhd/2
(
Jn −μJ

)
/σJ > Cα0

)
→ 1−�

(
Cα0 −σ−1

J

∫
ζ 2(z)ω(z)dz

)
,

where � is the cumulative distribution function of the standard normal distribution.
This indicates that the testing power for local alternative (7) converges to a constant
greater than the significance level α0.

From Theorem 2, we can see that the choice of the weight function ω(z) would
affect the testing power. However, the “optimal” weight function to maximize
the local power depends on the unknown function ζ(z). In practice, there could
be many possible options for the weight function. A simple choice is to use

constant weight for all z ∈ Z . Another choice is letting ω(z) =
{

μ1,τ (z;z)

f 2
Y(1)|Z (q1,τ (z)|z) +

μ0,τ (z;z)

f 2
Y(0)|Z (q0,τ (z)|z)

}−1

fZ(z), which is proportional to the inverse of the asymptotic

variance of �̂τ (z) given in Cai et al. (2021). Intuitively, such an inverse-variance
weight function avoids large statistical uncertainty by assigning a small weight to
z, where �τ(z) is estimated imprecisely. It can be seen from Theorem 1 that if the
inverse-variance weight function is used, the asymptotic null distribution of the test
statistic Jn is free of nuisance parameters. However, to employ the inverse-variance
weight function, one would first need a consistent estimator of the weight function
at a uniform rate of op(hd/2).
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2.3. A Nonparametric Bootstrap Test

Theorem 1 provides the asymptotic null distribution of the test Jn. Consequently,
one can perform tests for H0 by comparing the value of Jn to its asymptotic critical
value. However, as expected, Theorem 1 can not be used directly for an accurate
calculation of critical values. This is because the test based on the asymptotic
distribution might be sensitive to the choice of bandwidth h and the consistent
estimation of μJ and σ 2

J in small samples. In particular, it is well known in
the quantile regression literature that the consistent estimation of the conditional
density of Yi(j) given Zi involved in μJ and σ 2

J is not an easy task (see, for example,
Koenker and Xiao, 2004; Cai and Xu, 2008). To overcome this difficulty, following
Chen, Linton, and Van Keilegom (2003) and Firpo, Galvao, and Song (2017), a
nonparametric Bootstrap procedure is proposed to determine the p-value for Jn.
Other types of Bootstrap methods such as the multiplier Bootstrap in Escanciano
and Goh (2014) and the wild Bootstrap in Dong et al. (2019) can be used, but we
make this choice for simplicity. The method that we use involves the following
steps:

(1) Generate the Bootstrap sample by drawing samples from the original sample{
(Yi,Xi, Di)

}n

i=1 with replacement, denoted by
{
(Y∗

i ,X
∗
i ,D

∗
i )
}n

i=1.
(2) Compute the Bootstrap test statistic

J∗
n =

∫ ((
�̂∗

τ (z)− δ̂∗
τ

)− (�̂τ (z)− δ̂τ

))2
ω(z)dz,

where �̂∗
τ (z) = q̂∗

1,τ (z)− q̂∗
0,τ (z) and δ̂∗

τ =∑n
i=1 �̂∗

τ (Z
∗
i )/n are estimated using

the Bootstrap sample
{
(Y∗

i ,X
∗
i ,D

∗
i )
}n

i=1, and �̂τ (z) and δ̂τ = ∑n
i=1 �̂τ (Zi)/n

are computed based on the original data.
(3) Repeat steps (1) and (2) a large number of times, say, B times, to obtain

{J∗(j)
n }B

j=1.
(4) Reject H0 at significance level α0 if Jn exceeds the (1−α0)th sample quantile

of {J∗(j)
n }B

j=1.

Define J̃∗
n = nhd/2(J∗

n −μJ)
/
σJ . The following theorem justifies the asymptotic

validity of the Bootstrap test with its proof given in the Appendix.

Theorem 3. Suppose the same conditions as in Theorem 1 are satisfied. Then
under H0 or H1, we have

sup
y∈R

∣∣∣P(̃J∗
n ≤ y

∣∣ {Yi,Xi,Di}n
i=1

)−�(y)
∣∣∣= op(1),

where �(·) is the cumulative distribution function of a standard normal distribu-
tion.

Theorem 3 states that the Bootstrap statistic J̃∗
n = nhd/2(J∗

n −μJ)
/
σJ converges

toN (0,1) in distribution in probability. It is important to note that Theorem 3 holds
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true whether or not the null hypothesis is true. Therefore, when the null hypothesis
is true, the Bootstrap test procedure leads to an asymptotically correct size,
because conditional on the data, the Bootstrap statistic J∗

n has the same asymptotic
distribution as Jn. When the null hypothesis is false, the Bootstrap procedure leads
to a consistent test. This is because the test statistic nhd/2

(
Jn −μJ

)
/σJ diverges to

+∞ as the sample size n goes to infinity, as shown in Theorem 1, whereas the
Bootstrap critical value is still finite.

