
32

Transverse Vibrations of an Elliptic Plate.

By Mr. JYOTIRMAYA GHOSH, M.A. Dacca University.

(Received 87th January 1926. Bead 5th February 1926.)

§ 1. Introductory.

Since the publication of the memoir of Mathieu • on the trans-
verse vibrations of an elliptic membrane, the subject has been
discussed by many authors from different points of view. But the
corresponding problem of the plate has received but little attention.
Mathieu discussed the problem as early as 1869, but the method
adopted is diiferent from that followed in the present paper, the
main object of which is to apply Whittaker's solutions f of Mathieu's
Equation to the problem of the elliptic plate. " These solutions are
really better suited for numerical calculations than the evaluation
of infinite determinants.

§ 2. The equation of motion and its solution.

Let the thickness of the plate be 2a., the volume density p and
Poisson's ratio o\ If w be the transverse displacement, the
equation of motion \s\

-W + sp-(rr^^w = 0' W
where

4 _ 84
 9 04 J*_

V = 7$aF+ " dx*dy2 + ~dy~*'

If — be the period of oscillation, and w varies as cos (pt + e),
P

the equation (1) reduces to

v*w - £4M> = 0 (2)

•Liouville, t. XIII, 1868.

fProc. Edin. Math. Soc, Vol. 32 (1913-14).

| RATLEiqu, Theory of Sound, Vol. I, Chap. X.
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where

From (2), we have (y2 + &?) (y2 - k") w = 0, and if w, and u>2

be respectively the solutions of

(V*+ # ) « , - < > (4)
(y2-F-)u,2 = 0, (5)

then to = JIM)! + JSW, is a solution of (y4 - k*) w = 0. Hence a
solution of (1) is

u> = (Awx + Bws) cos (pi+ e) (6)

Putting x + iy = h cosh (£ + i»?), so that £ = const, give con-
focal ellipses with focal distance 2h, the equation (4) becomes

+ ^ ' +

Let wl = F(£)G(r)), where ^(^) is a function of £ only and
G(rj) a function of rj only. We get

-— + (I6o cosh 2£ - JV) F = 0

!?G \ (8)
°—1 - (169 cos 2?? - A") £ = 0

where a = N - \h"k2, q = ^tfk2 (9)

If we put £ = i{ z + -jj-), '; = s + — respectively in the equa-

tions (8), they both reduce to the equation

d~ 11
—— + (a + 16^ cos 2a) it = 0 (10)
cz~

The solution of this equation given by Whittaker is

u = A(«) = e**u(z), (11)

where «(«). is a periodic function of z, and /* is given by the power
series in q

p =• iq sin2<r - 12q" sin 2<r - \2q* sin 4o- + .. ; (12)
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in this equation <r is a parameter connected with the parameters
a and q of the differential equation by the relation

a =1 + 8q cos2ar + (- 16q + 8 cosia-)q°- - 8q3 COS 2<r + (13)

and u (z) is given by the Fourier series

u (z) = sin (z - <r) + <h cos (3« - «•) + b3 sin (3« - <r) + as COB (5Z - a-)

+ bt sin(5z - a-) + (h cos(7a - er) + ... , (14)

where the coefficients are given by the power-series in q

b,= q+ q" cos 2<r + (--^- + 5 COS 4<r) q3 + (—T
v*. COS 2<r + 7 COS 6<r)j4 + ...

a3 = Sq- sin2<r + 3j* sin4<r + ( - ^ J i sin 2tr + 9 sin60-)^ + ...

bs = iq* + f(q* cos 2<r + ( - -^5- + | 1 cos 4<r) ?4 + ...

a5 = -Y- g* sin 2o- + -J4 ?4 sin 4a- + ...

b. = TLy3 + TV?4 cos2<r + . . . , etc., (15)

A second solution is obtained by putting - o- for <r. Hence
the complete solution is

-<r,q) (16)

The solution is purely periodic when JX — 0. Let o- = s be any
one of the values of <r which makes /* = 0. Then the solution (16)
reduces to a single term and the general solution must be taken as

n = AA(z, s, q) + B\{z,s,q), (17)

where A,(z, s, q) is the elliptic cylinder function of the second
kind.*

In our problem, (?('/) must be a purely periodic function; hence
we have

G (>;) = A (7/ - y , s, q

since the elliptic cylinder function of the second kind is not
periodic Also

- i£ - | - , s.gj + 7i

* B. L. I.NCE. Proc. Edin Math. Soc, Vol. 33, p. 2.
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where for brevity, we have put

Hence w, = Gfo) {.^.(f) + ^ ( f ) } (13)

To obtain the solution of (5), we take t02 = P (£) Q (rj), where
P (£) is a function of f only and Q (rj) is a function of ij only, and
setting a= N + ±h*]<?,q = -^h-k* instead of (9), we get

P(f) = CA (if, «, , ) + DA, (if, a, , ) ,
<2 (i,) = A (T;, *, ? ) ,

since Q(r)) must be periodic.

