Parameter constrain in neutron star by twin kHz QPOs

D. H. Wang and L. Chen

Astronomy Department, Beijing Normal University, Beijing 100875, China email: huazai05105220@163.com

Abstract. We use data on twin kHz QPOs and measured neutron star (NS) masses to test the relation between the lower (ν_1) and upper (ν_2) peak frequencies predicted with the MHD Alfvén wave oscillation model (AWOM) and the general relativistic precession model (GRPM). In the context of AWOM, the NS radius can be constrained from kHz QPO data and a measured NS mass.

Keywords. X-rays: binaries, stars: neutron, accretion, accretion disks

1. Method

AWOM predicts the following relation between ν_1 and ν_2 (Zhang 2004, Zhang *et al.* 2006:

$$\nu_{1} = 629(\text{Hz})A^{-2/3}\nu_{2k}^{5/3}\sqrt{1 - \sqrt{1 - \left(\frac{\nu_{2k}}{1.85A}\right)^{2/3}}},$$
(1.1)

where $A = (m/R_6^3)^{1/2}$, *m* is the NS mass in M_{\odot} , *R* is the NS radius and $R_6 = R/(10^6 \text{ cm})$, $\nu_{2k} = \nu_2/(1000 \text{Hz})$. With twin kHz QPO data (Belloni *et al.* 2002, 2005, van der Klis 2006, Psaltis *et al.* 1999) and measured NS masses (see Table 1), we compare the inferred NS radii with theoretical prediction. We note that in the context of AWOM, the NS radius follows from the kHz QPO frequencies and the NS mass (Zhang *et al.* 2007a,b, 2011, Zhang 2009).

In contrast, GRPM predicts (Stella & Vietri 1999):

$$\Delta \nu = \nu_{S,r} = \nu_{S,\phi} (1 - 6M/r)^{1/2}, \qquad (1.2)$$

where $\Delta \nu = \nu_2 - \nu_1$, $\nu_{S,\phi} = \nu_2 = \nu_K = (M/4\pi^2 r^3)^{1/2}$, r is the coordinate distance and M is the mass of NS. With twin kHz QPO data, we derive NS mass values and compare them with measure results.

2. Results

The comparison results are shown in Table 1 and constrained radius of Cyg X-2 is shown in Fig. 1.

3. Conclusion

The inferred NS masses based on GRPM are consistent with the measured values of Cyg X-2, but inconsistent with those of SAX J1808.4-3658 and XTE 1820-30 (see Table 1). The inferred NS radii of the three sources based on AWOM are around 10 - 20km (see Table 1), which are consistent with the theoretical prediction for NS. Based on AWOM and the known NS mass value, one can constrain the radius of NS (see Fig. 1).

Source(3)	$\begin{array}{c} {\rm Mass(measured)} \\ {\rm (M_{\odot})} \end{array}$	$\begin{array}{c} {\rm Mass}({\rm GRPM}) \\ ({\rm M}_{\odot}) \end{array}$	A(AWOM)	Radius(AWOM) (km)
[1]SAX J1808.4-3658	< 1.4	2.80 ± 0.29	0.43 ± 0.01	< 19.54
[2]XTE 1820-30	$1.29^{+0.19}_{-0.07}$	1.87 ± 0.00	0.65 ± 0.00	$14.52^{+0.71}_{-0.26}$
[3]Cyg X-2	1.78 ± 0.23	2.04 ± 0.07	0.61 ± 0.002	16.89 ± 0.73
[4]Cyg X-2	1.5 ± 0.3	2.04 ± 0.07	0.61 ± 0.002	15.93 ± 1.06

Table 1. Sources with the measured NS masses and derived parameters

[1]Chakrabarty & Morgan 1998, Elebert *et al.* 2009a; [2]Wang & Chakrabarty 2010, Shaposhnikov & Titarchuk 2004; [3]Orosz & Kuulkers 1999; [4]Elebert *et al.* 2009b

Figure 1. (a,b) show $\Delta \nu vs. \nu_2$ diagrams and the predicted curves based on AWOM and GRPM. (c,d) are the M - R diagrams of NS. Five equation of state (EOS) curves are shown (see also Miller 2002). Rs is the Schwarzschild radius and ISCO is the innermost steady circular orbit. The shadow parts represent the mass and radius ranges of Cyg X-2 (see Table 1).

This work is supported by NBRPC (2009CB824800, 2012CB821800), NSFC (10773017, 11173034, 10778716, 11173024), and the Fundamental Research Funds for the Central Universities.

References

Belloni, T., Psaltis, D., & van der Klis, M. 2002, ApJ, 572, 392 Belloni, T., Méndez, M., & Homan, J. 2005, A&A, 437, 209 Chakrabarty D., & Morgan, E. H. 1998, Nature, 394, 346 Elebert, P., Reynold, M. T., Callanan, P. J. et al. 2009a, MNRAS, 395, 884 Elebert, P., Callanan, P. J., Torres, M. A. P. et al. 2009b, MNRAS, 395, 2029 Miller, C. 2002, Nature, 420, 31 Orosz, J. A. & Kuulkers, E. 1999, MNRAS, 305, 132 Psaltis, D., Belloni, T., & van der Klis, M. 1999, ApJ, 520, 262 Shaposhnikov, N. & Titarchuk, L. 2004, ApJ, 606, L57 Stella, L. & Vietri, M. 1999, Phys. Rev. Lett., 82, 17 van der Klis, M. 2006, in Lewin, W. H. G., van der Klis, M., eds, Compact Stellar X-Ray Sources. Cambridge Univ. Press, Cambridge, p. 39 Wang, Z, & Chakrabarty, D. 2010, ApJ, 712, 653 Zhang, C. M. 2004, A&A, 423, 401 Zhang, C. M., Yin, H. X., Zhao, Y. H. et al. 2006, MNRAS, 366, 1373 Zhang, C. M., Yin, H. X., Kojima, Y. et al. 2007a, MNRAS, 374, 232 Zhang, C. M., Yin, H. X., Zhao, Y. H. et al. 2007b, AN, 328, 491 Zhang, C. M. 2009, AN, 330, 398 Zhang, C. M., Wang, J., Zhao, Y. H. et al. 2011, A&A, 527, 83