Remark 4. It is worth stressing that Theorems 1–3 are established under the
case where the propensity score function is estimated using SLE. However, it
is generally recognized that in the presence of many covariates, nonparametric
estimation of the propensity score is infeasible in practice due to the curse of
dimensionality. To overcome the curse of dimensionality, practitioners commonly
adopt flexible parametric model for the unknown propensity score by assuming
that

p(x) = P(D = 1|X = x) = p(x;ϑ),

where ϑ is a finite-dimensional parameter. In general, the unknown parameter ϑ

can be estimated using the maximum likelihood estimate (MLE), denoted by ϑ̂n.
Consequently, by using similar arguments, it can be shown that Theorems 1–3
hold under Assumptions 1–5 and the condition that supx∈X

∣∣p(x;ϑ̂n) − p(x)
∣∣ =

Op(n−1/2). In particular, in the real data example section, a parametric model is
used to estimate the propensity score function because many covariates need to be
controlled to satisfy the unconfoundedness condition.

2.4. An Extension to Testing Heterogeneity for a Continuum of
Quantile Levels

The procedure developed above can be used to test whether heterogeneity exists
in QTEs across different sub-populations defined by covariates of interest for a
specific quantile level τ . In some applications, it may be of interest to test whether
heterogeneity exists in conditional QTEs for a continuum of quantile levels.2 To
this end, this section extends our testing approach to the case of a continuum of
quantile levels. The following hypothesis testing problem is investigated:

H0 : �τ(z) = δτ for all z ∈ Z and τ ∈ A versus H1 :

�τ(z) �= δτ for some z ∈ Z or τ ∈ A, (8)

where A is a compact subset of (0,1). Similarly, to test whether or not the
hypothesis testing problem formulated in (8) holds, we construct the test statistic
based on the Cramér–von Mises criterion, defined by

Sn =
∫
A

∫ (
�̂τ (z)− δ̂τ

)2
ω(z,τ )dzdτ,

2The authors thank one of the anonymous referees for raising this interesting topic.
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where ω(z,τ ) is a pre-specified strictly positive and integrable weighting function,
and �̂τ (z) and δ̂τ are the estimators of �τ(z) and δτ defined in (3) and (4),
respectively.

To present the asymptotic properties of the proposed test statistic Sn, some
additional notations are needed. Define

λ1,τ1,τ2(z;u,v) = E
[ 1

p(Xi)
ϕτ1(Yi(1);q1,τ1(u))ϕτ2(Yi(1);q1,τ2(v))

∣∣Zi = z
]
,

and

λ0,τ1,τ2(z;u,v) = E
[ 1

1−p(Xi)
ϕτ1(Yi(0);q0,τ1(u))ϕτ2(Yi(0);q0,τ2(v))

∣∣Zi = z
]
,

where ϕτ (y;θ) = I{y ≤ θ}−τ . The following theorem summarizes the asymptotics
of the test statistic Sn.

Theorem 4. Suppose that Assumptions 1–6 are satisfied. Then, under the null
hypothesis H0 in (8), one has

nhd/2(Sn −μS
) D−→ N (0,σ 2

S ),

where

μS = 1

nhd

∫
K2(s)ds ·

∫
A

∫ {
μ1,τ (z;z)

f 2
Y(1)|Z(q1,τ (z)|z) + μ0,τ (z;z)

f 2
Y(0)|Z(q0,τ (z)|z)

}
ω(z,τ )

fZ(z)
dzdτ,

and

σ 2
S = 2

∫ (∫
K(t)K(t + s)dt

)2
ds
∫
A

∫
A

∫ {
λ1,τ1,τ2(u;u,u)

fY(1)|Z(q1,τ1(u)|u)fY(1)|Z(q1,τ2(u)|u)

+ λ0,τ1,τ2(u;u,u)

fY(0)|Z(q0,τ1(u)|u)fY(0)|Z(q0,τ2(u)|u)

}2
ω(u,τ1)ω(u,τ2)

f 2
Z (u)

dudτ1dτ2,

and under the alternative hypothesis H1 in (8),

nhd/2
(
Sn −μS

) p−→ +∞.

To use the test statistic Sn to perform tests for H0 in (8), one needs to calculate its
asymptotic critical value. However, it is difficult to accurately calculate the critical
values. Similar to the nonparametric Bootstrap procedure developed in Section
2.3, we propose the following nonparametric Bootstrap procedure to determine
the p-value for Sn, which involves the following steps.

(1) Generate the Bootstrap sample by drawing samples from the original sample{
(Yi,Xi, Di)

}n

i=1 with replacement, denoted by
{
(Y∗

i ,X
∗
i ,D

∗
i )
}n

i=1.
(2) Compute the Bootstrap test statistic

S∗
n =

∫
A

∫ ((
�̂∗

τ (z)− δ̂∗
τ

)− (�̂τ (z)− δ̂τ

))2
ω(z,τ )dzdτ,
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where �̂∗
τ (z) and δ̂∗

τ = ∑n
i=1 �̂∗

τ (Z
∗
i )/n are estimated using the Bootstrap

sample
{
(Y∗

i ,X
∗
i ,D

∗
i )
}n

i=1, and �̂τ (z) and δ̂τ = ∑n
i=1 �̂τ (Zi)/n are computed

based on the original data.
(3) Repeat steps (1) and (2) B times to obtain {S∗(j)

n }B
j=1.