Putting, for brevity,

A (if, ., q) = P1(£)

we have MJ2 = © ( ^ { ^ ( f ) + DPJ$)} (19)

Hence we obtain finally

to-[G(v) {AFt(t) + JiF,(£)}
oa(Ja + f) (20)

§ 3. The case of the complete elliptic disc.

Let £ = £0 be the boundary of the ellipse, so that we have for a

rigidly clamped boundary £ = £0, w — --; = 0 . Hence from (20)

we have

(&)} = 0.
(6.)} = o/ ""^ }

where ^'(fo), ... are the values of ' , ... when f = f0.

Since the equations (21) must be true for all values of i/, the
coefficients of G (rf) and Q (?j) must separately vanish. We there-
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fore obtain, after the elimination of A, B, C, D, the two equations

= 0, P,(£o) Pg(£0) = °
P'(t\ p'ii\ (22)

These equations give two types of vibration.

§ 4. The case of the elliptic annulus.

If the boundaries are the confocal ellipses £ = £0 and £ = £„ we

must have w = — = 0 for these values of £. Hence, we get, in

addition to (22), the following relations :

G(v) {AFifa) + BFt(^)} + Q(r,) (C'P,^,) + J)Pi(£,)} = 0,

= 0.

These four equations must hold for all values of rj. Hence the

eight coefficients of G (rj) and Q (rj) should all vanish. Thus, on

eliminating A, B, C, D, we get

and = 0

P.'tf.) P.'tf.) P.'(fc) J (23)
These give us the frequency equations. It appears from the

form of these equations that they are fairly simple and numerical

calculations can be effected by means of (12), (13), (14) and (15).

§ 5. An important particular case.

There is an infinite number of values of s (i.e. the values of <r)

which make /* = 0. And corresponding to every value of s, we

shall obtain a set of frequency-equations of the type (22) or (23).

Since
h2 l3p (1

32V 1EoS- •P> .(24)

where o- is the Poisson's ratio, it is evident that q is a small

quantity for all ordinary substances, and hence the powers of q

beyond the second may be omitted in obtaining an approximate
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solution. In this case we have )>• = q sin 2<r and for fi = 0, we

have s = 0 or —. In either case, the solutions A (z, s, q) and

A, (z, s, q) assume simple forms.

In fact, we get, up to the second power of q

A (z, o, q) = sin z + (q + q2) sin Tz + ^q2 sin 5z

A, (z, o,q) = - 8<7sA (z, o, <?) + cos z + q cos 3z + q" ( i COS oz - 5 cos 3z)
A (iz, o q)= -i [sinh s + (<? + q2) sinh 3z + i (?2 sinh 5z]
A,(i«, o,q)— - 8q . iz. A (iz, o, q) + cosh z + q cosh 3z

+ 92 (^ cosh Xiz - 5 cosh 3s).

As a first approximation, we may take
A (z, o, q) = sin z + q sin 3z
A](z, o, q) = - 8qz sin z + cos z + q cos 3z
A (iz,.o, q)= - i(s nhz + q sinh 3z)

A](tz, o, q) = - 8gz sinh z + cosh z + q cosh 3z.

§ 6. The frequency equation.

The simplest type for the complete elliptic disc £ = f0
 ;s given

by the equation

*\ (&)JY (&)-•?. '(&)*.(&) = o-

Substituting for P, (£„), A'(£,), ^a(&). •?»'(&) from above, we
get, retaining the first powers of q only,

q = 4 ( 1 - 2 cosh2£0)

Hence, if n be the frequency we get from (24) and (25)

(4cosh2^0- 3)
( '

§ 7. Numerical Results,

A few numerical results are added below. In the different
cases considered, the material and the eccentricity of the ellipse
have been varied, but the thickness and the focal distance are
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unaltered. The frequency is obtained as the number of vibrations
per second. The units employed are the usual c. g. s. units.

p E a 2a 2h e n

Material Density Young's Foiecou'g Thick- Focal Eccen- Fre-

Modulus ratio ness distance tricily quency

Steel 7-70 214 x 1(P -31 -02 2-00

») J l U 1) 1) J»

Wrought Tron 785 l-96xlO12 -28 „ „
)j i) >> )> n it >»

Copper 8-90 1 23 x 1015 -39

ir »J it 11 it it

Glass 2-60 6 77 x 10" -25

50
3
50

3
•50

3
50

3

314
124

295

116

229

90

298

118
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