(4) Reject H0 at significance level α0 if Sn exceeds the (1−α0)th sample quantile
of {S∗(j)

n }B
j=1.

3. MONTE CARLO STUDIES

In this section, we investigate the finite sample performance of the proposed tests
Jn and Sn by means of simulation studies. The goal is to assess the size and power
of the proposed test for moderate sample sizes in various scenarios. The scenarios
examined differ in the order of the power series used in estimating p(x) and the
choice of the bandwidth parameter h. In these experiments, we simply use the
constant weight function ω(z) ≡ 1 or ω(z,τ ) ≡ 1 in the test statistics Jn or Sn,
respectively.

Let the data generating process (DGP) be:

Y(0) = γ0

√
U0X2 and Y(1) = λ ·ρn ·X1 +γ1

√
U1X2,

where ρn = n−1/2h−1/4, γ0 = 1.0, γ1 = 1.5, U0 and U1 independently follow the
U[0,1] distribution, X1 and X2 are independently generated from U[−1,1] and
Beta(3,1), respectively, and the propensity score function is

P(D = 1|X1,X2) = exp{−0.5+X1 +X2}
1+ exp{−0.5+X1 +X2} .

Finally, the conditional variable Z is taken to be X1. Under this setting, by
straightforward calculations, the conditional quantile function for Y(j) for j = 0
and 1, conditional on Z = z, is given by q0,τ (z) = γ0aτ and q1,τ (z) = λρn z+γ1aτ ,
respectively, where aτ is the unique solution of equation −2a3 +3a2 −τ = 0 within
the interval (0,1). Therefore, the PCQTE is

�τ(z) = λρn z+ (γ1 −γ0)aτ,

where λ in the above equation takes different values in the experiment so that we
can investigate empirical sizes and local power curves of the test statistic Jn indexed
by λ. It is easy to see that �τ(z) is equal to a constant only when λ = 0, which
corresponds to the null hypothesis. The Bootstrap procedure outlined in Sections
2.3 is used to determine the critical values. The number of Bootstrap replications is
set as B = 599. To examine the size and local power performance of the test statistic
Jn, three different sample sizes n = 400, n = 800 and n = 1,600 are considered. To
check the sensitivity of the test with respect to different values of the bandwidth h,
motivated by Assumption 1, h = cn−1/3 is used with c = 0.5, 1.0, and 2.0. Linear
and quadratic power series are used in the SLE to estimate p(x). It should be noted
that the model for the propensity score p(x) is correctly specified when either a
linear power series or a quadratic power series is used in the SLE, except that the
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Table 1. Empirical sizes of Jn and Sn (nominal size α = 5%, linear power series
specification for estimating p(x)).

h = 0.5n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75 τ ∈ [0.1,0.9]

400 0.030 0.034 0.031 0.028

800 0.040 0.037 0.045 0.035

1,600 0.047 0.053 0.044 0.043

h = 1.0n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75 τ ∈ [0.1,0.9]

400 0.043 0.043 0.045 0.041

800 0.058 0.052 0.055 0.056

1,600 0.044 0.053 0.053 0.052

h = 2.0n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75 τ ∈ [0.1,0.9]

400 0.034 0.036 0.038 0.035

800 0.056 0.056 0.054 0.042

1,600 0.053 0.051 0.053 0.054

quadratic power series contains redundant terms. Finally, three quantiles levels,
namely, τ = 0.25, 0.5 and τ = 0.75, are considered. The empirical sizes and local
powers of the test Jn are computed using 1,000 simulations under the nominal size
α = 5%, respectively.

The empirical sizes of the test Jn based on Bootstrap critical values with p(x)
estimated using linear power series and quadratic power series are reported in
Tables 1 and 2, respectively. It can be seen from Tables 1 and 2 that the empirical
sizes converge to their nominal sizes as the sample size n increases. In particular,
when the sample size increases to 1,600, the test Jn performs well in all cases
considered. Also, one can observe that the choice of the bandwidth h and the power
series seems to have little influence on empirical sizes. In addition, the empirical
sizes of the test Sn based on Bootstrap critical values for τ ∈ [0.1,0.9] are presented
in the last column in Tables 1 and 2, respectively. Similarly, the empirical sizes
converge to their nominal sizes as the sample size n increases; the choice of the
bandwidth h and the power series seems to have little influence on empirical sizes.

Next, Figures 1–6 display the estimated local power curves with nominal size
α = 5% of the test Jn for different quantile levels and different choices of the
bandwidth and the power series. In general, the test Jn is reasonably powerful in
detecting deviation from the null hypothesis in all cases considered. Specifically, it
can be seen from these figures that the test Jn has power against local alternatives
converging to the null at the rate of ρn = n−1/2h−1/4. Moreover, it is not surprising
that the power increases quickly with the value of λ increasing. These figures also
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Table 2. Empirical sizes of Jn and Sn (nominal size α = 5%, quadratic power
series specification for estimating p(x)).

h = 0.5n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75 τ ∈ [0.1,0.9]

400 0.030 0.032 0.030 0.028

800 0.035 0.037 0.035 0.034

1,600 0.045 0.046 0.042 0.041

h = 1.0n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75 τ ∈ [0.1,0.9]

400 0.038 0.040 0.035 0.032

800 0.055 0.056 0.057 0.043

1,600 0.053 0.052 0.054 0.054

h = 2.0n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75 τ ∈ [0.1,0.9]

400 0.037 0.038 0.032 0.033

800 0.057 0.058 0.060 0.055

1,600 0.052 0.052 0.054 0.053

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

�

E
m

pi
ric

al
 R

ej
ec

tio
n 

R
at

e n = 400
n = 800
n = 1600

� = 0.25

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

�

E
m

pi
ric

al
 R

ej
ec

tio
n 

R
at

e n = 400
n = 800
n = 1600

� = 0.50

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

�

E
m

pi
ric

al
 R

ej
ec

tio
n 

R
at

e n = 400
n = 800
n = 1600

� = 0.75

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

�

E
m

pi
ric

al
 R

ej
ec

tio
n 

R
at

e n = 400
n = 800
n = 1600

�����0.1��0.9�

Figure 1. Local power curves for test statistic Jn and Sn (lower right panel) with nominal size α = 5%,
ρn = n−1/2h−1/4, bandwidth h = 0.5n−1/3 and linear power series specification for estimating p(x).

https://doi.org/10.1017/S0266466624000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000045


A NONPARAMETRIC TEST OF HETEROGENEITY IN CQTE 17

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

�

E
m

pi
ric

al
 R

ej
ec

tio
n 

R
at

e n = 400
n = 800
n = 1600

� = 0.25

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

�

E
m

pi
ric

al
 R

ej
ec

tio
n 

R
at

e n = 400
n = 800
n = 1600

� = 0.50

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

�

E
m

pi
ric

al
 R

ej
ec

tio
n 

R
at

e n = 400
n = 800
n = 1600

� = 0.75

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

�

E
m

pi
ric

al
 R

ej
ec

tio
n 

R
at

e n = 400
n = 800
n = 1600

�����0.1��0.9�

Figure 2. Local power curves for test statistic Jn and Sn (lower right panel) with nominal size α = 5%,
ρn = n−1/2h−1/4, bandwidth h = n−1/3 and linear power series specification for estimating p(x).
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Figure 3. Local power curves for test statistic Jn and Sn (lower right panel) with nominal size α = 5%,
ρn = n−1/2h−1/4, bandwidth h = 2n−1/3 and linear power series specification for estimating p(x).
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Figure 4. Local power curves for test statistic Jn and Sn (lower right panel) with nominal size α = 5%,
ρn = n−1/2h−1/4, bandwidth h = 0.5n−1/3 and quadratic power series specification for estimating p(x).
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Figure 5. Local power curves for test statistic Jn and Sn (lower right panel) with nominal size α = 5%,
ρn = n−1/2h−1/4, bandwidth h = n−1/3 and quadratic power series specification for estimating p(x).
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Figure 6. Local power curves for test statistic Jn and Sn (lower right panel) with nominal size α = 5%,
ρn = n−1/2h−1/4, bandwidth h = 2n−1/3 and quadratic power series specification for estimating p(x).

show that the bandwidth h in a certain range and the power series considered seem
to have little impact on the power of the test. Finally, the estimated local power
curves of the test Sn for τ ∈ [0.1,0.9] and different choices of the bandwidth and
the power series are presented in the lower right panels of Figures 1–6. Similar
conclusions can be made from these figures.

4. A REAL DATA EXAMPLE

The proposed testing approach is applied to investigate whether heterogeneity
exists for the QTE of maternal smoking during pregnancy on infant birth weight
across different age groups of mothers. To this end, we use the same dataset as in
Abrevaya et al. (2015), composed of vital statistics collected by the North Carolina
State Center Health Services between 1988 and 2002, accessible through the Odum
Institute at the University of North Carolina. As in Abrevaya et al. (2015), our
sample is limited to first-time mothers; as is routine in the literature, we treat
blacks and whites as separate populations throughout. The number of observations
is 157,989 for the black group and 433,558 for the white group.

Low infant birth weight is associated with poor outcomes in health and human
capital development throughout life (Black, Devereux, and Salvanes, 2007;
Almond and Currie, 2011). Maternal smoking during pregnancy is considered
to be the most important preventable cause of low birth weight (see Kramer, 1987
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for more discussion). Recently, there have been several studies using program
evaluation approaches to explore how the effect of maternal smoking during
pregnancy on infant birth weight varies across the mothers’ ages. In particular,
Abrevaya et al. (2015) and Lee et al. (2017) considered the ATE of maternal
smoking on infant birth weight conditional on different mothers’ ages, and found
different degrees of heterogeneity by age. The main qualitative finding in Abrevaya
et al. (2015) and Lee et al. (2017) is that smoking has a more severe impact at
higher ages. In contrast to Abrevaya et al. (2015) and Lee et al. (2017), Cai et al.
(2021) considered the QTE of mothers’ smoking status during pregnancy on infant
birth weight conditional on different mothers’ ages, and found that the QTEs for
the quantile levels considered seemed to change significantly over age for whites
but not for blacks. Motivated by the estimation results in Cai et al. (2021), it is
interesting to test whether or not the partially conditional QTEs, for whites and
blacks, change over mothers’ ages. Therefore, in this section, we test whether the
QTE of maternal smoking on infant birth weight varies across different age groups
of mothers, using the testing approach proposed in Section 2.

Here, the conditional variable Z is the mother’s age. In addition, the treatment
variable D is a binary variable which takes the value 1 if the mother smokes, and 0
otherwise. The outcome variable of interest Y is the infant birth weight measured in
grams. Also, in this example, Y(0) denotes the infant birth weight for the untreated
(non-smoking) group and Y(1) stands for the infant birth weight for the treated
(smoking) group.

To explore the treatment effect heterogeneity of mother’s smoking on infant
birth weight using the approach in Section 2, one needs to find certain baseline
covariates such that the unconfoundedness assumption holds true, that is, the
potential infant birth weight outcomes are independent of the smoking decision
conditional on the baseline covariates. In this paper, we use the same set of
covariates X as in Abrevaya et al. (2015), which includes the mother’s age,
education, month of first prenatal visit, number of prenatal visits, and indicators for
the baby’s gender, the mother’s marital status, whether the father’s age is missing,
gestational diabetes, hypertension, amniocentesis, ultra sound exams, previous
(terminated) pregnancies, and alcohol use (see Abrevaya et al., 2015 for a detailed
discussion).

Another problem when using our approach is how to estimate the unknown
propensity score function p(x). Following Abrevaya et al. (2015) and Cai et al.
(2021), we use a logistic model to estimate the propensity score function p(x). The
explanatory variables used in the logistic model consist of all the elements of X,
the square of the mother’s age, and the interaction terms between the mother’s age
and all other elements of X. Finally, the partially conditional QTE is estimated for
mothers between 20 and 30 years of age, for both whites and blacks. Figure 7 plots
the estimated PCQTEs for whites and blacks for three quantile levels τ = 0.10,
τ = 0.25, and τ = 0.50, together with the estimated unconditional 0.5-QTEs and
their 95% confidence intervals. It should be noted that the 0.5-QTE could be
different from δ0.5 in the testing problem (2). It can be observed that, as the mother’s
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Figure 7. Estimated PCQTEs for whites and blacks for three quantile levels τ = 0.10, τ = 0.25, and
τ = 0.50, together with the estimated unconditional 0.5-QTEs and their 95% confidence intervals.

Table 3. Test results for testing if PCQTE function
changes over mother’s age.

Quantile level Test statistic (Jn or Sn) Bootstrap p-values

τ Whites Blacks

0.10 0.022 0.573

0.25 0.002 0.307

0.50 0.033 0.151

0.75 0.035 0.474

0.90 0.042 0.326

[0.1, 0.9] 0.044 0.357

age increases, the PCQTEs of maternal smoking on infant birth weight decrease
quickly for whites, while the PCQTEs for blacks decrease slowly, compared to
the width of the 95% confidence intervals of the corresponding unconditional 0.5-
QTEs.

Table 3 displays the results of testing whether the partially conditional QTE
changes over mother’s age. Table 3 clearly shows that one should reject the null
hypothesis for whites for all quantiles considered at 5%. This means that PCQTEs
do change over mother’s age for all quantile levels considered at the significance
level α = 5% for whites. However, for blacks, the change in the PCQTE over
mother’s age is slight and statistically insignificant for all quantile levels. These
testing results support the empirical findings in Cai et al. (2021). As pointed out
by Yang et al. (2014), this phenomenon may occur through various interconnected
mechanisms. Blacks are exposed to an environment with many risk factors for
smoking, such as job loss and economic hardship. Finally, we use the proposed
test statistic Sn to test whether the partially conditional QTE changes over mother’s
age for τ ∈ [0.1,0.9]. The testing results are displayed in the last row in Table 3.
The same conclusion can be made.
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5. CONCLUSION

Motivated by the question of whether heterogeneity exists in the QTEs conditional
on mothers’ ages for both whites and blacks, we propose a nonparametric versus
constant test, which is applied to assess whether there exist heterogeneously
distributional effects for an intervention on an outcome of interest across differ-
ent sub-populations defined by covariates of interest. To test whether the null
hypotheses of interest hold true, a consistent test statistic is proposed based on
the Cramér–von Mises type criterion. To the best of our knowledge, this test is
novel in the QTE literature. Under some regularity conditions, we establish the
asymptotic distribution of the proposed test statistic under the null hypothesis
and its consistency against fixed alternatives. We also study the power of our
test against a sequence of local alternatives. Moreover, we propose a Bootstrap
procedure to approximate the finite-sample null distribution of the proposed test
statistic. Furthermore, the asymptotic validity of the proposed Bootstrap test is
established.

Finally, some extensions of our paper can be considered. The first is the case
where the number of controlling variables is large. For this case, the estimated
propensity score converges at a slower rate, even when a penalized method is
used in estimation. The so-called double machine learning method developed by
Belloni et al. (2017) may be used to estimate the PCQTE and establish asymptotic
properties of the test statistic. Second, one might be interested in extending our
results to time series cases, which have potential in a wide range of applications.
Such extensions can be warranted as future research.

APPENDIX. MATHEMATICAL PROOFS

Note that this appendix provides some key steps for proving Theorems 1–4. Some auxiliary
lemmas with their detailed proofs, as well as some notations, are given in the Supplementary
Material.

Proof of Theorem 1. Let �τ (z) be the partially conditional QTE conditional on Zi = z.
Define δ̄τ = ∫

�τ (z)fZ(z)dz. Then,

Jn =
∫ (

�̂τ (z)− δ̂τ

)2
ω(z)dz =

∫ [(
�̂τ (z)−�τ (z)

)
+
(
δ̄τ − δ̂τ

)
+
(
�τ (z)− δ̄τ

)]2
ω(z)dz,

where δ̂τ = 1
n
∑n

i=1 �̂τ (Zi). We first claim that δ̂τ − δ̄τ = Op
(
en
)
, where en =

max
{

lnn
n1/2−3ν/2 ,

√
lnn

(nhd)3/4

}
. It is easy to obtain from Lemma 4 that

δ̂τ − δ̄τ

=
⎡⎣1

n

n∑
i=1

�̂τ (Zi)− 1

n

n∑
i=1

�τ (Zi)

⎤⎦+
⎡⎣1

n

n∑
i=1

�τ (Zi)−
∫

�τ (z)fZ(z)dz

⎤⎦
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= 1

n

n∑
i=1

{
1

n

n∑
j=1

γn,τ (Yj,Xj,Dj;Zi)

}
+Op

(
en
)+Op(1/

√
n)

= 1

n2

∑
1≤i<j≤n

[
γn,τ (Yj,Xj,Dj;Zi)+γn,τ (Yi,Xi,Di;Zj)

]
+ 1

n2

n∑
i=1

γn,τ (Yi,Xi,Di;Zi)+Op
(
en
)+Op(1/

√
n)

= 1

n2

∑
1≤i<j≤n

[
γn,τ (Yj,Xj,Dj;Zi)+γn,τ (Yi,Xi,Di;Zj)

]+Op
(
en
)
,

where γn,τ (Yi,Xi,Di;z)= �n,1,τ (Yi,Xi,Di;z)−E�n,1,τ (Yi,Xi,Di;z)−�n,0,τ (Yi,Xi,Di;z)+
E�n,0,τ (Yi,Xi,Di;z). Here �n,l,τ (Yi,Xi,Di;z), l = 0,1, are defined in Lemma 2. Note that
the first term in the above equation is a centered U-statistic. Using Lemma 5, we can verify
that

1

n2

∑
1≤i<j≤n

[
γn,τ (Yj,Xj,Dj;Zi)+γn,τ (Yi,Xi,Di;Zj)

]= Op(1/
√

n).

Thus,

δ̂τ − δ̄τ = Op(1/
√

n)+Op
(
en
)= Op

(
en
)
. (9)

Then, under the null hypothesis H0, �τ (z)− δ̄τ ≡ 0. By Lemma 4,

Jn =
∫ (1

n

n∑
i=1

γn,τ (Yi,Xi,Di;z)+Op(en)
)2

ω(z)dz

=
∫ (1

n

n∑
i=1

γn,τ (Yi,Xi,Di;z)
)2

ω(z)dz+Op(e2
n)

∫
ω(z)dz

+2Op(en)

∫
1

n

n∑
i=1

γn,τ (Yi,Xi,Di;z)ω(z)dz

:= Jn,1 + Jn,2 + Jn,3.

Note that under Assumptions 5 and 6, en = o
(
n−1/2h−d/4). It is easy to verify that

nhd/2 Jn,2 = op(1). Also, by noting that E
(
γn,τ (Yi,Xi,Di;z)

)= 0, we have

nhd/2 Jn,3 = nhd/2 ·Op(en) · 1

n

n∑
i=1

∫
γn,τ (Yi,Xi,Di;z)ω(z)dz

= nhd/2 ·Op(en) ·Op(n−1/2) = op(1).

Thus, an application of Lemma 6 leads to

nhd/2(Jn −μJ
)= nhd/2(Jn,1 −μJ + Jn,2 + Jn,3

) D−→ N (0,σ 2
J ).

Now, we consider the case under the alternative hypothesis H1. Under H1, it is easy to

show that Jn − μJ = ∫ (
�τ (z) − δ̄τ

)2
ω(z)dz + op(1). Since

∫ (
�τ (z) − δ̄τ

)2
ω(z)dz is a
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positive constant under H1, so that

nhd/2(Jn −μJ
) p−→ +∞.

This completes the proof of Theorem 1. �

Proof of Theorem 2. Under the local alternative H1n : �τ (z) = δτ + ρn · ζ(z) with
ρn = n−1/2h−d/4, it is easy to see that δ̄ := ∫

�τ (z)fZ(z)dz = δτ since
∫

ζ(z)fZ(z)dz = 0.
According to (9), we have

Jn =
∫ (

�̂τ (z)− δ̂τ

)2
ω(z)dz

=
∫ [(

�̂τ (z)−�τ (z)
)

+
(
�τ (z)− δτ

)
+
(
δτ − δ̂τ

)]2
ω(z)dz

=
∫ [(

�̂τ (z)−�τ (z)
)

+
(
�τ (z)− δτ

)
+
(
δ̄τ − δ̂τ

)]2
ω(z)dz

=
∫ [(

�̂τ (z)−�τ (z)
)

+ρn · ζ(z)+Op(en)
]2

ω(z)dz

=
∫ (

�̂τ (z)−�τ (z)
)2

ω(z)dz+ρ2
n ·
∫

ζ 2(z)ω(z)dz+Op
(
e2

n
)

+2ρn ·
∫

ζ(z)
(
�̂τ (z)−�τ (z)

)
ω(z)dz+2Op

(
en
) ·∫ (

�̂τ (z)−�τ (z)
)
ω(z)dz

+2Op
(
en
) ·ρn ·

∫
ζ(z)ω(z)dz

:= J(1)
n + J(2)

n + J(3)
n + J(4)

n + J(5)
n + J(6)

n .

By noting that ρn = n−1/2h−d/4,∫ (
�̂τ (z)−�τ (z)

)
ω(z)dz =

∫
1

n

n∑
i=1

γn,τ (Yi,Xi,Di;z)ω(z)dz+Op (en)

= Op

( 1√
n

)
+Op (en),

and∫
ζ(z)

(
�̂τ (z)−�τ (z)

)
ω(z)dz = Op

( 1√
n

)
+Op (en),

it is easy to show that nhd/2J(k)
n = op(1) for 3 ≤ k ≤ 6. Then, using the result in Theorem 1,

we have

nhd/2(Jn −μJ
)= nhd/2(J(1)

n −μJ
)+nhd/2J(2)

n +op(1)
D−→ N

(∫
ζ 2(z)ω(z)dz,σ 2

J

)
.

This completes the proof of Theorem 2. �

Now, we introduce some notations before considering the proof of Theorem 3. First,
let P denote the distribution of {(Yi(0),Yi(1),Xi,Di)}n

i=1, and let P∗ denote the Bootstrap
distribution, which is the distribution of {(Y∗

i ,X∗
i ,D∗

i )}n
i=1, conditional on {(Yi,Xi,Di)}n

i=1.
Also, we use E∗ and Var∗ to denote the expectation and variance with respect to P∗,
respectively. Finally, following Lee et al. (2015), let S1,S2, . . . be a sequence of random
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variables and a1,a2, . . . be a sequence of positive real numbers. Define Sn = op∗(an) if, for
any ε > 0 and ε > 0, limn→∞ P

{
P∗(|Sn/an| > ε) > ε

}= 0. Similarly, Sn = Op∗(an) means
that, for any ε > 0 and ε > 0, there exists M > 0 such that limsupn→∞ P

{
P∗(|Sn/an| >

M) > ε
}

< ε.

Proof of Theorem 3. It is easy to see that we have the following decomposition:

J∗
n =

∫ ((
�̂∗

τ (z)− δ̂∗
τ

)− (�̂τ (z)− δ̂τ
))2

ω(z)dz

=
∫ (

�̂∗
τ (z)− �̂τ (z)

)2
ω(z)dz+

∫ (̂
δ∗
τ − δ̂τ

)2
ω(z)dz

−2
∫ (̂

δ∗
τ − δ̂τ

)(
�̂∗

τ (z)− �̂τ (z)
)
ω(z)dz

=
∫ (

�̂∗
τ (z)− �̂τ (z)

)2
ω(z)dz+Op∗(e2

n)−2Op∗ (en)

∫ (
�̂∗

τ (z)− �̂τ (z)
)
ω(z)dz

:= Qn,1 +Qn,2 +Qn,3,

where

δ̂∗
τ − δ̂τ = 1

n

n∑
i=1

�̂∗
τ (Z∗

i )− 1

n

n∑
i=1

�̂τ (Zi)

= 1

n

n∑
i=1

�̂∗
τ (Z∗

i )− 1

n

n∑
i=1

�̂τ (Z∗
i )+ 1

n

n∑
i=1

�̂τ (Z∗
i )− 1

n

n∑
i=1

�̂τ (Zi)

= Op∗(en)+Op∗(1/
√

n) = Op∗(en)

can be proved using Lemma 9 and similar arguments as in the proof of Theorem 1.
For the term Qn,1, we have

Qn,1 =
∫ (

�̂∗
τ (z)− �̂τ (z)

)2
ω(z)dz

=
∫ (

1

n

n∑
i=1

(
ψn,1,τ (Y∗

i ,X∗
i ,D∗

i ;z)−ψn,0,τ (Y∗
i ,X∗

i ,D∗
i ;z)

))2
ω(z)dz+Op∗(e2

n)

+2Op∗(en) ·
∫ [

1

n

n∑
i=1

(
ψn,1,τ (Y∗

i ,X∗
i ,D∗

i ;z)−ψn,0,τ (Y∗
i ,X∗

i ,D∗
i ;z)

)]
ω(z)dz

:= Q(1)
n,1 +Q(2)

n,1 +Q(3)
n,1,

where ψn,l,τ (Y∗
i ,X∗

i ,D∗
i ;z), l = 0,1, are defined in Lemma 10. Recall that en =

max
{

lnn
n1/2−3ν/2 ,

√
lnn

(nhd)3/4

}
, it is easy to see that nhd/2Q(2)

n,1 = op∗(1). Also, according to

the proof of Lemma 11, we know that nhd/2Q(3)
n,1 = op∗(1). Therefore, an application of

Lemma 10 leads to

nhd/2(Qn,1 −μJ)
/
σJ = nhd/2(Q(1)

n,1 −μJ)
/
σJ +op∗(1) −→ N (0,1)
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in distribution in probability. For the term Qn,2, it is easy to see that nhd/2Qn,2 = op∗(1).

By using Lemma 11 again, we also know that nhd/2Qn,3 = op∗(1). Finally, we have

nhd/2(J∗
n −μJ)

/
σJ = nhd/2(Qn,1 −μJ)

/
σJ +op∗(1) −→ N (0,1)

in distribution in probability. Because the cumulative distribution function of N (0,1) is
continuous, by Polyā’s theorem in Bhattacharya and Rao (1986), we obtain Theorem 3. �

Proof of Theorem 4. We have

Sn =
∫
A

∫ (
�̂τ (z)− δ̂τ

)2
ω(z,τ )dzdτ

=
∫
A

∫ [(
�̂τ (z)−�τ (z)

)
+
(
δ̄τ − δ̂τ

)
+
(
�τ (z)− δ̄τ

)]2
ω(z,τ )dzdτ,

where δ̂τ = 1
n
∑n

i=1 �̂τ (Zi) and δ̄τ = ∫
�τ (z)fZ(z)dz. According to Lemma 4 and the

proof in Theorem 1, we know that δ̂τ − δ̄τ = Op
(
en
)

uniformly for τ ∈ A, where en =
max

{
lnn

n1/2−3ν/2 ,

√
lnn

(nhd)3/4

}
. Thus,

Sn =
∫
A

∫ [(
�̂τ (z)−�τ (z)

)
+
(
�τ (z)− δ̄τ

)
+Op

(
en
)]2

ω(z,τ )dzdτ

=
∫
A

∫ [1

n

n∑
i=1

γn,τ (Ri;z)+
(
�τ (z)− δ̄τ

)
+Op

(
en
)]2

ω(z,τ )dzdτ .

Then, under the null hypothesis H0 : �τ (z)− δ̄τ ≡ 0, we have

Sn =
∫
A

∫ (1

n

n∑
i=1

γn,τ (Ri;z)+Op(en)
)2

ω(z,τ )dzdτ

=
∫
A

∫ (1

n

n∑
i=1

γn,τ (Ri;z)
)2

ω(z,τ )dzdτ +Op(e2
n)

∫
A

∫
ω(z,τ )dzdτ

+2Op(en)

∫
A

∫
1

n

n∑
i=1

γn,τ (Ri;z)ω(z,τ )dzdτ

:= Sn,1 +Sn,2 +Sn,3.

It is easy to verify that nhd/2 Sn,2 = op(1) under Assumptions 5 and 6. Also, by noting that
E
(
γn,τ (Yi,Xi,Di;z)

)= 0, we have

nhd/2 Sn,3 = nhd/2 ·Op(en) · 1

n

n∑
i=1

∫
A

∫
γn,τ (Ri;z)ω(z,τ )dzdτ

= nhd/2 ·Op(en) ·Op(n−1/2) = op(1).

Thus, an application of Lemma 12 leads to

nhd/2(Sn −μS
)= nhd/2(Sn,1 −μS +Sn,2 +Sn,3

) D−→ N (0,σ 2
S ).

Under the alternative hypothesis H1, it is easy to show that Sn − μS = ∫
A
∫ (

�τ (z) −
δ̄τ
)2

ω(z)dzdτ + op(1). Because
∫
A
∫ (

�τ (z)− δ̄τ
)2

ω(z)dzdτ is a positive constant under
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H1, then

nhd/2(Sn −μS
) p−→ +∞.

This completes the proof of Theorem 4. �

SUPPLEMENTARY MATERIAL
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